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Research Article

Abstract − In this paper, we study the periodic Sturm-Liouville problem, de-
fined on three non-intersecting intervals with four supplementary conditions which
are imposed at two internal points of interaction, the so-called transmission condi-
tions. We first prove that the eigenvalues are real and the system of eigenfunctions
is an orthogonal system. Secondly, some auxiliary initial-value problems are defined
and transmittal-characteristic function is constructed in terms of solutions of these
initial-value problems. Finally, we establish that the eigenvalues of the considered
problem are the zeros of the transmittal-characteristic function.
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1. Introduction

This paper is aimed at studying a discontinuous spectral problem consisting of the three-interval
Sturm-Liouville equation

Ξλy := −y′′(x) + q(x)y = λy(x) x ∈ [ℸ1, c1) ∪ (c1, c2) ∪ (c2,ℸ2] (1)

the periodic boundary conditions
ℓ1y := y(ℸ1)− y(ℸ2) = 0 (2)

ℓ2y := y′(ℸ1)− y′(ℸ2) = 0 (3)

and supplementary transmission conditions, which are imposed at the points of interaction c1 and c2,
given by

ℓ3y := y(c−1 )− y(c+1 ) = 0 (4)

ℓ4y := y′(c−1 )− y′(c+1 ) = 0 (5)

and
ℓ5y := y(c−2 )− βy(c+2 ) = 0 (6)

ℓ6y := y′(c−2 )−
1

β
y′(c+2 ) = 0 (7)

respectively, where q(x) is a real-valued function, λ ∈ C is a complex spectral parameter and the
coefficient β ̸= 0 is real numbers. In investigating the periodic flow in a rod, C. Sturm and J. Liouville
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in the first half of the 19th century were led to the definition of class of Sturm-Liouville problems
consisting of self-adjoint linear differential equation of the form

− d

dx
(K(x)

dF (x)

dx
) + ℓ(x)F (x) = λq(x)F (x) for x ∈ [a, b] (8)

together with the boundary conditions of the form

K(a)F ′(a)− hF (a) = 0 (9)

K(b)F ′(b)−HF (b) = 0 (10)

They obtained some results that characterized by the general and qualitative nature of the solutions.
They also proved that there exists infinitely countable number of values λ1, λ2, ... of spectral param-
eter λ with the corresponding non-trivial solutions F1(x), F2(x), ..., the so- called eigenfunctions, and
discussed the qualitative behavior of these eigenvalues and eigenfunctions, such as the asymptotics of
eigenvalues, the zeros of the eigenfunctions that could be used in a variety of physical situations.These
results have inspired much of branches of modern analysis and spectral theory of linear differential
and integral operators, and continue to do so. The existence of periodic and oscillatory eigenfunctions
important in the spectral theory of differential operators. We know that periodic boundary value
problems of Sturm-Liouville type have been widely investigated due to their application in physics
and engineering. For example, consider the heated string bent into a circle. Since the two ends of this
string are physically the same, we would expect that the temperature and the temperature gradient
to be equal at these endpoints. This situation is modelled by boundary conditions of the form

u(a) = u(b), u′(a) = u′(b)

which are called periodic boundary conditions.
Periodic Sturm-Liouville problems for various type differential equations have been studied exten-

sively in the literature( see, for example, [1–5] and references therein). In the paper [2], the authors
considered the problem {

−u′′ + h(s)u = λg(s, u), 0 ≤ s ≤ π
u(0) = u(2π), u′(0) = u′(2π)

and {
u′′ + h(s)u = λg(s, u), 0 ≤ s ≤ π
u(0) = u(2π), u′(0) = u′(2π)

where h ∈ L1(0, 2π), g : [0, 2π] × R+ → R+ is continuous, λ is a positive parameter. In the work [3],
a new existence theorems for a nonlinear periodic boundary value problem of first-order differential
equations with impulses are established. In the article [4], the topological degree theory is applied to
show the existence of positive solutions to the periodic Sturm-Liouville problem. In the paper [5] the
eigenvalues of regular periodic and semi periodic Sturm-Liouville problems are considered. Binding
and Rynne [6] considered the nonlinear Sturm-Liouville problem{

(−ρy)′′ + ϱy = ay+ − by− + λy
y(0) = y(2π), (ρy)′(0) = (ρy)′(2π)

where 1
ρ , ϱ ∈ L1(0, 2π) with ρ > 0 on (0, 2π), a, b ∈ L1(0, 2π) λ is a real parameter, and y±(t) =

max{±y(t), 0} for t ∈ [0, 2π]. It is showed that a sequence of half-eigenvalues exists and obtained
degree theoretic properties associated with set of half-eigenvalues. In recent years, many spectral
properties of periodic Sturm-Liouville problems have been studied and many techniques have been
developed by many authors(see [7–16] ).

Boundary value problems including transmission conditions appears in many fields of natural
sciences. Recently, such type of transmission problems have been an important topic in theoretical
and applied mathematics (see, [17–28]). In this study we will investigate some basic spectral properties
of a new type periodic Sturm-Liouville problems. Namely, the differential equations are defined on
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three separated subintervals and the boundary conditions are set not only at the ends of the considered
interval, but also at the internal points of interaction. We proved that the eigenvalues are real and
the eigenfunctions belongs to distinct eigenvalues are orthogonal. We also defined a new type of
characteristic function, the roots of which coincide with the eigenvalues.

2. Eigenvalues and Eigenfunctions of the Considered problem

Theorem 2.1. The eigenvalues of the three-interval periodic problem (1)− (7) are all real.

Proof. Let λ be an eigenvalue of the considered problem (1)− (7) with an eigenfunction ψ. Taking
the complex conjugate and note that the coefficient β is real, we arrive at

−ψ′′(x) = λψ(x) (11)

ψ(ℸ1) = ψ(ℸ2), ψ′(ℸ1) = ψ′(ℸ2) (12)

ψ(c−1 ) = ψ(c+1 ), ψ′(c−1 ) = ψ′(c+1 ) (13)

ψ(c−2 ) = βψ(c+2 ), ψ′(c−2 ) =
1

β
ψ′(c+2 ) (14)

This implies that (λ, ψ) is also an eigen pair for the problem (1) − (7). By the previous theorem we
have

0 = (λ− λ)(

c−1∫
ℸ1

ψ(x)ψ(x)dx+

c−2∫
c+1

ψ(x)ψ(x)dx+

ℸ2∫
c+2

ψ(x)ψ(x)dx)

= (λ− λ)(

c−1∫
ℸ1

|ψ(x)|2dx+

c−2∫
c+1

|ψ(x)|2dx+

ℸ2∫
c+2

|ψ(x)|2dx) (15)

Since ψ, being an eigenfunction, is not identically equal to zero on [ℸ1, c1) ∪ (c1, c2) ∪ (c2,ℸ2]

c−1∫
ℸ1

|ψ(x)|2dx+

c−2∫
c+1

|ψ(x)|2dx+

ℸ2∫
c+2

|ψ(x)|2dx > 0

So, λ = λ. Thus λ is real. The proof is complete.

Remark 2.2. Since all eigenvalues of the considered problem (1) − (7) are real, without loss of
generality we can now assume that the corresponding eigenfunctions are also real-valued.

Theorem 2.3. Let λk and λr are two distinct eigenvalues of the problem (1) − (7) on [ℸ1, c1) ∪
(c1, c2) ∪ (c2,ℸ2], then their corresponding eigenfunctions ψk and ψr satisfy the following equality

c−1∫
ℸ1

ψk(x)ψr(x)dx+

c−2∫
c+1

ψk(x)ψr(x)dx+

ℸ2∫
c+2

ψk(x)ψr(x)dx = 0 (16)

that is the eigenfunctions ψk and ψr are orthogonal in the Hilbert space L2(((ℸ1, c1)⊕(c1, c2)⊕(c2,ℸ2)).

Proof. Since ψk and ψr are eigenfunctions corresponding to the eigenvalues λk and λr respectively,
we have

− ψ′′
k(x) = λkψk(x) (17)
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and
− ψ′′

r (x) = λrψr(x) (18)

Multiplying (17) by ψr and (18) by ψk, then subtracting we get

(λk − λr)(

c−1∫
ℸ1

ψk(x)ψr(x)dx+

c−2∫
c+1

ψk(x)ψr(x)dx+

ℸ2∫
c+2

ψk(x)ψr(x)dx)

= (ψ′
kψr − ψ′

rψk)|
c−1
ℸ1

+ (ψ′
kψr − ψ′

rψk)|
c−2
c+1

+ (ψ′
kψr − ψ′

rψk)|ℸ2

c+2
. (19)

By using the boundary and transmission conditions we find

(λk − λr)(

c−1∫
ℸ1

ψk(x)ψr(x)dx+

c−2∫
c+1

ψk(x)ψr(x)dx+

ℸ2∫
c+2

ψk(x)ψr(x)dx) = 0 (20)

Since λk ̸= λr we get the equality (16).

Theorem 2.4. The periodic problem (1)− (7) is self-adjoint.

Proof. Consider the periodic Sturm-Liouville problem (1)− (7). Let u, ϑ ∈ C2((ℸ1, c1)⊕ (c1, c2)⊕
(c2,ℸ2)) that satisfies the periodic eigenvalue problem (1)− (7). We shall prove that

c−1∫
ℸ1

[uΞλϑ− ϑΞλu]dx+

c−2∫
c+1

[uΞλϑ− ϑΞλu]dx+

ℸ2∫
c+2

[uΞλϑ− ϑΞλu]dx = 0.

By using the definition of the differential operator Ξλ we can show that

ϑΞλu− uΞλϑ =
d

dx
(ϑu′ − uϑ′)

Now integrating by parts over [ℸ1, c1) ∪ (c1, c2) ∪ (c2,ℸ2] we obtain

c−1∫
ℸ1

[ϑΞλu− uΞλϑ]dx+

c−2∫
c+1

[ϑΞλu− uΞλϑ]dx+

ℸ2∫
c+2

[ϑΞλu− uΞλϑ]dx

= (ϑu′ − uϑ′)|c
−
1
ℸ1

+ (ϑu′ − uϑ′)|c
−
2

c+1
+ (ϑu′ − uϑ′)|ℸ2

c+2
. (21)

To satisfy the conditions (2)− (3) we get

u(ℸ1) = u(ℸ2), u
′(ℸ1) = u′(ℸ2)

and
ϑ(ℸ1) = ϑ(ℸ2), ϑ

′(ℸ1) = ϑ′(ℸ2).

By using this equalities we find

W (u, ϑ;ℸ1)−W (u, ϑ;ℸ2) = 0 (22)

Similarly by using the transmission conditions (4)− (7) we obtain

W (u, ϑ; c−1 )−W (u, ϑ; c+1 ) = 0 (23)
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and

W (u, ϑ; c−2 )−W (u, ϑ; c+2 ) = 0 (24)

Substituting the equalities (22), (23), (24) in (21) we get

c−1∫
ℸ1

[ϑΞλu− uΞλϑ]dx+

c−2∫
c+1

[ϑΞλu− uΞλϑ]dx+

ℸ2∫
c+2

[ϑΞλu− uΞλϑ]dx = 0

which completes the proof.

3. The Transmittal-Characteristic Function

Consider the initial value problem

− y′′ + q(x)y = λy, x ∈ (α1, α2) (25)

y(α+ 0) = r(λ), y′(α+ 0) = s(λ) (26)

where r, s : C → C are given complex functions. Using the method in [29], we can prove the following
Lemma.

Lemma 3.1. Assume that the real valued function q(x) is continuous on (α1, α2) and the complex
functions r(λ), s(λ) are differentiable on whole complex plane C(i.e. r(λ) and s(λ) are entire functions).
Then, the initial value problem (25)-(26) has an unique solution y = y(x, λ) which is an entire function
of λ for each fixed x ∈ (α1, α2).

Let us construct two basic solutions

φ(x, λ) =


φ1(x, λ), x ∈ [ℸ1, c1)
φ2(x, λ), x ∈ (c1, c2)
φ3(x, λ), x ∈ (c2,ℸ2]

, χ(x, λ) =


χ1(x, λ), x ∈ [ℸ1, c1)
χ2(x, λ), x ∈ (c1, c2)
χ3(x, λ), x ∈ (c2,ℸ2]

according to the following iterative technique. First, we define the solution φ1(x, λ). Let φ1(x, λ) be
the solution of the equation (1) on Ω1 := [ℸ1, c1) subject to the initial conditions

y(ℸ1) = 1, y′(ℸ1) = 0 (27)

Second, we shall define the solution φ2(x, λ) of Eq. (1) on Ω2 := (c1, c2) by means of the solution
φ1(x, λ) chosen so as to satisfy the initial conditions

y(c+1 ) = φ1(c
−
1 , λ), y′(c+1 ) = φ′

1(c
−
1 , λ) (28)

Finally, we can define the solution φ3(x, λ) of Eq. (1) on Ω3 := (c2,ℸ2] by means of the solution
φ2(x, λ) satisfying the initial conditions

y(c+2 ) =
1

β
φ2(c

−
2 , λ), y′(c+2 ) = βφ′

2(c
−
2 , λ). (29)

Using the same iterative technique as in defining the solutions φ1(x, λ), φ2(x, λ) and φ3(x, λ), we
construct other solutions χ1(x, λ), χ2(x, λ) and χ3(x, λ) as a solution to the Eq.(1) chosen as to satisfy
the initial conditions

y(ℸ1) = 0, y′(ℸ1) = 1 (30)

y(c+1 ) = χ1(c
−
1 , λ), y′(c+1 ) = χ′

1(c
−
1 , λ). (31)
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and

y(c+2 ) =
1

β
χ2(c

−
2 , λ), y′(c+2 ) = βχ′

2(c
−
2 , λ) (32)

respectively. By virtue of the Lemma 3.1, each of the solutions φi(x, λ) and χi(x, λ)(i = 1, 2, 3) exists,
unique for any fixed λ and is an entire function with respect to the complex variable λ for any fixed
x.

Theorem 3.2. Each of the pair φi(x, λ), χi(x, λ) is linearly independent solutions of Eq.(1) on the
interval Ωi, where Ω1 = [ℸ1, c1), Ω2 = (c1, c2), Ω3 = (c2,ℸ2].

Proof. To prove it is sufficient to show that the Wronskians

Wλ(φi, χi;x) =: φi(x, λ)χ
′
i(x, λ)− φ′

i(x, λ)χi(x, λ)

are not equal to zero on Ωi.

Since the Wronskians Wλ(φi, χi;x) does not depend on variable x, Using the initial conditions (27
and (30) we have

Wλ(φ1, χ1;x) =Wλ(φ1, χ1;ℸ1) = 1 ̸= 0. (33)

Using (28), (31) and (33)

Wλ(φ2, χ2;x) = Wλ(φ2, χ2; c
+
1 )

= φ2(c
+
1 , λ)χ

′
2(c

+
1 , λ)− φ′

2(c
+
1 , λ)χ2(c

+
1 , λ)

= φ1(c
−
1 , λ)χ

′
1(c

−
1 , λ)− φ′

1(c
−
1 , λ)χ1(c

−
1 , λ)

= Wλ(φ1, χ1; c
−
1 ) =Wλ(φ1, χ1;ℸ1) = 1 ̸= 0. (34)

Similarly, using (29), (32) and 34) we get

Wλ(φ3, χ3;x) = Wλ(φ3, χ3; c
+
2 )

= φ3(c
+
2 , λ)χ

′
3(c

+
2 , λ)− φ′

3(c
+
2 , λ)χ3(c

+
2 , λ)

= (
1

β
φ2(c

−
2 , λ))(βχ

′
2(c

−
2 , λ))− (βφ′

2(c
−
2 , λ))(

1

β
χ2(c

−
2 , λ))

= Wλ(φ2, χ2; c
−
2 ) = 1 ̸= 0. (35)

The proof is complete.

Theorem 3.3. A complex number λ is an eigenvalue of the transmittal-periodic problem (1)-(7) if
and only if

∆(λ) :=Wλ(φ2, χ2; c
+
2 )Wλ(φ2, χ2; c

−
2 )[Wλ(φ3, χ3;ℸ1) + 1− φ3(ℸ2)− χ′

3(ℸ2)] = 0.

Proof. Let y0(x, λ0) be any eigenfunction belonging to the eigenvalue λ0. It follows from the Theorem
3.2 that the solutions φi(x, λ0) and χi(x, λ0) are linearly independent solutions of (1) on the Ωi i =
1, 2, 3. Therefore the eigenfunction y0(x, λ0) may be represented as

y0(x, λ0) =


δ1φ1(x, λ0) + γ1χ1(x, λ0) for x ∈ Ω1

δ2φ2(x, λ0) + γ2χ2(x, λ0) for x ∈ Ω2

δ3φ2(x, λ0) + γ3χ2(x, λ0) for x ∈ Ω3

(36)

where at least one of the coefficients δ1, δ2, δ3, γ1, γ2, γ3 is not zero. Now applying the boundary and
transmission conditions (2)-(7) we obtain

ℓiy0(x, λ0) = 0, i = 1, 2, 3, 4, 5, 6 (37)
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These equalities forms a homogeneous linear system of algebraic equations with respect to the variables
δ1, δ2, δ3, γ1, γ2, γ3 whose determinant has the form

∆(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 −φ3(ℸ2) −χ3(ℸ2)
0 1 0 0 −φ′

3(ℸ2) −χ′
3(ℸ2)

φ2(c
+
1 ) χ2(c

+
1 ) −φ2(c

+
1 ) −χ2(c

+
1 ) 0 0

φ′
2(c

+
1 ) χ′

2(c
+
1 ) −φ′

2(c
+
1 ) −χ′

2(c
+
1 ) 0 0

0 0 φ2(c
−
2 ) χ2(c

−
2 ) −φ2(c

−
2 ) −χ2(c

−
2 )

0 0 φ′
2(c

−
2 ) χ′

2(c
−
2 ) −φ′

2(c
−
2 ) −χ′

2(c
−
2 )

∣∣∣∣∣∣∣∣∣∣∣∣
It is easy to show that

∆(λ) =Wλ(φ2, χ2; c
+
2 )Wλ(φ2, χ2; c

−
2 )[Wλ(φ3, χ3;ℸ2) + 1− φ3(ℸ2)− χ′

3(ℸ2)]

Since the system of algebraic linear equations (37) has nontrivial solution, we have ∆(λ0) = 0. Now,
show that any zero λ = λ0 of the function ∆(λ) is an eigenvalue of the considered problem (1)-(7).
Indeed, if ∆(λ0) = 0, then the system (37) has a nontrivial solution (δ1, γ1, δ2, γ2, δ3, γ3). Therefore
the nonrivial function y0(x, λ0) defined by (36) satisfies the equation (1) and the boundary and trans-
mission conditions (2)-(7). This means, that λ0 is an eigenvalue.

Definition 3.4. The function ∆(λ) defined by

∆(λ) =Wλ(φ2, χ2; c
+
2 )Wλ(φ2, χ2; c

−
2 )[Wλ(φ3, χ3;ℸ1) + 1− φ3(ℸ2)− χ′

3(ℸ2)] (38)

will be called the transmittal-characteristic function for the boundary value problem (1)-(7).

Corollary 3.5. The transmittal-characteristic function ∆(λ) is an entire function.

4. Conclusion

This work is devoted to the spectral analysis of Sturm-Liouville problems of a new type. In fact, we
studied three different Sturm-Liouville equations for three unknown solutions, which are defined on
three disjoint subintervals, at the common ends of which four interaction conditions are imposed,
the so-called transmission conditions. We first established that the eigenvalues are real and the
corresponding eigenfunctions are orthogonal in the appropriate Hilbert space. It is also shown that the
considered boundary value problem generates a self-adjoint linear differential operator. Second, using
our own approach, we constructed special one-interval solutions, in terms of which a characteristic
function of a new type is defined, the so called the transmittal-characteristic function. Finally, we
proved that the eigenvalues coincide with the zeros of this characteristic function, which is an entire
function. The results obtained are a generalization of the analogous classical results, since in the
particular case β = 1 our results are equivalent to the analogous results for the classical Sturm-
Liouville problems.
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[22] E. Bairamov, E. Uğurlu, On the Characteristic Values of the Real Component of a Dissipative
Boundary Value Transmission Problem, Applied Mathematics and Computation 218(19) (2012)
9657–9663.
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