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Molecular Modelling and Computer-Aided 
Drug Design: The Skill Set Every Scientist 
in Drug Research Needs and Can Easily Get
Moleküler Modelleme ve Bilgisayar Destekli İlaç Tasarımı: İlaç 
Araştırmalarında Yer Alan Her Bilim İnsanının İhtiyaç Duyduğu ve 
Kolayca Edinebileceği Beceri Seti

Review Article

ABSTRACT
The overwhelming advances in molecular modelling witnessed for a couple of 
decades go hand in hand with the booming computer and information technolo-
gies. Computer-aided drug design (CADD) is probably the most important field 
of molecular modelling given the time scale and cost for turning a chemical entity 
into an approved drug. In this review we provide a brief definition of molecu-
lar modelling and CADD with historical corner stones. In this review methods, 
tools, and applications of molecular modelling in different stages of CADD were 
focused on by referring to a number of success stories. Useful databases and non-
commercial software for different purposes are also introduced. The review aims 
to provide a glimpse of these methods for scientists taking part in any field of drug 
research and to show that everyone can and should make the best of these methods 
with a vast amount of available free tools and documentation.

Keywords: molecular modelling, computer-aided drug design, virtual screening, 

molecular docking, pharmacophore modelling, shape similarity, molecular dy-

namics simulations, ADMET prediction

ÖZET
Moleküler modellemede son birkaç on yıldır tanıklık ettiğimiz baş döndürücü 
gelişmeler ilerleyen bilgisayar ve enformasyon teknolojileri ile birlikte gerçek-
leşmektedir. Bilgisayar destekli ilaç tasarımı (BDİT), bir kimyasalın ilaca dönüş-
türülmesi için gerekli zaman ve masraflar göz önüne alındığında, muhtemelen 
moleküler modellemenin en önemli alanıdır. Mevcut derlemede BDİT’nın farklı 
aşamalarındaki moleküler modelleme yöntemleri, araçları ve uygulamaları-
na, bazı başarı hikayelerine de atıfta bulunularak odaklanılmıştır. Ayrıca, farklı 
amaçlar için kullanılan faydalı veri tabanları ve ticari olmayan yazılımlar tanıtıl-
mıştır. Derleme, bu yöntemlerle ilgili, ilaç araştırmalarının herhangi bir alanında 
görev alan bilim insanlarına fikir vermeyi ve herkesin bu yöntemlerden, mevcut 
çok sayıda ücretsiz yazılım ve dokümantasyon ile en iyi şekilde faydalanabilece-
ğini göstermeyi amaçlamaktadır. 

Anahtar Kelimeler: moleküler modelleme; bilgisayar destekli ilaç tasarımı; sanal 
aktivite tarama; moleküler kenetleme; farmakofor modelleme; şekil benzerliği; 
moleküler dinamik simülasyonları; ADMET tahmini
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1. Introduction

The overwhelming advances in information technol-
ogy observed in the past couple of decades, among 
many other things, made it possible to understand 
and predict molecules at every level of complexity 
by simply using our PCs or even our mobile de-
vices. Thanks to multicore processors and high-end 
graphics available to almost everyone, molecular 
modelling is no longer the expertise of only those 
with highly technical computing skillset. Diversity 
of the methods in molecular modelling enabled this 
approach to reach to various fields in life sciences. 
Any researcher who crosses molecules’ path can 
get to know of many things in silico before or after 
an experiment (1, 2). Is my molecule water soluble 
enough to run an assay or how can I make it water 
soluble? Can this compound pass blood-brain bar-
rier? Does it contain any functional groups that can 
react nonspecifically with the assay medium? Can 
it inhibit CYP3A4? Could this peptide assume an 
α-helix conformation? Which mutations could pos-
sibly affect the function of my protein? Could this 
antagonist have triggered a desensitized state for my 
receptor? Questions like these can find more accu-
rate answers in shorter time with the hands of the 
inquirers themselves thanks to molecular modelling. 

Of course, molecular modelling has a special place 
in drug research. Given the time span and costs for 
a chemical entity to be labelled as “drug”, the ques-
tions such as “which compound”, “which targets”, 
and “which off-targets” definitely need to be ad-
dressed at the very beginning. At this point, molecu-
lar modelling is put in use to work out what we call 

“computer-aided drug design” (CADD) to save time 
and money, to dodge pit falls and dead ends, and to 
detect blind spots (3).

In this review, molecular modelling and virtual 
screening is defined and a historical background is 
provided with drug discovery perspective. Steps of 
CADD are presented with state-of-the-art methodol-
ogies, applications, and success stories. The review 
also compiles resources for the most common tools 
of CADD.

2. Molecular Modelling and Its Historical 
Background

Molecular modelling is all the computational meth-
ods used to predict molecular structure and behavior. 

From material science to structural biology, molecu-
lar modelling methodologies are used in many fields 
to understand systems made up of a wide range of 
complexity from small molecules to biological mac-
romolecules such as proteins, receptors, and nu-
cleotide chains. These systems can be modelled by 
treating atoms as particles with charges and potential 
energy using forcefields (molecular mechanics) or 
by applying wave function at atomic and subatomic 
scales (quantum mechanics) (4). From drawn repre-
sentations of chemical structures to millisecond-long 
simulations of biological systems, molecular model-
ling has undergone a massive progress through his-
tory (5). Following are some of the milestones of 
molecular modelling:

 The term chemical structure was introduced 
between 1858 and 1861 by identification of va-
lence rules in organic chemistry and representing 
bonds as lines in molecules with carbon chains.

 In 1865, August Wilhelm Hofmann for the first 
time used physical models in his organic chemis-
try lecture, in which organic compounds such as 
methane and chloroform were represented with 
croquet balls joined by sticks.

 Hofmann also established today’s commonly ac-
cepted color scheme for atoms: black for carbon, 
white for hydrogen, blue for nitrogen and green 
for chlorine.

 Crum-Brown in 1865 and Sir Edward Frankland 
and B. F. Duppa in 1867 were the scientists to use 
2D drawn structures in ball and stick models for 
the first time. 

 That carbon compounds have tetrahedral geom-
etry was first suggested by E. Paterno (1869), 
Jacobus Henricus van’t Hoff, and Joseph Achille 
LeBel (1874), which is considered as the emer-
gence of three-dimensional molecular structure 
elaboration.

 In 1898, van’t Hoff suggested that each carbon-
carbon bond had a favored conformation about a 
torsional angle, setting the foundations of what 
we refer to as the global minimum energy confor-
mations today.

 Urey and Bradley introduced a formulation which 
included quadratic Hooke’s Law potential equa-
tions to describe harmonic vibrations in simple 
molecules and found the Morse potential to give 
the best fit to empirical data for bond stretching 
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in 1931. This was a breakthrough in forcefield 
concept.

 The first examples of molecular mechanics 
came in 1946 with Hill’s force field to treat the 
repulsive and attractive nonbonding terms, and 
quadratic terms for bond stretch and angle bend; 
Dostrovsky, Hughes and Ingold’s study on the 
repulsive and attractive nonbonding terms; and 
Westheimer and Mayer’s analyses of the confor-
mations of hindered biphenyls. These methods 
let molecular modelling spread out of physical 
chemistry society.

 The importance of 3D aspects of molecules in 
understanding structure, stability, conformation, 
and reactivity was appreciated with the emer-
gence of conformation analysis led by the study 
of Barton on the conformations of steroids in 
1950.

 The most famous physical molecular model of 
all time, the structure of DNA double strand, was 
elucidated by Watson and Crick in 1953.

 The first molecular dynamics (MD) calculations 
study was reported in the same year under the 
name Equation of State Calculations by Fast 
Computing Machines, which featured simulated 
annealing and aided the groundwork for Monte 
Carlo simulations.

 Potentials of nonbonding interactions in organic 
structure modelling were first applied by Kitaig-
orodsky in 1960. 

 The first use of computer for empirical force field 
calculations was reported in 1961 by Hendrick-
son.

 In 1965, Wiberg developed a steepest descent 
algorithm for geometry optimization to address 
conformational analysis.

 Scientists from Oak Ridge National Laboratory 
in the US designed a molecular drawing program 
called ORTEP (Oak Ridge National Laboratory) 
in 1965. The US government also funded the first 
computer network in 1969, which is accepted as 
the ancestor of internet.

 In 1971, Lee and Richards described the molecu-
lar surface in protein structure context and eluci-
dated an algorithm to derive it.

 In 1974, computer modelling of oligosaccharides 
starting from crystal structure was reported for 
the first time. In the same year, force field cal-
culations of synthetic macromolecules started to 
appear.

 At the beginning of 1980s, with the booming per-
sonal computer (PC) industry, molecular model-
ling became accessible from PCs and the use of 
the graphical user interface (GUI) started. This 
marks the advent of personal molecular model-
ling for the average chemist.

 The World Wide Web kickstarted in 1993, which 
probably marks the beginning of web servers for 
molecular modelling. 

3. Computer Aided Drug Design (CADD)

Drug design and discovery is highly complex and ex-
pensive process that requires contribution of a wide 
range of disciplines. The general estimation is that it 
takes more than 10 years and a billion US dollars for 
a chemical entity to be used in the clinic. Although 
in silico methods are usually adopted in the early-
to-mid-stage drug discovery studies, the selection of 
candidates passed from these stages to preclinical 
and clinical phases greatly affects the attrition rates. 
Therefore, the use of in silico methods in drug dis-
covery has increased reasonably for the past couple 

Figure 1. Steps of drug discovery and applications of CADD.
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of decades (Figure 1). CADD applications mainly 
assist experimental studies in decision making by 
following the major drug discovery stages, such as 
target validation, hit identification, lead generation, 
and optimization (3, 6).

3.1. Target Identification and Validation

Drug development process usually starts with identi-
fication of a druggable target relevant to the disease of 
interest. Introduction of such targets prompts efforts 
to find potential compounds to modulate the target 
pathway and finally to elicit a phenotypic response 
(7). In silico approaches are usually helpful to un-
derstand the structure, topology, and ligand binding 
sites of the target, as well as their key residues and 
ligand binding interactions. In silico methods such 
as homology modelling, molecular docking, and MD 
simulations have become paramount to assist in vitro 
studies for target validation such as protein structure 
elucidation (e.g. X ray diffraction), alanine scanning, 
site-directed mutagenesis, and radioligand binding 
(8-10).

Chemical and biological databases play crucial role 
in bringing the wet lab and computers together. Cur-
rently, there is a vast number of databases which ar-
chive and process countless sorts of data belonging 
to millions of molecules ranging from small mole-
cules to proteins, genes, and nucleotide chains (Table 
1) (11).

3.2. Hit Identification

Once a target is validated for a certain disorder, cam-
paigns are run for identification of hit matter, i.e. 
chemical entities that display an intended activity 
against the target, by both pharma companies and 
academia. Just as the robotics technology made it 
possible to randomly screen biological activity of 
thousands of compounds in vitro at the same time 
(high-throughput screening), the computer technolo-
gy did the same for screening millions of compounds 
in silico. With the so-called high-throughput virtual 
screening (or briefly virtual screening), biological 
screening of small compound sets rationally selected 
from huge libraries became more common. Virtual 
screening features a number of filters to narrow 
down the libraries step by step and to eventually sug-
gest potential hits for in vitro tests (12). As the filters 
go from rough to exhaustive, the computational bur-
den and time required increases dramatically, which, 
however is balanced with shrinking library through-

out the steps. Evaluation of druglike chemical space 
and PAINS (Pan-assay Interference Compounds) is 
an example for rough filters, which is commonly 
applied at the beginning of virtual screening cam-
paigns (13, 14). This step is crucial for eliminat-
ing entities with potentially poor pharmacokinetics 
and those with non-specific reactive functionalities, 
since such compounds account for a good amount 
of failed clinical candidates (15). This step is usually 
followed by a ligand- and/or structure-based virtual 
screening (16).

3.3. Lead Generation and Optimization

Finding hit compounds with ability to modulate an 
isolated target is the tip of the iceberg in drug dis-
covery issues. When evaluated thoroughly (plotting 
dose-response curves, profiling for related targets, 
testing against cell cultures, in vivo and toxicity 
profiling, cytochrome P450 and efflux pump inter-
actions, pharmacokinetics etc.) these hits will most 
likely fail at a certain point. This is where medici-
nal chemists take the stage to tailor these hits to fit 
specific requirements (17). In silico drug discovery 
methods enable medicinal chemists to create librar-
ies of countless virtual compounds envisaged accord-
ingly. The so-called scaffold-hopping methodology 
utilizes both ligand- and structure-based approaches 
to model structurally relevant molecules as synthetic 
candidates (18). Establishing structure-activity rela-
tionships (SARs) at this stage is crucial for creating 
virtual libraries. Quantitative SARs (QSAR) is an 
inevitable computation tool for decision making re-
garding SARs (19). The synthesized compounds are 
then subjected to a set of in vitro and in vivo tests to 
obtain leads.

Lead optimization stage mainly focuses on pharma-
cokinetic and toxicity issues, i.e. ADME+T (Absorp-
tion, Distribution, Metabolism, Excretion + Toxic-
ity), therefore in silico methods are less likely to be 
included at this level. However molecular modelling 
offers a wide range of tools to assist decision making 
for various scenarios. There are many web servers 
and free tools to evaluate ADME+T profile of com-
pounds through fast in silico predictions, as well as 
more sophisticated, specific, and exhaustive models. 
Site of metabolism, hERG channel affinity, blood-
brain barrier permeability, human serum albumin 
binding, CYP and P-glycoprotein affinity are among 
the properties that scientists can predict without a 
high level of expertise in computational chemistry 
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and bioinformatics (20-23).

4. Approaches in CADD

Rapid development in information technologies 
brought about a vast amount of data, which in-
creased our ability to create highly predictive models. 
In CADD, data is related to either small molecules 
or their potential targets, i.e. biological macromol-
ecules. Virtual screening approaches in CADD can 
be classified as ligand-based and structure/receptor-
based methods according to the type of employed 
data. Ligand-based methods use models built exclu-

sively from ligand data, while structure-based or re-
ceptor-based approaches benefit from structural data 
of target macromolecules. Virtual screening methods, 
in most cases, incorporate both approaches, which 
are referred to as hybrid methods. This, of course, 
has much to do with the extend of the data available 
(16).

4.1. Ligand-Based Methods

The general consideration in CADD is that similar li-
gands are supposed to exert similar biological effects, 
which lies beneath the rationale of ligand-based 

Table 1. Examples of useful chemical and biological databases 
Database 1 Source Description

ZINC https://zinc.docking.org Indexes more than 230M commercial compounds in ready-to-dock 
format with diverse data including 
predicted and biological properties and vendor information. 

ChEMBL https://www.ebi.ac.uk/chembl/ Archives 2M compounds with detailed experimental data, target, 
assay, and literature information.

DrugBank www.drugbank.ca Includes 13,551 drug entries (approved and experimental) with 
detailed information including drug targets.

PubChem https://pubchem.ncbi.nlm.nih.gov Archives 103M compounds with relevant chemical, bioactivity, and 
literature information.

ChemSpider www.chemspider.com Provides 81M compounds with 278 data sources including supplier 
information.

DUD-E http://dude.docking.org Provides 22K active compounds with target information and 50 
decoys for each active compound for virtual screening enrichment 
studies.

BindingDB www.bindingdb.org/bind Stores measured affinities of 820K small molecules to 7K protein 
targets.

Protein data 
banks

www.wwpdb.org
www.pdbe.org
www.rcsb.org
www.bmrb.wisc.edu
www.pdbj.org

Store three-dimensional structural data of biological macromolecules. 
Currently, more than 160K structurers are available.

UniProt www.uniprot.org Provides sequence and functional information for some 177M 
proteins.

NCBI www.ncbi.nlm.nih.gov Along with literature (PubMed) and many other databases, NCBI is 
one of the largest protein, DNA, RNA, genome, and gene databases.

SCOP http://scop.mrc-lmb.cam.ac.uk Provides a detailed and comprehensive description of structural 
and evolutionary relationships between 532K proteins with known 
structure.

BioGRID https://thebiogrid.org Biological database of protein-protein interactions, genetic 
interactions, chemical interactions, and post-translational 
modifications.

PROSITE https://prosite.expasy.org Consists of documentation entries describing protein domains, 
families and functional sites as well as associated patterns and 
profiles to identify them.

 1in alphabetical order

Hacettepe University Journal of the Faculty of Pharmacy

Volume 40 / Number 1 / January 2020 / pp. 34-47 Sari et al.38



CADD (24). Similarity can be measured in diverse 
ways, i.e. molecular descriptors, which incorporate 
molecular properties. According to the complexity 
and organization of the data, ligand-based methods 
are classified as 1D-, 2D- or 3D-methods (25). De-
scriptors for 1D-methods include physicochemical 
properties of molecules without structural data, such 
as molecular weight, H bond acceptor count, and po-
lar surface area. The idea of 1D-methods suggests 
that compounds belong to a specific group, such 
as orally available small-molecule drugs, possess 
similar set of physicochemical properties. This kind 
of methods are helpful to filter libraries in terms of 
drug-likeness or lead-likeness or to predict certain 
pharmacokinetic properties to help decision making 
(26). 2D-methods employ physicochemical proper-
ties assigned to 2D-structure of compounds. Molecu-
lar fingerprints are widely used to determine simi-
larity between compounds regarding fragment con-
nectivity independent from their spatial orientations, 
which is handled by 3D-methods, such as pharma-
cophore modelling (Figure 2) and shape similarity 
(27-29). The increase in the order of dimensions 
causes computational burden. For example, in 3D-
methods, similarity between two compounds is cal-
culated by finding the best molecular volume align-
ment, which is selected from possible conformations 

of the compounds. This requires coordination data 
for each atom, which is re-calculated for each ge-
ometry. However, increasing computational burden 
is usually the result of demands for higher precision 
in molecular modelling. In addition, 3D-geometry 
and spatial volume are valuable data in CADD con-
sidering drug-target affinity. In an effort to reduce 
computation burden by maintaining precision, new 
methods were introduced in which 3D-molecular 
fields are reduced into 1D-descriptors or molecular 
volume information is compressed and described as 
vectors (30, 31). 

4.2. Structure-Based Methods

Two things gave rise to the emergence of structure-
based methods as powerful tools for CADD: advanc-
es in biomolecular spectroscopic methods, such as 
X ray diffraction and NMR, and rapid development 
of computer technologies, especially processors and 
graphics. X ray diffractometers have become widely 
accessible, which triggered an avalanche of struc-
tural data of biological macromolecules deposited 
in the web sites called protein data bank. Handling 
macromolecule data requires high-performing pro-
cessors and graphics, which is available to individu-
als, except clusters of parallel processors required in 
the case complex dynamics simulations. The impor-

Figure 2. Last-generation azole antifungals (A) and a pharmacophore model of the last-generation azole antifungals aligned 
with voriconazole (B). The model consists of three rings, two hydrophobic groups, and one H bond donor represented as brown 
rings, green spheres and a blue sphere with an arrow, respectively. The cut-off space for each pharmacophore is highlighted 
with a transparent sphere. Voriconazole is represented as gray sticks and balls.
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tance of target macromolecule structure data became 
apparent with the ever expanding the knowledge of 
ligand-receptor affinity and interactions at molecu-
lar level. CADD benefits from these developments 
in several situations some of which are listed below 
(32): 

 Creating a structural model for a protein when 
there is no spectroscopic or experimental struc-
tural data

 Identification of possible druggable sites for a re-
ceptor

 Ligand-receptor interactions and how these inter-
actions manipulate signal transduction

 Possible effects of certain residues, co-factors, 
ions, and solvents on conformational changes in 
macromolecule structure and its gating 

 The effects of charge polarization in ligand-re-
ceptor binding 

For these issues and more, there are powerful and 
popular tools, such as homology modelling, molecu-
lar docking, and MD simulations, which are availa-
ble either free of charge or through paid licenses (32).

4.2.1. Homology Modelling

Proteins with similar amino acid sequences tend to 
have similar tertiary structures. Homology modelling 
is a method to predict three-dimensional structure of 
a protein when there is no experimental structural 
data available. This is performed by the help of ho-
mologous proteins with experimental structural data. 
The process starts with sequence alignment of the 
query structure with one or more template protein(s). 
This alignment and the atomic coordinates of the 

template protein(s) are then used to thread the struc-
tural model of the query protein. The model is further 
optimized by loop refinement and side chain mini-
mization, and subjected to various structural assess-
ment methods for validation (33, 34). 

Apart from creating a whole structure model, homol-
ogy modelling can be used to fill in loops and miss-
ing side chains, something usually encountered with 
the structures obtained from protein data bank. Also, 
in silico modifications in protein structure such as 
alanine scanning is possible via homology model-
ling. Thus, homology modelling is a powerful tool 
for structure-based modelling employed in target 
validation, hit generation, and optimization studies 
(35-37).

4.2.2. Molecular Docking

Molecular docking is an in silico technique to predict 
the preferred binding orientation and affinity of two 
molecules, a ligand and a receptor, to form a stable 
complex. Receptor in molecular docking is usually a 
macromolecule such as protein, DNA, RNA, or pep-
tide, which is kept rigid; while ligand is a flexible 
small molecule. However, techniques for docking 
two macromolecules to each other or making both 
ligand and receptor flexible are available. Molecu-
lar docking predicts countless ligand-receptor com-
plexes (search space) and ranks them according to a 
score (docking score) which is calculated by a scor-
ing function (Figure 3). Docking score is a metric 
used to predict how much affinity a ligand is bound 
to a receptor with, which is usually governed by non-
bonded interactions, although it is possible to model 
possible covalent bonds between ligand and receptor 
by covalent docking method (38).

Figure 3. Molecular docking.
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Biological systems work by means of signal trans-
duction, which is pretty much affected by the at-
tributes of ligand-receptor complexes. By predicting 
ligand-receptor complexes it is possible to predict 
the outcomes of signal transduction, which makes 
molecular docking a precious tool for drug design. 
In recent years, molecular docking has become an 
indispensable component of virtual screening. On 
the other hand, it is routinely applied to study ligand-
receptor interactions at atomic level to understand 
the importance of certain amino acids, cofactors, 
chelating with metals, hydrogen and halogen bonds, 
solvation effects, and more (Figure 4) (39).

4.2.3. MD Simulations

While molecular docking provides a picture of a 
biological process, it is the dynamics of this process 
that actually matters for its biological consequences. 
MD of a system is the physical movements of all its 
atoms, which is simulated by adding Newtonian me-
chanics to the initial conditions of each atom, i.e. en-
ergies and coordinates. Then, forces between atoms 
or particles and potential energies are calculated at 
each given time period to determine trajectories for 
atoms or molecules, which reflect the dynamic evo-
lution of the system (42).

Depending on the number of the atoms of the sys-
tem and the presumed time scale, MD simulations 

require a great amount of data usage and time, espe-
cially compared to molecular docking or other target 
and ligand-based methods. To overcome this com-
putational burden in a reasonable amount of time, 
parallel processors were introduced, some of which 
are available to researchers via remote access. Lately, 
an evolutionary method called Graphics Processing 
Unit (GPU) acceleration has made use of high-end 
graphics processors to greatly reduce computation 
time, making researchers less dependent to costly 
CPU clusters (43).

In addition to target validation, MD simulations are 
gradually becoming a part of virtual screening cam-
paigns thanks to the advances mentioned above. MD 
simulations are usually considered in connection 
with molecular docking in virtual screening, for ex-
ample to determine the stability of a ligand-receptor 
complex, however its connected use with ligand-
based methods is becoming increasingly popular (44, 
45).

5. CADD: Success Stories

In contrast with what one would expect, most of 
the chemical entities labelled as “drug” today come 
from serendipitous studies such as combinatorial 
chemistry (46). This is partly due to a sharp decrease 
in the speed of new entities hitting the market ob-
served past couple of decades, when CADD is most 

Figure 4. Superposition of the co-crystallized ligand (oteseconazole) and its docking pose obtained by Glide (2019-4, 
Schrödinger, LLC, NY, USA) (40) in Candida albicans lanosterol 14α demethylase (CACYP51) active site (A) and binding 
interactions of oteseconazole with CACYP51 according to the crystallographic study (B) (41). The images were rendered using 
Maestro (2019-4, Schrödinger, LLC, NY, USA).
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expected to bear fruit. Still, examples of drugs dis-
covered through CADD inspire researchers from dif-
ferent backgrounds, three of which are provided as 
example in this review.

Dorzolamide (Merck): Marketed as an eye-drop 
for glaucoma, dorzolamide was developed through 
structure-based drug design (47).  This compound 
was developed as a human carbonic anhydrase II 
(hCAII) inhibitor and tailored to fit in the specific 
active site of hCAII starting from a parent racemate 
compound (MK-927), whose enantiomers show 100-
fold difference in affinity to hCAII (48, 49). X ray 
crystallography studies and ab initio calculations 
identified the conformational variations that caused 
the observed potency difference between the enan-
tiomers. Therefore, further modifications were taken 
on for the S enantiomer of MK-927 using structure-
based modelling and introduction of a methyl group 
to the 6th position yielded a more potent derivative. 
The 4-isobuthylamino group was replaced with eth-
ylamino group to counter the reduced water solubil-
ity. The resulting four enantiomers were evaluated 
through in vitro and crystallographic studies and the 
trans S,S configuration (dorzolamide) was found to 
have the greatest potency (50).

Zanamivir (GSK) and Oseltamivir (Gilead Sci-
ences): The antiviral drug zanamivir acts through 
viral neuraminidase inhibition and is used against 
influenza infections (51). Following the structural 
elucidation of neuraminidase via X ray crystallog-
raphy, structure-based virtual screening campaigns 
were conducted to find potential anti-viral inhibitors 
and zanamivir is the result of one of these campaigns 
using the software GRID (52). Zanamivir was de-
signed from 2-deoxy-2,3-dehydro-N-acetylneu-
raminic acid by substitution of the 4-hydroxy group 
with 4-guanidino. Further structure-based design to 
utilize an extra binding gorge on neuraminidase led 
to the discovery of more potent and orally available 
oseltamivir (47).

Aliskiren (Novartis): Aliskiren was designed as a 
renin inhibitor for the treatment of hypertension. It is 
also the first member of the class called direct renin 
inhibitors. Aliskiren’s design starts with the efforts 
to find renin inhibitors by mimicking the natural 
peptide substrate of the renin system (53). The first 
non-peptide derivative was developed by Goschke 
et al. (1997), which was a success compared to the 
previous peptide derivatives in terms of pharmacoki-

netic profile (54). With a structure-based modelling 
using a crystal structure of renin, the lead designed 
by Goschke et al. was further optimized to improve 
potency. Identification of an additional pocket in 
the renin catalytic site through the following X ray 
crystallography studies led to rational design of new 
derivatives with better affinity and selectivity to re-
nin over other aspartic peptidases and further SAR 
studies to optimize in silico interactions with renin 
resulted in a derivative, which was aliskiren, with 
potency at sub-nanomolar concentration (55).

6. Resources for Molecular Modelling 
Tools

Thanks to the age of information and the growing 
“open source, open data” trend, it has never been 
easier to understand and utilize molecular modelling 
tools of different sorts. The internet is full of free-
to-use applications or web servers as well as tutorial 
materials (Table 2).

Increasing popularity of molecular modelling cre-
ated demands for hands-on training and workshops, 
which are now a common part of scientific meetings 
of related fields. These workshops, some of which 
are supported by the leading molecular modelling 
software companies, offer important opportunities, 
especially for postgraduates and postdoctoral fel-
lows. In this respect, we organized the 1st Molecular 
Modelling Workshop in Hacettepe University Fac-
ulty of Pharmacy with Hacettepe University Me-
dicinal Chemistry Research, Development, and Ap-
plication Center (MAGUM) on December 5-6, 2019. 
The workshop focused on state-of-the-art techniques 
in molecular modelling for CADD (56). The par-
ticipants had the opportunity to know academic free 
modelling tools and experience hands-on training. 
The workshop also provided a general idea, opportu-
nities, catches, and pitfalls of virtual screening.

7. Conclusions

The overwhelming developments in computer and 
information technologies for the past couple of dec-
ades have boosted molecular modelling and its key 
application, CADD. As computers became an indis-
pensable material of research, so did molecular mod-
elling techniques in CADD at all levels, from sketch-
ing a molecule to running millisecond MD simula-

Hacettepe University Journal of the Faculty of Pharmacy

Volume 40 / Number 1 / January 2020 / pp. 34-47 Sari et al.42



Ta
bl

e 
2.

 L
is

t o
f e

xa
m

pl
e 

no
n-

co
m

m
er

ci
al

 to
ol

s f
or

 m
ol

ec
ul

ar
 m

od
el

lin
g 

an
d 

C
A

D
D

1  i
n 

al
ph

ab
et

ic
al

 o
rd

er
 

So
ft

w
ar

e 
1

Ty
pe

A
pp

lic
at

io
n

So
ur

ce
L

ic
en

se
D

ev
el

op
er

(s
)

A
ut

oD
oc

k
St

an
d-

al
on

e 
so

ftw
ar

e
M

ol
ec

ul
ar

 d
oc

ki
ng

ht
tp

://
au

to
do

ck
.sc

rip
ps

.e
du

Fr
ee

 
Th

e 
Sc

rip
ps

 R
es

ea
rc

h 
In

st
itu

te

A
ut

oD
oc

k 
V

in
a

St
an

d-
al

on
e 

so
ftw

ar
e

M
ol

ec
ul

ar
 d

oc
ki

ng
ht

tp
://

vi
na

.sc
rip

ps
.e

du
Fr

ee
 

Th
e 

Sc
rip

ps
 R

es
ea

rc
h 

In
st

itu
te

Av
og

ad
ro

St
an

d-
al

on
e 

so
ftw

ar
e

3D
 m

ol
ec

ul
ar

 e
di

tio
n 

an
d 

m
ol

ec
ul

ar
 

m
ec

ha
ni

cs
 c

al
cu

la
tio

ns
 

ht
tp

s:
//a

vo
ga

dr
o.

cc
Fr

ee
 

U
ni

ve
rs

ity
 o

f P
itt

sb
ur

gh

D
O

C
K

St
an

d-
al

on
e 

so
ftw

ar
e

M
ol

ec
ul

ar
 d

oc
ki

ng
ht

tp
://

do
ck

.c
om

pb
io

.u
cs

f.e
du

A
ca

de
m

ic
 fr

ee
U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

-
Sa

n 
Fr

an
ci

sc
o

C
hi

m
er

a
St

an
d-

al
on

e 
so

ftw
ar

e
In

te
ra

ct
iv

e 
st

ru
ct

ur
e 

vi
su

al
iz

at
io

n
ht

tp
s:

//w
w

w.
cg

l.u
cs

f.e
du

/c
hi

m
er

a
Fr

ee
U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

-
Sa

n 
Fr

an
ci

sc
o

D
S 

V
is

ua
liz

er
St

an
d-

al
on

e 
so

ftw
ar

e
In

te
ra

ct
iv

e 
st

ru
ct

ur
e 

vi
su

al
iz

at
io

n
ht

tp
s:

//w
w

w.
3d

sb
io

vi
a.

co
m

/p
ro

du
ct

s/
co

lla
bo

ra
tiv

e-
sc

ie
nc

e/
bi

ov
ia

-d
is

co
ve

ry
-

st
ud

io
/v

is
ua

liz
at

io
n-

do
w

nl
oa

d.
ph

p
A

ca
de

m
ic

 fr
ee

B
IO

V
IA

G
R

O
M

A
C

S
St

an
d-

al
on

e 
so

ftw
ar

e
M

D
 si

m
ul

at
io

ns
ht

tp
://

w
w

w.
gr

om
ac

s.o
rg

Fr
ee

 
Sc

ie
nc

e 
fo

r L
ife

 
La

bo
ra

to
ry

, S
to

ck
ho

lm
 

U
ni

ve
rs

ity

H
A

D
D

O
C

K
St

an
d-

al
on

e 
so

ftw
ar

e
Pr

ot
ei

n-
pr

ot
ei

n 
do

ck
in

g
ht

tp
://

m
ilo

u.
sc

ie
nc

e.
uu

.n
l/s

er
vi

ce
s/

H
A

D
D

O
C

K
2.

2
A

ca
de

m
ic

 fr
ee

C
en

tre
 B

ijv
oe

t C
en

te
r f

or
 

B
io

m
ol

ec
ul

ar
 R

es
ea

rc
h

I-
TA

SS
ER

W
eb

 se
rv

er
C

om
pa

ra
tiv

e 
pr

ot
ei

n 
m

od
el

lin
g

ht
tp

s:
//z

ha
ng

la
b.

cc
m

b.
m

ed
.u

m
ic

h.
ed

u/
I-

TA
SS

ER
Fr

ee
 

Zh
an

g 
La

b,
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n

K
N

IM
E

St
an

d-
al

on
e 

so
ftw

ar
e

D
es

cr
ip

to
r c

al
cu

la
tio

n,
 

Q
SA

R
 m

od
el

lin
g

w
w

w
.k

ni
m

e.
co

m
Fr

ee
 

K
N

IM
E 

A
G

M
ae

st
ro

St
an

d-
al

on
e 

so
ftw

ar
e

In
te

ra
ct

iv
e 

st
ru

ct
ur

e 
vi

su
al

iz
at

io
n

ht
tp

s:
//w

w
w.

sc
hr

od
in

ge
r.c

om
/fr

ee
m

ae
st

ro
A

ca
de

m
ic

 fr
ee

Sc
hr

öd
in

ge
r

M
ar

vi
nS

ke
tc

h
St

an
d-

al
on

e 
so

ftw
ar

e
Sm

al
l m

ol
ec

ul
e 

sk
et

ch
 

an
d 

ed
iti

on
ht

tp
s:

//c
he

m
ax

on
.c

om
/p

ro
du

ct
s/

m
ar

vi
n

A
ca

de
m

ic
 fr

ee
C

he
m

A
xo

n

M
em

oi
r

W
eb

 se
rv

er
M

em
br

an
e 

pr
ot

ei
n 

m
od

el
lin

g
ht

tp
://

op
ig

.st
at

s.o
x.

ac
.u

k/
w

eb
ap

ps
/m

em
oi

r
Fr

ee
 

O
xf

or
d 

Pr
ot

ei
n 

In
fo

rm
at

ic
s 

G
ro

up
, O

xf
or

d 
U

ni
ve

rs
ity

M
od

el
le

r
St

an
d-

al
on

e 
so

ftw
ar

e
C

om
pa

ra
tiv

e 
pr

ot
ei

n 
m

od
el

lin
g

ht
tp

s:
//s

al
ila

b.
or

g/
m

od
el

le
r

Fr
ee

 
U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 
Sa

n 
Fr

an
ci

sc
o

M
ol

in
sp

ira
tio

n
W

eb
 se

rv
er

D
es

cr
ip

to
r c

al
cu

la
tio

n
w

w
w

.m
ol

in
sp

ira
tio

n.
co

m
Fr

ee
 

M
ol

in
sp

ira
tio

n 
C

he
m

in
fo

rm
at

ic
s

M
ol

Pr
ob

ity
St

an
d-

al
on

e 
so

ftw
ar

e

Fi
xi

ng
 a

nd
 h

yd
ro

ge
n 

m
od

el
lin

g 
fo

r P
D

B
 

st
ru

ct
ur

es
ht

tp
://

m
ol

pr
ob

ity
.b

io
ch

em
.d

uk
e.

ed
u

Fr
ee

 
Sc

ho
ol

 o
f M

ed
ic

in
e,

 D
uk

e 
U

ni
ve

rs
ity

Hacettepe University Journal of the Faculty of Pharmacy

ISSN: 2458 - 880643



N
A

M
D

 a
nd

 V
M

D
St

an
d-

al
on

e 
so

ftw
ar

e
M

D
 si

m
ul

at
io

ns
ht

tp
s:

//w
w

w.
ks

.u
iu

c.
ed

u/
D

ev
el

op
m

en
t

A
ca

de
m

ic
 fr

ee
Th

eo
re

tic
al

 a
nd

 
C

om
pu

ta
tio

na
l B

io
ph

ys
ic

s 
G

ro
up

O
pe

nE
ye

St
an

d-
al

on
e 

so
ftw

ar
e

M
ol

ec
ul

ar
 m

od
el

lin
g 

an
d 

C
A

D
D

 p
la

tfo
rm

w
w

w
.e

ye
so

pe
n.

co
m

O
pe

nE
ye

 S
ci

en
tifi

c 

Ph
ar

m
aG

is
t

W
eb

 se
rv

er
Ph

ar
m

ac
op

ho
re

 
m

od
el

lin
g

ht
tp

://
bi

oi
nf

o3
d.

cs
.ta

u.
ac

.il
/P

ha
rm

aG
is

t
Fr

ee
 

Sc
ho

ol
 o

f C
om

pu
te

r 
Sc

ie
nc

e,
 T

el
 A

vi
v 

U
ni

ve
rs

ity

Ph
ar

m
er

St
an

d-
al

on
e 

so
ftw

ar
e

Ph
ar

m
ac

op
ho

re
 

m
od

el
lin

g
ht

tp
://

sm
oo

th
do

ck
.c

cb
b.

pi
tt.

ed
u/

ph
ar

m
er

Fr
ee

 
C

am
ac

ho
 L

ab
, U

ni
ve

rs
ity

 
of

 P
itt

sb
ur

gh

Ph
ar

m
M

ap
pe

r
W

eb
 se

rv
er

Ph
ar

m
ac

op
ho

re
 

m
od

el
lin

g
w

w
w

.li
la

b-
ec

us
t.c

n/
ph

ar
m

m
ap

pe
r

Fr
ee

 
H

on
gl

in
 L

i’s
 L

ab
, E

as
t 

C
hi

na
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

&
 T

ec
hn

ol
og

y

PP
M

 S
er

ve
r

W
eb

 se
rv

er
Pr

ed
ic

tio
n 

of
 m

em
br

an
e 

pr
ot

ei
n 

or
ie

nt
at

io
n

ht
tp

s:
//o

pm
.p

ha
r.u

m
ic

h.
ed

u/
pp

m
_s

er
ve

r
Fr

ee
Lo

m
iz

e 
G

ro
up

, U
ni

ve
rs

ity
 

of
 M

ic
hi

ga
n

PR
O

C
H

EC
K

W
eb

 se
rv

er
Pr

ot
ei

n 
st

ru
ct

ur
e 

va
lid

at
io

n
ht

tp
s:

//s
er

vi
ce

sn
.m

bi
.u

cl
a.

ed
u/

PR
O

C
H

EC
K

Fr
ee

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
-

Sa
n 

Fr
an

ci
sc

o

Q
SA

R
 T

oo
lb

ox
St

an
d-

al
on

e 
so

ftw
ar

e
Q

SA
R

 m
od

el
lin

g
ht

tp
s:

//q
sa

rto
ol

bo
x.

or
g

Fr
ee

 

Th
e 

La
bo

ra
to

ry
 o

f 
M

at
he

m
at

ic
al

 C
he

m
is

try
, 

Pr
of

. D
r. 

A
s. 

Zl
at

ar
ov

 
U

ni
ve

rs
ity

Q
SA

R
IN

S-
C

he
m

St
an

d-
al

on
e 

so
ftw

ar
e

Q
SA

R
 m

od
el

lin
g

ht
tp

://
w

w
w.

qs
ar

.it
Fr

ee
 

Th
e 

Q
SA

R
 R

es
ea

rc
h 

U
ni

t i
n 

En
vi

ro
nm

en
ta

l 
C

he
m

is
try

 a
nd

 
Ec

ot
ox

ic
ol

og
y,

 U
ni

ve
rs

ity
 

of
 In

su
br

ia

R
os

et
ta

St
an

d-
al

on
e 

so
ftw

ar
e

D
e 

no
vo

 p
ro

te
in

 
m

od
el

lin
g

ht
tp

s:
//w

w
w.

ro
se

tta
co

m
m

on
s.o

rg
/s

of
tw

ar
e

A
ca

de
m

ic
 fr

ee
R

os
et

ta
C

om
m

on
s

Si
lic

os
-it

C
ol

le
ct

io
n 

of
 

st
an

d-
al

on
e 

so
ftw

ar
e

Li
ga

nd
-b

as
ed

 v
irt

ua
l 

sc
re

en
in

g
ht

tp
://

si
lic

os
-it

.b
e.

s3
-w

eb
si

te
-e

u-
w

es
t-1

.a
m

az
on

aw
s.c

om
Fr

ee
 

Si
lic

os
-it

Sw
is

sA
D

M
E

W
eb

 se
rv

er
D

es
cr

ip
to

r c
al

cu
la

tio
n,

 
A

D
M

ET
 p

re
di

ct
io

n
w

w
w

.sw
is

sa
dm

e.
ch

Fr
ee

 
Sw

is
s I

ns
tit

ut
e 

of
 

B
io

in
fo

rm
at

ic
s

Sw
is

sD
oc

k
W

eb
 se

rv
er

M
ol

ec
ul

ar
 D

oc
ki

ng
w

w
w

.sw
is

sd
oc

k.
ch

Fr
ee

 
Sw

is
s I

ns
tit

ut
e 

of
 

B
io

in
fo

rm
at

ic
s

SW
IS

S-
M

O
D

EL
W

eb
 se

rv
er

C
om

pa
ra

tiv
e 

pr
ot

ei
n 

m
od

el
lin

g
ht

tp
s:

//s
w

is
sm

od
el

.e
xp

as
y.

or
g

Fr
ee

 
Sw

is
s I

ns
tit

ut
e 

of
 

B
io

in
fo

rm
at

ic
s

Sw
is

sS
im

ila
rit

y
W

eb
 se

rv
er

Li
ga

nd
-b

as
ed

 v
irt

ua
l 

sc
re

en
in

g
w

w
w

.sw
is

ss
im

ila
rit

y.
ch

Fr
ee

 
Sw

is
s I

ns
tit

ut
e 

of
 

B
io

in
fo

rm
at

ic
s

Ta
bl

e 
2.

 c
on

tin
ue

d.
..

Hacettepe University Journal of the Faculty of Pharmacy

Volume 40 / Number 1 / January 2020 / pp. 34-47 Sari et al.44



tions, for scientists of drug research. There are many 
examples, in which the cost and time needed for drug 
discovery is reduced, complex decision-making pro-
cesses are eased, disease pathways and interplay of 
diverse molecules are understood. In addition to 
availability of fast-processing computers, exponen-
tially increasing amount of open data in this field is 
encouraging to learn and utilize molecular modelling 
in CADD. Actually, today there are more molecular 
modelling tools that are free or academic free than 
commercial software with paid license. The ocean 
called “internet” is full of documentations, tutori-
als, and forums to help through getting familiar with 
these tools and troubleshooting. Also, molecular 
modelling workshops, separate or as part of scientif-
ic meetings, became very common and wide-spread.  
Thus, every scientist in drug research can and should 
make the best of molecular modelling. 
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