

EDİTÖRE MEKTUP / LETTER TO THE EDITOR

A rare cause of hypocalcemia: pseudohypoparathyroidism

Nadir bir hipokalsemi nedeni: psödohipoparatiroidizm

Barış Karagün¹, Gamze Akkuş¹, Mehtap Evran¹

¹Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey

CukurovaMedicalJournal 2022;47(1):463-465

To the Editor,

Pseudohypoparathyroidism (PHP) is a rare disease with genetic inheritance; its prevalence is estimated to be about 0.79 per 100.0001. PHP was described for the first time in 1942 by Albright et al 2 and there are 5 types of pseudohypoparathyroidism: PHP type 1a, type 1b type 1c, type 2 and pseudopseudohypoparathyroidism. PHP type 1a is the most common subtype and represents 70% of the cases³. PHP-1 is characterized by the Albright's hereditary osteodystrophy (AHO) phenotype (round face, short stature, subcutaneous ossifications, brachydactyly, and early-onset obesity) and parathyroid hormone (PTH) resistance^{4,5}. PTH resistance is manifested by hypocalcemia, hyperphosphatemia and elevated circulating PTH1. The gene that causes the disease is GNAS, which encodes the alpha subunit of the stimulating G protein (Gsa)⁶. Along with the PTH resistance, PHP-1a patients may also be resistant to hormones that work with Gs-linked receptors such as TSH (thyroidstimulating hormone), FSH(Follicle-stimulating hormone), LH(Luteinizing hormone), and GHRH(Growth hormone-releasing hormone)1. patient present Here. we а with pseudohypoparathyroidism which is a rare cause of hypocalcemia and PTH resistance.

A 34-year-old female patient presented with complaints of contractions in the whole body, muscle weakness and loss of appetite. She stated that these complaints have been going on for 10 years. She has been amenorrheic since at the age of 22. The patient had secondary amenorrhea. On physical examination, she had phenotypic features of AHO such as obesity, short neck, short height, round face, shortness and thickness in the hand bones (Figure 1).

Figure 1. Clinical features of patient.

In biochemical examination, hemogram, urea, creatinine, aspartate aminotransferase (AST), Alanine aminotransferase (ALT), albumin, and magnesium levels were normal other laboratory results domanstrated in table 1.

Table	1.	Laboratory	results
-------	----	------------	---------

	Patient values	Normal reference range
Calcium (mg / dl)	5.8	8.8-10.2
Phosphorus (pg / ml)	5.6	2.7-4.5
PTH (pg / ml)	267	15-65
25-OH vit D (ng / ml)	33	4.92-42.7
TSH (mIU/L)	5.7	0.27- 4.2
fT4 (ng / dl)	0.65	0.6-1.2
FSH (mIU/ml)	7.9	3.6-12.6
LH (mIU/ml)	8.3	2.4-12.5
Testosterone (ng / ml)	0.12	0.14-0.76
Estradiol	49.2	12.4-166

FSH: Follicle-stimulating hormone, LH: Luteinizing hormone; TSH: thyroid-stimulating hormone;

YazışmaAdresi/Address for Correspondence: Dr. BarışKaragün, Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey E-mail: bariskaragunn@gmail.com Geliş tarihi/Received: 20.09.2021 Kabul tarihi/Accepted: 07.11.2021

Karagün et al.

Fourth and third metacarpal shortness was noted on hand radiographs (Figure 2). Widespread calcifications were detected in the basal ganglia and biletaral hemispheres in cranial CT. Calcium infusion, synthetic calcitriol for gluconate hypocalcemia, L-thyroxine for hypothyroidism and estradiol + progesterone for secondary amenorrhea were started. The patient was diagnosed with PHP with the present physical examination findings and laboratory features.

Figure 2. Radiography of hands

Sample was taken for genetic examination and the result was concluded in accordance with the prediction. Somatic mutation was detected in the GNAS gene that caused the disease. The patient whose calcium level reached normal limits is still under follow-up.

Gsa-coding GNAS mutations that lead to diminished Gsa expression and/or function result in Albright's hereditary osteodystrophy (AHO) with or without hormone resistance, i.e. pseudohypoparathyroidism type 1a/1c and pseudo-pseudohypoparathryodism, respectively. Mutations of GNAS that cause constitutive Gsa signaling are found in patients with McCune-Albright syndrome, fibrous dysplasia of bone, and different endocrine and non-endocrine tumors7. Parathyroidehormone (PTH) is significant hormone which is plays role in the regulation of serum calcium via the Gs-coupled receptor⁸. PHP is a clinical syndrome that characterized by target organ resistance to the hormone. The defect in the Gscoupled receptor is responsible for this resistance. These patients also have other hormone deficiencies using the same receptor. Other than hypocalcemia and hyperphosphatemia, pathologies such as hypothyroidism and hypogonadism can be detected9. In this case, hypothyroidism and hypogonadism were present due to multiple hormone resistance.

Chronic hypocalcemia with hyperphosphatemia may cause ectopic calcification¹⁰. Although calcifications were detected in the basal ganglia and biletaral hemispheres in cranial CT in our case, we did not find pathological findings in neurological any examination. Treatment of severe hypocalcemia is different from other forms not of hypoparathyroidism and should target calcium and phosphorus levels in the normal range with oral forms of calcium and active vitamin D¹⁰. Due to severe hypocalcemia, we targeted normal calcium level with intravenous calcium replacement in our case, and then proceeded with oral calcium and activated forms of vitamin D replacement.

In patients with characteristic phenotypic appearance accompanying hypoparathyroidism, Albright's osteodystrophy should be considered in the differential diagnosis and also evaluation should be done in terms of thyroid and gonadotropin hormone resistance.

Yazar Katkıları:Çalışmakonsepti/Tasarımı: BK. GA. ME: Veritoplama: BK, GA, ME; Verianaliziveyorumlama: BK, GA, ME; Yazıtaslağı: BK, GA, ME; İçeriğineleştirelincelenmesi: BK, GA, ME; Son onayvesorumluluk: BK, GA, ME; Teknik ve malzeme desteği: BK, GA, ME; Süpervizyon:BK, GA, ME; ; Fon sağlama (mevcut ise): yok. Hakem Değerlendirmesi: Editoryal değerlendirme Çıkar Çatışması: Yazarlarçıkarçatışması beyanetmemişlerdir. Finansal Destek: Yazarlar bu çalışma için finansal destek almadıklarını beyan etmişlerdir. Author Contributions: Concept/Design :BK, GA, ME; Data acquisition: BK, GA, ME; Data analysis and interpretation: BK, GA, ME; Drafting manuscript: BK, GA, ME; Critical revision of manuscript: BK, GA, ME; Final approval and accountability: BK, GA, ME; Technical or material support: BK, GA, ME;Supervision: BK, GA, ME; Securing funding (if available): n/a. Peer-review: Editorial review. Conflict of Interest: Authors declared no conflict of interest. Financial Disclosure: The authors declared that this study has received

REFERENCES

no financial support.

- Mantovani G. Pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab. 2011;96:3020-30.
- Albright F, Burnett CH, Smith PH, Parson W et al. Pseudohypoparathyroidism : An example of 'Seabright-Bantam syndrome'. Endocrinology 1942;30:922–32.
- Mantovani G, Linglart A, Garin I, Silve C, Elli F Nanclares G et al.. Clinical utility gene card for: Pseudohypoparathyroidism. Eur J Hum Genet. 2012;21.6:5-5.
- Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In:

Williams Textbook of Endocrinology, 9th Ed. Baltimore, WB Saunders, 1998.

- Maeda S, Fortes E, Oliveira U, Borba V, Lazaretti-Castro M et al. Hypoparathyroidism and pseudohypoparathyroidism. Arq Bras Endocrinol Metabol. 2006;50:664-73.
- oemaker AH, and Harald J. Non-classic features of pseudohypoparathyroidism type 1A. Curr Opin Endocrinol Diabetes Obes. 2017;24.1: 33.
- Turan S, Bastepe M. GNAS spectrum of disorders. Current Osteoporos Rep. 2015;13:146-58.
- 8. Gensure R, Gardella T, Jüppner H. Parathyroid hormone and parathyroid hormone-related peptide,

and their receptors. Biochem Biophys Res Commun. 2005;328:666-78.

- Linglart A, Levine M, Jüppner H. Pseudohypoparathyroidism. Endocrinol Metab Clin North Am. 2018;47:865-88.
- Mantovani G, Bastepe M, Monk D, De Sanctis L et al. Recommendations for diagnosis and treatment of pseudohypoparathyroidism and related disorders: an updated practical tool for physicians and patients.Horm Res Pediatr. 2020;93:182-96.