

Konuralp Journal of Mathematics

Research Paper Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

Some New Results for the J-Iterative Scheme in Kohlenbach Hyperbolic Space

Aynur Şahin^{1*} and Metin Başarır¹

¹Department of Mathematics, Sakarya University, Sakarya, 54050, Türkiye *Corresponding author

Abstract

In the present paper, we study the J-iterative scheme of Bhutia and Tiwary (J. Linear Topol. Algebra, **8**(4), (2019), 237-250) in Kohlenbach hyperbolic space. We prove the weak w^2 -stability and data dependence theorems of this iterative scheme for contraction mappings. We also give some \triangle -convergence and strong convergence theorems for generalized α -nonexpansive mappings and finite families of total asymptotically nonexpansive mappings using J-iterative scheme. The results presented here can be viewed as a generalization of several well-known results in CAT(0) space and uniformly convex Banach space.

Keywords: Data dependence; fixed point; hyperbolic space; *J*-iterative scheme; strong convergence; weak w^2 -stability; \triangle -convergence. 2010 Mathematics Subject Classification: 47H09; 47H10.

1. Introduction

Kohlenbach [8] introduced the concept of hyperbolic space, defined below, which plays a significant role in many branches of mathematics. A *hyperbolic space* is a triple (X,d,W) where (X,d) is a metric space and $W: X \times X \times [0,1] \rightarrow X$ is a mapping such that

(H1) $d(z, W(x, y, \alpha)) \leq (1 - \alpha)d(z, x) + \alpha d(z, y),$

(H2) $d(W(x,y,\alpha),W(x,y,\beta)) = |\alpha - \beta| d(x,y),$

(H3) $W(x, y, \alpha) = W(y, x, 1 - \alpha),$

(H4) $d(W(x,z,\alpha),W(y,w,\alpha)) \le (1-\alpha)d(x,y) + \alpha d(z,w)$

for all $x, y, z, w \in X$ and $\alpha, \beta \in [0, 1]$.

A mapping $\eta : (0,\infty) \times (0,2] \to (0,1]$ which provides $\delta = \eta(r,\varepsilon)$ for given r > 0 and $\varepsilon \in (0,2]$ is called a *modulus of uniform convexity of X*. The function η is *monotone* if it decreases with *r* for a fixed ε .

In [10], it is noticed that any normed space is a hyperbolic space with the mapping $W(x, y, \gamma) = (1 - \gamma)x + \gamma y$ and it is proved that CAT(0) space is uniformly convex hyperbolic space with the quadratic modulus of uniform convexity $\eta(r, \varepsilon) = \frac{\varepsilon^2}{8}$. Thus, the class of uniformly convex hyperbolic space is a natural generalization of both uniformly convex Banach space and CAT(0) space.

Remember that a sequence $\{x_n\}_{n=1}^{\infty}$ in X is said to be \triangle -convergent to $x \in X$ if x is the unique asymptotic center which is denoted by $A(X, \{u_{n_k}\}) = \{x\}$ (see [11, 17]) of $\{u_{n_k}\}_{k=1}^{\infty}$ for every subsequence $\{u_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$. In this case, we write \triangle -lim_{$n\to\infty$} $x_n = x$ and call x as \triangle -limit of $\{x_n\}_{n=1}^{\infty}$.

In 2019, Bhutia and Tiwary [3] introduced a new iterative scheme in Banach space which is called J-iterative scheme, as follows:

 $\begin{cases} x_1 \in C, \\ z_n = T[(1 - \beta_n)x_n + \beta_n Tx_n], \\ y_n = T[(1 - \alpha_n)z_n + \alpha_n Tz_n], \\ x_{n+1} = Ty_n, \quad \forall n \ge 1. \end{cases}$

They proved that this iterative scheme is faster than the recent schemes such as K-iterative [4], K*-iterative [19, 24], M*-iterative [23] and M-iterative [7, 17, 25] for contraction mappings. Also, they obtained a result for Suzuki generalized nonexpansive mappings under J-iterative scheme. In 2021, Izhar-ud-din et al. [5] modified the J-iterative scheme and proved some \triangle -convergence and strong convergence theorems of the modified J-iterative scheme in CAT(0) space using total asymptotically nonexpansive mappings defined in [1].

Motivated by these papers, we study the weak w^2 -stability, data dependence and convergence theorems of the J-iterative scheme in Kohlenbach hyperbolic space. This paper contains four sections. In Section 2, we establish the weak w^2 -stability and data dependence results of the J-iterative scheme for contraction mappings. In Section 3, we prove some \triangle -convergence and strong convergence theorems of the J-iterative scheme for the class of generalized α -nonexpansive mappings which contains the class of Suzuki generalized nonexpansive mappings. In Section 4, we also prove some \triangle -convergence and strong convergence theorems for a finite family of total asymptotically nonexpansive mappings using the J-iterative scheme. Our results generalize the corresponding theorems of Bhutia and Tiwary [3] for uniformly convex Banach space and the theorems of Izhar-ud-din et al. [5] for CAT(0) space and many others in this direction.

2. The weak w^2 -stability and data dependence results

We first extend the J-iterative scheme into the hyperbolic space as follows:

$$\begin{cases} x_{1} \in C, \\ z_{n} = T(W(x_{n}, Tx_{n}, \beta_{n})), \\ y_{n} = T(W(z_{n}, Tz_{n}, \alpha_{n})), \\ x_{n+1} = Ty_{n}, \quad \forall n \ge 1. \end{cases}$$
(2.1)

Throughout the paper, we presume that *C* is a nonempty, closed, convex subset of a hyperbolic space *X* and $T : C \to C$ is a contraction mapping such that the fixed point set F(T) is nonempty. In this case, it is known that the fixed point of *T* is unique. The following theorem is a generalization of Theorem 2.1 in [3] to hyperbolic space.

Theorem 2.1. Let $\{x_n\}_{n=1}^{\infty}$ be the iterative sequence given by (2.1) with the real sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ in [0,1] satisfying $\sum_{n=1}^{\infty} \beta_n = \infty$. Then the sequence $\{x_n\}_{n=1}^{\infty}$ converges to a fixed point of *T* strongly.

Proof. Let the unique fixed point be p. From (H1), (2.1) and the contractionness of T, we have

$$d(x_{n+1}, p) = d(Ty_n, p) \le ad(y_n, p),$$
(2.2)

$$d(y_n, p) = d(T(W(z_n, Tz_n, \alpha_n)), p)$$

$$\leq ad(W(z_n, Tz_n, \alpha_n), p)$$

$$\leq a[(1 - \alpha_n)d(z_n, p) + \alpha_n d(Tz_n, p)]$$

$$\leq a[(1 - \alpha_n)d(z_n, p) + \alpha_n ad(z_n, p)]$$

$$= a(1 - \alpha_n(1 - a))d(z_n, p) \leq ad(z_n, p)$$
(2.3)

and

$$d(z_n, p) = d(T(W(x_n, Tx_n, \beta_n)), p)$$

$$\leq ad(W(x_n, Tx_n, \beta_n), p)$$

$$\leq a[(1 - \beta_n)d(x_n, p) + \beta_n d(Tx_n, p)]$$

$$\leq a[(1 - \beta_n)d(x_n, p) + \beta_n ad(x_n, p)]$$

$$= a(1 - \beta_n(1 - a))d(x_n, p). \qquad (2.4)$$

Combining (2.2), (2.3) and (2.4), we obtain

$$d(x_{n+1},p) \leq a^{3}(1-\beta_{n}(1-a))d(x_{n},p)$$

$$\leq a^{3}(1-\beta_{n}(1-a))a^{3}(1-\beta_{n-1}(1-a))d(x_{n-1},p)$$

$$\leq \cdots$$

$$\leq (a^{3})^{n}\prod_{k=1}^{n}(1-\beta_{k}(1-a))d(x_{1},p).$$
(2.5)

It is well-known from the classical analysis that $1 - x \le e^{-x}$ for all $x \in [0, 1]$. Taking into account this fact together with (2.5), we have

$$d(x_{n+1},p) \le (a^3)^n e^{-(1-a)\sum_{k=1}^n \beta_k} d(x_1,p).$$

Since $\sum_{n=1}^{\infty} \beta_n = \infty$ and $a \in [0,1)$, then we get that $\lim_{n\to\infty} d(x_{n+1},p) = 0$. Thus we obtain $x_n \to p \in F(T)$.

Remark 2.2. If the condition $\sum_{n=1}^{\infty} \beta_n = \infty$ replace with $\sum_{n=1}^{\infty} \alpha_n = \infty$ in Theorem 2.1, then we can rewrite (2.5) as

$$d(x_{n+1},p) \le (a^3)^n \prod_{k=1}^n (1-\alpha_k(1-a))d(x_1,p).$$

Therefore, we get the same result.

Timis [22] has defined the following concept of weak w^2 -stability by adopting equivalent sequences instead of arbitrary sequences in the definition of *T*-stability in [2].

Definition 2.3. (see [22, Definition 2.4]) Let (X,d) be a metric space, T be a self mapping on X and $\{x_n\}_{n=1}^{\infty} \subset X$ be an iterative sequence produced by a general relation of the form

$$\begin{cases} x_1 \in X, \\ x_{n+1} = f(T, x_n), & \forall n \ge 1, \end{cases}$$

where $f(T,x_n)$ denotes all parameters in the given iterative scheme. Suppose that $\{x_n\}_{n=1}^{\infty}$ converges to $p \in F(T)$ strongly. If for any equivalent sequence $\{y_n\}_{n=1}^{\infty} \subset X$ of $\{x_n\}_{n=1}^{\infty}$,

$$\lim_{n\to\infty} d\left(y_{n+1}, f(T, y_n)\right) = 0 \Longrightarrow \lim_{n\to\infty} y_n = p,$$

then the iterative sequence $\{x_n\}_{n=1}^{\infty}$ is said to be weak w^2 -stable with respect to T.

Next we show that the J-iteration process is weak w^2 -stable with respect to T.

Theorem 2.4. Suppose that the condition of Theorem 2.1 holds. Then the iteration process (2.1) is weak w^2 -stable with respect to T.

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be the iterative sequence given by (2.1) and $\{p_n\}_{n=1}^{\infty} \subset C$ be an equivalent sequence of $\{x_n\}_{n=1}^{\infty}$. Set

$$\varepsilon_n = d(p_{n+1}, Tq_n),$$

where $q_n = T(W(r_n, Tr_n, \alpha_n))$ with $r_n = T(W(p_n, Tp_n, \beta_n))$. Suppose that $\lim_{n\to\infty} \varepsilon_n = 0$. It follows from (H4) and (2.1) that

$$d(p_{n+1},p) \leq d(p_{n+1},x_{n+1}) + d(x_{n+1},p) \\ \leq d(p_{n+1},Tq_n) + d(Tq_n,Ty_n) + d(x_{n+1},p) \\ \leq \varepsilon_n + ad(y_n,q_n) + d(x_{n+1},p),$$

$$d(y_n, q_n) = d(T(W(z_n, Tz_n, \alpha_n)), T(W(r_n, Tr_n, \alpha_n)))$$

$$\leq ad(W(z_n, Tz_n, \alpha_n), W(r_n, Tr_n, \alpha_n))$$

$$\leq a[(1 - \alpha_n)d(z_n, r_n) + \alpha_n d(Tz_n, Tr_n)]$$

$$\leq a[(1 - \alpha_n)d(z_n, r_n) + \alpha_n ad(z_n, r_n)]$$

$$= a(1 - \alpha_n(1 - a))d(z_n, r_n) \leq ad(z_n, r_n)$$

and

$$d(z_n, r_n) = d(T(W(x_n, Tx_n, \beta_n)), T(W(p_n, Tp_n, \beta_n)))$$

$$\leq ad(W(x_n, Tx_n, \beta_n), W(p_n, Tp_n, \beta_n))$$

$$\leq a[(1 - \beta_n)d(x_n, p_n) + \beta_n d(Tx_n, Tp_n)]$$

$$\leq a[(1 - \beta_n)d(x_n, p_n) + \beta_n ad(x_n, p_n)]$$

$$= a(1 - \beta_n(1 - a))d(x_n, p_n).$$

These inequalities imply that

$$d(p_{n+1},p) \le \varepsilon_n + a^3(1 - \beta_n(1-a))d(x_n, p_n) + d(x_{n+1}, p).$$
(2.6)

From Theorem 2.1, it follows that $\lim_{n\to\infty} d(x_{n+1}, p) = 0$. Since $\{x_n\}_{n=1}^{\infty}$ and $\{p_n\}_{n=1}^{\infty}$ are equivalent sequences, we have $\lim_{n\to\infty} d(x_n, p_n) = 0$. Now taking the limit of both sides of (2.6) as $n \to \infty$ and then using the assumption $\lim_{n\to\infty} \varepsilon_n = 0$, we have $\lim_{n\to\infty} d(p_{n+1}, p) = 0$. Thus $\{x_n\}_{n=1}^{\infty}$ is weak w^2 -stable with respect to T.

Next we prove the data dependence result for the J-iterative scheme.

Theorem 2.5. Let $\overline{T} : C \to C$ be an approximate operator of T, that is $d(Tx, \overline{T}x) \leq \varepsilon$ for all $x \in C$ and for a fixed $\varepsilon > 0$. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{\overline{x}_n\}_{n=1}^{\infty}$ are two iterative sequences defined by (2.1) and

$$\begin{cases} \overline{x}_{1} \in C, \\ \overline{z}_{n} = \overline{T}(W(\overline{x}_{n}, \overline{T}\overline{x}_{n}, \beta_{n})), \\ \overline{y}_{n} = \overline{T}(W(\overline{z}_{n}, \overline{T}\overline{z}_{n}, \alpha_{n})), \\ \overline{x}_{n+1} = \overline{T}\overline{y}_{n}, \quad \forall n \ge 1, \end{cases}$$

$$(2.7)$$

respectively, where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are real sequences in [0,1] satisfying $\sum_{n=1}^{\infty} \beta_n = \infty$. If p = Tp and $\overline{p} = \overline{Tp}$ then we have

$$d(p,\overline{p}) \leq \frac{(a^3 + 2a^2 + a + 1)\varepsilon}{1 - a^3},$$

Proof. It follows from (2.1) and (2.7) that

$$d(x_{n+1},\overline{x}_{n+1}) = d(Ty_n,\overline{Ty}_n)$$

$$\leq d(Ty_n,T\overline{y}_n) + d(T\overline{y}_n,\overline{Ty}_n)$$

$$\leq ad(y_n,\overline{y}_n) + \varepsilon,$$

$$d(y_n,\overline{y}_n) = d(T(W(z_n,Tz_n,\alpha_n)),\overline{T}(W(\overline{z}_n,\overline{Tz}_n,\alpha_n)))$$

$$\leq d(T(W(z_n,Tz_n,\alpha_n)),T(W(\overline{z}_n,\overline{Tz}_n,\alpha_n)))$$

$$+ d(T(W(\overline{z}_n,\overline{Tz}_n,\alpha_n)),\overline{T}(W(\overline{z}_n,\overline{Tz}_n,\alpha_n))))$$

$$\leq ad(W(z_n,Tz_n,\alpha_n),W(\overline{z}_n,\overline{Tz}_n,\alpha_n)) + \varepsilon$$

$$\leq a[(1-\alpha_n)d(z_n,\overline{z}_n) + \alpha_n(d(Tz_n,\overline{Tz}_n) + d(T\overline{z}_n,\overline{Tz}_n)] + \varepsilon$$

$$\leq a(1-\alpha_n)d(z_n,\overline{z}_n) + a\alpha_n[ad(z_n,\overline{z}_n) + \varepsilon] + \varepsilon$$

$$= a(1-\alpha_n(1-a))d(z_n,\overline{z}_n) + a\alpha_n\varepsilon + \varepsilon$$

and

$$\begin{aligned} d(z_n, \overline{z}_n) &= d(T(W(x_n, Tx_n, \beta_n)), \overline{T}(W(\overline{x}_n, \overline{T}\overline{x}_n, \beta_n))) \\ &\leq d(T(W(x_n, Tx_n, \beta_n)), T(W(\overline{x}_n, \overline{T}\overline{x}_n, \beta_n))) \\ &+ d(T(W(\overline{x}_n, \overline{T}\overline{x}_n, \beta_n)), \overline{T}(W(\overline{x}_n, \overline{T}\overline{x}_n, \beta_n)))) \\ &\leq ad(W(x_n, Tx_n, \beta_n), W(\overline{x}_n, \overline{T}\overline{x}_n, \beta_n)) + \varepsilon \\ &\leq a\left[(1 - \beta_n)d(x_n, \overline{x}_n) + \beta_n d(Tx_n, \overline{T}\overline{x}_n)\right] + \varepsilon \\ &\leq a(1 - \beta_n)d(x_n, \overline{x}_n) + a\beta_n \left[d(Tx_n, T\overline{x}_n) + d(T\overline{x}_n, \overline{T}\overline{x}_n)\right] + \varepsilon \\ &\leq a(1 - \beta_n)d(x_n, \overline{x}_n) + a\beta_n \left[ad(x_n, \overline{x}_n) + \varepsilon\right] + \varepsilon \\ &= a(1 - \beta_n)d(x_n, \overline{x}_n) + a\beta_n\varepsilon + \varepsilon. \end{aligned}$$

Combining these inequalities, we get

$$d(x_{n+1},\overline{x}_{n+1}) \leq a^3(1-\alpha_n(1-a))(1-\beta_n(1-a))d(x_n,\overline{x}_n) + a^3(1-\alpha_n(1-a))\beta_n\varepsilon +a^2(1-\alpha_n(1-a))\varepsilon + a^2\alpha_n\varepsilon + a\varepsilon + \varepsilon.$$
(2.8)

If $a^3 \in (0,1)$ then we can find a real number $k \in (0,1)$ such that $a^3 = 1 - k$. Hence, by the facts of α_n , $\beta_n \le 1$, $1 - \alpha_n(1-a) \le 1$ and $1 - \beta_n(1-a) \le 1$ for all $n \ge 1$, we can rewrite (2.8) as

$$d(x_{n+1},\overline{x}_{n+1}) \leq (1-k)d(x_n,\overline{x}_n) + k\frac{a^3\varepsilon + 2a^2\varepsilon + a\varepsilon + \varepsilon}{k}.$$

By Lemma 2.2 in [20], we have

$$d(p,\overline{p}) \leq \frac{(a^3 + 2a^2 + a + 1)\varepsilon}{1 - a^3}.$$

If $a^3 = 0$, from (2.8), we get $d(p, \overline{p}) \leq \varepsilon$. This completes the proof.

Remark 2.6. In the proof of Theorem 2.5, we can also rewrite (2.8) as

$$d(x_{n+1},\overline{x}_{n+1}) \leq (1-k)d(x_n,\overline{x}_n) + k\frac{a^3\beta_n\varepsilon + a^2\varepsilon + a^2\alpha_n\varepsilon + a\varepsilon + \varepsilon}{1-a^3}.$$

If the condition $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ is added for the sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ in the hypotheses of Theorem 2.5 then we obtain that

$$d(p,\overline{p}) \leq \frac{\varepsilon}{1-a}.$$

3. Some convergence results for a generalized α -nonexpansive mapping

The following theorem is a generalization of the results in Section 3 of [3].

Theorem 3.1. Let *C* be a nonempty, closed, convex subset of a complete, uniformly convex hyperbolic space X with the monotone modulus of uniform convexity η and $T: C \to C$ be a generalized α -nonexpansive mapping. Let $\{x_n\}_{n=1}^{\infty}$ be the iterative sequence (2.1) with real sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ in [a,b] for some $a, b \in (0,1)$. (a) If $F(T) \neq \emptyset$, then $\lim_{n\to\infty} d(x_n, p)$ exists for each $p \in F(T)$. (b) Then, $F(T) \neq \emptyset$ if and only if $\{x_n\}_{n=1}^{\infty}$ is bounded and $\lim_{n\to\infty} d(x_n, Tx_n) = 0$.

Proof. (a) Let $p \in F(T)$. By Proposition 3.5 in [13], we have

$$d(x_{n+1}, p) = d(Ty_n, p) \le d(y_n, p),$$
(3.1)

$$d(y_n, p) = d(T(W(z_n, Tz_n, \alpha_n)), p)$$

$$\leq d(W(z_n, Tz_n, \alpha_n), p)$$

$$\leq (1 - \alpha_n)d(z_n, p) + \alpha_n d(Tz_n, p)$$

$$\leq (1 - \alpha_n)d(z_n, p) + \alpha_n d(z_n, p) = d(z_n, p)$$
(3.2)

and

$$d(z_n, p) = d(T(W(x_n, Tx_n, \beta_n)), p)$$

$$\leq d(W(x_n, Tx_n, \beta_n), p)$$

$$\leq (1 - \beta_n)d(x_n, p) + \beta_n d(Tx_n, p)$$

$$\leq (1 - \beta_n)d(x_n, p) + \beta_n d(x_n, p) = d(x_n, p).$$
(3.3)

By (3.1), (3.2) and (3.3), we obtain

$$d(x_{n+1}, p) \le d(x_n, p).$$
 (3.4)

Hence the sequence $\{d(x_n, p)\}_{n=1}^{\infty}$ is non-increasing and bounded below, which implies that

$$\lim_{n \to \infty} d(x_n, p) \text{ exists for all } p \in F(T).$$
(3.5)

(b) Suppose $F(T) \neq \emptyset$ and choose $p \in F(T)$. Then, by (3.5), $\lim_{n\to\infty} d(x_n, p)$ exists and $\{x_n\}_{n=1}^{\infty}$ is bounded. Let

$$\lim_{n \to \infty} d(x_n, p) = c \quad \text{for some } c \ge 0.$$
(3.6)

Noting $d(Tx_n, p) \le d(x_n, p)$, by (3.6) we have

$$\limsup_{n \to \infty} d(Tx_n, p) \le c. \tag{3.7}$$

Taking the lim sup on both sides of (3.3), we obtain

$$\limsup_{n \to \infty} d(z_n, p) \le c. \tag{3.8}$$

By (3.1) and (3.2), we get

$$d(x_{n+1}, p) \le d(z_n, p),$$

which yields that

$$c \le \liminf_{n \to \infty} d(z_n, p). \tag{3.9}$$

From the estimates of (3.8) and (3.9), we have that

$$\lim_{n \to \infty} d(z_n, p) = c. \tag{3.10}$$

Thus, from (3.3), (3.6) and (3.10), we obtain

$$\lim_{n \to \infty} d(W(x_n, Tx_n, \beta_n), p) = c.$$
(3.11)

With the help of (3.6), (3.7), (3.11) and Lemma 2.5 in [9], we get

$$\lim_{n \to \infty} d(x_n, Tx_n) = 0. \tag{3.12}$$

Conversely, we assume that $\{x_n\}_{n=1}^{\infty}$ is bounded and $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. Let $p \in A(C, \{x_n\})$. By Lemma 5.2 in [13], we have

$$r(Tp, \{x_n\}) = \limsup_{n \to \infty} d(x_n, Tp)$$

$$\leq \left(\frac{3+\alpha}{1-\alpha}\right) \limsup_{n \to \infty} d(x_n, Tx_n) + \limsup_{n \to \infty} d(x_n, p)$$

$$= \limsup_{n \to \infty} d(x_n, p) = r(p, \{x_n\}).$$

Hence, we conclude that $Tp \in A(C, \{x_n\})$. Since the sequence $\{x_n\}_{n=1}^{\infty}$ is bounded, by Proposition 3.3 in [11], $A(C, \{x_n\})$ consists of a unique element. Hence, we have Tp = p. Thus, $F(T) \neq \emptyset$.

We now prove the \triangle -convergence theorem of the iterative sequence $\{x_n\}_{n=1}^{\infty}$ defined by (2.1) for a generalized α -nonexpansive mapping in a hyperbolic space.

Theorem 3.2. Let X, C, T and $\{x_n\}_{n=1}^{\infty}$ be the same as in Theorem 3.1 and $F(T) \neq \emptyset$. Then the sequence $\{x_n\}_{n=1}^{\infty}$ is \triangle -convergent to a fixed point of T.

Proof. By Proposition 3.3 in [11], the sequence $\{x_n\}_{n=1}^{\infty}$ has a unique asymptotic center $A(C, \{x_n\}) = \{x\}$. Let $\{u_{n_k}\}_{k=1}^{\infty}$ be any subsequence of $\{x_n\}_{n=1}^{\infty}$ such that $A(C, \{u_{n_k}\}) = \{u\}$. Then, by Theorem 3.1, we have that $\lim_{k\to\infty} d(u_{n_k}, Tu_{n_k}) = 0$. It follows similarly from the proof of Theorem 3.1 that *u* is a fixed point of *T*. Next, we claim that the fixed point *u* is the unique asymptotic center for each subsequence $\{u_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$. Assume on the contrary that $x \neq u$. Since $\lim_{n\to\infty} d(x_n, u)$ exists, by the uniqueness of asymptotic center, therefore we have

$$\limsup_{k \to \infty} d(u_{n_k}, u) < \limsup_{k \to \infty} d(u_{n_k}, x)$$

$$\leq \limsup_{n \to \infty} d(x_n, x)$$

$$< \limsup_{n \to \infty} d(x_n, u)$$

$$= \limsup_{k \to \infty} d(u_{n_k}, u).$$

This is a contradiction. Hence x = u. Since $\{u_{n_k}\}_{k=1}^{\infty}$ is an arbitrary subsequence of $\{x_n\}_{n=1}^{\infty}$, therefore $A(C, \{u_{n_k}\}) = \{u\}$ for all subsequences $\{u_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$. It is proved that the sequence $\{x_n\}_{n=1}^{\infty}$ is \triangle -convergent to a fixed point of T.

Next, we prove the strong convergence theorem.

Theorem 3.3. Suppose that all conditions of Theorem 3.2 hold. Then the sequence $\{x_n\}_{n=1}^{\infty}$ converges to a fixed point of T strongly if and only if $\liminf_{n\to\infty} d(x_n, F(T)) = 0$ or $\limsup_{n\to\infty} d(x_n, F(T)) = 0$, where $d(x, F(T)) = \inf \{d(x, p) : p \in F(T)\}$.

Proof. If the sequence $\{x_n\}_{n=1}^{\infty}$ converges to $p \in F(T)$ strongly then $\lim_{n\to\infty} d(x_n, p) = 0$. Since $0 \le d(x_n, F(T)) \le d(x_n, p)$, we have $\liminf_{n\to\infty} d(x_n, F(T)) = \limsup_{n\to\infty} d(x_n, F(T)) = 0$.

Conversely, suppose that $\liminf_{n\to\infty} d(x_n, F(T)) = 0$ or $\limsup_{n\to\infty} d(x_n, F(T)) = 0$. It follows from (3.5) that $\lim_{n\to\infty} d(x_n, F(T))$ exists and hence $\lim_{n\to\infty} d(x_n, F(T)) = 0$. Therefore, there exist a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ and $\{p_k\}_{k=1}^{\infty}$ in F(T) such that $d(x_{n_k}, p_k) < \frac{1}{2^k}$ for all $k \ge 1$. By (3.4), we have

$$d(x_{n_{k+1}}, p_{k+1}) \le d(x_{n_k}, p_k) < \frac{1}{2^k},$$

which implies that

$$d(p_{k+1}, p_k) \le d(p_{k+1}, x_{n_{k+1}}) + d(x_{n_{k+1}}, p_k) < \frac{1}{2^{k+1}} + \frac{1}{2^k} < \frac{1}{2^{k-1}} \to 0 \quad \text{as } k \to \infty.$$

Hence, we conclude that $\{p_k\}_{k=1}^{\infty}$ is a Cauchy sequence in F(T) and so it converges to some p strongly. By Lemma 3.6 in [13], F(T) is closed and so $p \in F(T)$. By (3.5), $\lim_{n\to\infty} d(x_n, p)$ exists and hence p is the strong limit of $\{x_n\}_{n=1}^{\infty}$.

Now we prove the following strong convergence theorem using the concepts of condition (I) which is defined in [14] and compact set.

Theorem 3.4. Under the assumptions of Theorem 3.2, if T satisfies the condition (I) or C is a compact subset of X, then the sequence $\{x_n\}_{n=1}^{\infty}$ converges to a fixed point of T strongly.

Proof. If T satisfies the condition (I), then by (3.12), we have

$$\lim_{n \to \infty} f(d(x_n, F(T))) \le \lim_{n \to \infty} d(x_n, Tx_n) = 0.$$

Therefore, we get that $\lim_{n\to\infty} f(d(x_n, F(T))) = 0$. Since *f* is a non-decreasing function satisfying f(0) = 0 and f(r) > 0 for all $r \in (0, \infty)$, we have $\lim_{n\to\infty} d(x_n, F(T)) = 0$. The rest of the proof follows in lines of Theorem 3.3.

If *C* is compact subset of *X*, then there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that $\{x_{n_k}\}_{k=1}^{\infty}$ converges strongly to *p* for some $p \in C$. By Lemma 5.2 in [13] and (3.12), we have

$$\lim_{k\to\infty} d(x_{n_k},Tp) \leq \left(\frac{3+\alpha}{1-\alpha}\right)\lim_{k\to\infty} d(x_{n_k},Tx_{n_k}) + \lim_{k\to\infty} d(x_{n_k},p) = 0.$$

Then, we obtain Tp = p, that is, $p \in F(T)$. It follows from (3.5) that $\lim_{n\to\infty} d(x_n, p)$ exists for every $p \in F(T)$ and hence $\{x_n\}_{n=1}^{\infty}$ converges to p strongly.

4. Some convergence results for a finite family of total asymptotically nonexpansive mappings

First, we modify the J-iterative scheme for a finite family of mappings into hyperbolic space:

$$\begin{cases} x_{1} \in C, \\ z_{n} = T_{i}^{n}(W(x_{n}, T_{i}^{n}x_{n}, \beta_{n})), \\ y_{n} = T_{i}^{n}(W(z_{n}, T_{i}^{n}z_{n}, \alpha_{n})), \\ x_{n+1} = T_{i}^{n}y_{n}, \quad \forall n \ge 1, \end{cases}$$
(4.1)

where $T_i = T_{i(\text{mod}N)}$ (here the function mod *N* takes values in $\{1, 2, ..., N\}$) and for each $i = 1, 2, ..., N, T_i : C \to C$ is an uniformly L_i -Lipschitzian and $\{\{v_n^{(i)}\}, \{\mu_n^{(i)}\}, \zeta^{(i)}\}$ -total asymptotically nonexpansive mapping.

Remark 4.1. In fact, letting

$$L = \max\{L_i; i = 1, 2, ..., N\}, v_n = \max\{v_n^{(i)}; i = 1, 2, ..., N\}, \mu_n = \max\{\mu_n^{(i)}; i = 1, 2, ..., N\}, \zeta = \max\{\zeta^{(i)}; i = 1, 2, ..., N\}$$

then $\{T_i\}_{i=1}^N$ is a finite family of uniformly L-Lipschitzian and $(\{v_n\}, \{\mu_n\}, \zeta)$ -total asymptotically nonexpansive mappings.

From now on for a finite family $\{T_i\}_{i=1}^N$, we denote $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$.

We prove some convergence theorems of the iterative sequence $\{x_n\}_{n=1}^{\infty}$ defined by (4.1) for a finite family of total asymptotically nonexpansive mappings in a hyperbolic space.

Theorem 4.2. Let C be a nonempty, closed, convex subset of a complete, uniformly convex hyperbolic space X with the monotone modulus of uniform convexity η . Let $\{T_i\}_{i=1}^N$ be a finite family of uniformly L-Lipschitzian and $(\{v_n\}, \{\mu_n\}, \zeta)$ -total asymptotically nonexpansive self mappings on C. If the following conditions are satisfied:

(i)
$$\sum_{n=1}^{\infty} v_n < \infty$$
 and $\sum_{n=1}^{\infty} \mu_n < \infty$;

(ii) there exist constants $a, b \in (0, 1)$ such that $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty} \subset [a, b]$; (iii) there exists a constant M > 0 such that $\zeta(r) \leq Mr, \forall r \geq 0$; then

(a) the sequence $\{x_n\}_{n=1}^{\infty}$ defined by (4.1) is \triangle -convergent to a point in F. (b) the sequence $\{x_n\}_{n=1}^{\infty}$ converges to some $p \in F$ strongly if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$ or $\limsup_{n\to\infty} d(x_n, F) = 0$.

Proof. (a) Let $p \in F$. Since $\{T_i\}_{i=1}^N$ is a finite family of total asymptotically nonexpansive mappings, by the condition (iii), we get

$$d(z_{n},p) = d(T_{i}^{n}(W(x_{n},T_{i}^{n}x_{n},\beta_{n})),p)$$

$$\leq d(W(x_{n},T_{i}^{n}x_{n},\beta_{n}),p) + v_{n}\zeta(d(W(x_{n},T_{i}^{n}x_{n},\beta_{n}),p)) + \mu_{n}$$

$$\leq (1 + v_{n}M)d(W(x_{n},T_{i}^{n}x_{n},\beta_{n}),p) + \mu_{n}$$

$$\leq (1 + v_{n}M)[(1 - \beta_{n})d(x_{n},p) + \beta_{n}d(T_{i}^{n}x_{n},p)] + \mu_{n}$$

$$\leq (1 + v_{n}M)[(1 - \beta_{n})d(x_{n},p) + \beta_{n}\{d(x_{n},p) + v_{n}\zeta(d(x_{n},p)) + \mu_{n}\}] + \mu_{n}$$

$$\leq (1 + v_{n}M)[(1 + \beta_{n}v_{n}M)d(x_{n},p) + \beta_{n}\mu_{n}] + \mu_{n}$$

$$\leq (1 + v_{n}M)^{2}d(x_{n},p) + (2 + v_{n}M)\mu_{n}.$$
(4.2)

Similarly, we obtain

$$d(y_n, p) = d(T_i^n(W(z_n, T_i^n z_n, \alpha_n)), p) \leq (1 + v_n M) d(W(z_n, T_i^n z_n, \alpha_n), p) + \mu_n \leq (1 + v_n M)^2 d(z_n, p) + (2 + v_n M) \mu_n.$$
(4.3)

Substituting (4.2) into (4.3), we have

$$d(y_n, p) \le (1 + v_n M)^4 d(x_n, p) + (2 + v_n M)(1 + (1 + v_n M)^2)\mu_n.$$
(4.4)

Also, we obtain

$$d(x_{n+1}, p) = d(T_i^n y_n, p) \le d(y_n, p) + v_n \zeta(d(y_n, p)) + \mu_n \le (1 + v_n M) d(y_n, p) + \mu_n.$$
(4.5)

Combining (4.4) and (4.5), we have

 $d(x_{n+1},p) \leq (1+\sigma_n)d(x_n,p) + \xi_n, \forall n \geq 1 \text{ and } p \in F(T),$

where $\sigma_n = 5(v_n M) + 10(v_n M)^2 + 10(v_n M)^3 + 5(v_n M)^4 + (v_n M)^5$ and $\xi_n = 1 + (1 + v_n M)(2 + v_n M)(1 + (1 + v_n M)^2)$. By virtue of the condition (i), we get

$$\sum_{n=1}^{\infty} \sigma_n < \infty \text{ and } \sum_{n=1}^{\infty} \xi_n < \infty.$$

By Lemma 2 in [12],

$$\lim d(x_n, p) \text{ exists for each } p \in F.$$
(4.6)

We may assume that

$$\lim_{n \to \infty} d(x_n, p) = c \ge 0. \tag{4.7}$$

Taking lim sup on both sides of the inequality (4.2), we have

$$\limsup_{n \to \infty} d(z_n, p) \le c. \tag{4.8}$$

Since

$$d(T_i^n z_n, p) \leq d(z_n, p) + v_n \zeta(d(z_n, p)) + \mu_n$$

$$\leq (1 + v_n M) d(z_n, p) + \mu_n, \forall n \geq 1,$$

we have

$$\limsup_{n \to \infty} d(T_i^n z_n, p) \le c.$$
(4.9)

Similarly, we get

$$\limsup_{n \to \infty} d(T_i^n x_n, p) \le c. \tag{4.10}$$

Now, we can write

$$d(x_{n+1}, p) \leq (1 + v_n M) d(y_n, p) + \mu_n$$

$$\leq (1 + v_n M) \left[(1 + v_n M)^2 d(z_n, p) + (2 + v_n M) \mu_n \right] + \mu_n$$

$$= (1 + v_n M)^3 d(z_n, p) + \left[1 + (1 + v_n M)(2 + v_n M) \right] \mu_n.$$

Taking lim inf on both sides of the above inequality, we have that $\liminf_{n\to\infty} d(z_n, p) \ge c$. Combining with (4.8), it yields that

$$\lim_{n \to \infty} d(z_n, p) = c. \tag{4.11}$$

On the other hand, since

$$\begin{split} \lim_{n \to \infty} d(z_n, p) &\leq \lim_{n \to \infty} d(T_i^n(W(x_n, T_i^n x_n, \beta_n)), p) \\ &\leq \lim_{n \to \infty} \left[(1 + v_n M) d(W(x_n, T_i^n x_n, \beta_n), p) + \mu_n \right] \\ &= \lim_{n \to \infty} d(W(x_n, T_i^n x_n, \beta_n), p) \\ &\leq \lim_{n \to \infty} \left[(1 - \beta_n) d(x_n, p) + \beta_n d(T_i^n x_n, p) \right] \\ &\leq \lim_{n \to \infty} \left[(1 + \beta_n v_n M) d(x_n, p) + \beta_n \mu_n \right] \\ &= \lim_{n \to \infty} d(x_n, p), \end{split}$$

we have

$$\lim_{n \to \infty} d(W(x_n, T_i^n x_n, \beta_n), p) = c.$$
(4.12)

By Lemma 2.5 in [9] and (4.7), (4.10), (4.12), we get

$$\lim_{n \to \infty} d(x_n, T_i^n x_n) = 0. \tag{4.13}$$

From (4.4) and (4.5), we conclude that

 $\limsup_{n\to\infty} d(y_n,p) \le c \text{ and } \liminf_{n\to\infty} d(y_n,p) \ge c,$

respectively. Hence, $\lim_{n\to\infty} d(y_n, p) = c$. Likewise, since

$$\begin{split} \lim_{n \to \infty} d(y_n, p) &\leq \lim_{n \to \infty} d(T_i^n(W(z_n, T_i^n z_n, \alpha_n)), p) \\ &\leq \lim_{n \to \infty} \left[(1 + v_n M) d(W(z_n, T_i^n z_n, \alpha_n), p) + \mu_n \right] \\ &= \lim_{n \to \infty} d(W(z_n, T_i^n z_n, \alpha_n), p) \\ &\leq \lim_{n \to \infty} \left[(1 - \alpha_n) d(z_n, p) + \alpha_n d(T_i^n z_n, p) \right] \\ &\leq \lim_{n \to \infty} \left[(1 + \alpha_n v_n M) d(z_n, p) + \alpha_n \mu_n \right] \\ &= \lim_{n \to \infty} d(z_n, p), \end{split}$$

we have

$$\lim_{n \to \infty} d(W(z_n, T_i^n z_n, \alpha_n), p) = c.$$
(4.14)

Again, by Lemma 2.5 in [9] and (4.9), (4.11), (4.14), we get

$$\lim_{n \to \infty} d(z_n, T_i^n z_n) = 0. \tag{4.15}$$

(4.16)

By (4.13) and (4.15), we have

$$\begin{aligned} d(T_i^n x_n, T_i^n z_n) &\leq d(x_n, z_n) + v_n \zeta(d(x_n, z_n)) + \mu_n \\ &\leq (1 + v_n M) d(x_n, T_i^n (W(x_n, T_i^n x_n, \beta_n))) + \mu_n \\ &\leq (1 + v_n M) \left[d(x_n, T_i^n x_n) + d(T_i^n x_n, T_i^n (W(x_n, T_i^n x_n, \beta_n))) \right] + \mu_n \\ &\leq (1 + v_n M) d(x_n, T_i^n x_n) + (1 + v_n M) \left[d(x_n, W(x_n, T_i^n x_n, \beta_n)) + v_n \zeta(d(x_n, W(x_n, T_i^n x_n, \beta_n))) + \mu_n \right] + \mu_n \\ &\leq (1 + v_n M) d(x_n, T_i^n x_n) + (1 + v_n M)^2 d(x_n, W(x_n, T_i^n x_n, \beta_n)) + (2 + v_n M) \mu_n \\ &\leq (1 + v_n M) d(x_n, T_i^n x_n) + (1 + v_n M)^2 \beta_n d(x_n, T_i^n x_n) + (2 + v_n M) \mu_n \\ &\rightarrow 0 \text{ as } n \to \infty \end{aligned}$$

and

$$d(T_{i}^{n}z_{n},T_{i}^{n}y_{n}) \leq d(z_{n},y_{n}) + v_{n}\zeta(d(z_{n},y_{n})) + \mu_{n}$$

$$\leq d(z_{n},y_{n}) + v_{n}\zeta(d(z_{n},y_{n})) + \mu_{n}$$

$$\leq (1 + v_{n}M)d(z_{n},T_{i}^{n}(W(z_{n},T_{i}^{n}z_{n},\alpha_{n}))) + \mu_{n}$$

$$\leq (1 + v_{n}M)\left[d(z_{n},T_{i}^{n}z_{n}) + d(T_{i}^{n}z_{n},T_{i}^{n}(W(z_{n},T_{i}^{n}z_{n},\alpha_{n})))\right] + \mu_{n}$$

$$\leq (1 + v_{n}M)d(z_{n},T_{i}^{n}z_{n}) + (1 + v_{n}M)\left[d(z_{n},W(z_{n},T_{i}^{n}z_{n},\alpha_{n})) + v_{n}\zeta(d(x_{n},W(z_{n},T_{i}^{n}z_{n},\alpha_{n})) + \mu_{n}\right] + \mu_{n}$$

$$\leq (1 + v_{n}M)d(z_{n},T_{i}^{n}z_{n}) + (1 + v_{n}M)^{2}d(z_{n},W(z_{n},T_{i}^{n}z_{n},\alpha_{n})) + (2 + v_{n}M)\mu_{n}$$

$$\leq (1 + v_{n}M)d(z_{n},T_{i}^{n}z_{n}) + (1 + v_{n}M)^{2}\alpha_{n}d(z_{n},T_{i}^{n}z_{n}) + (2 + v_{n}M)\mu_{n}$$

$$\to 0 \text{ as } n \to \infty, \qquad (4.17)$$

respectively. From (4.13), (4.16) and (4.17), we get

$$d(x_n, x_{n+1}) = d(x_n, T_i^n y_n)$$

$$\leq d(x_n, T_i^n x_n) + d(T_i^n x_n, T_i^n z_n) + d(T_i^n z_n, T_i^n y_n)$$

$$\rightarrow 0 \text{ as } n \rightarrow \infty.$$
(4.18)

Since $\{T_i\}_{i=1}^N$ is a finite family of uniformly L-Lipschitzian, we obtain

$$\begin{aligned} d(x_n, Tx_n) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, T_i^{n+1}x_{n+1}) + d(T_i^{n+1}x_{n+1}, T_i^{n+1}x_n) + d(T_i^{n+1}x_n, T_ix_n) \\ &\leq (1+L)d(x_n, x_{n+1}) + d(x_{n+1}, T_i^{n+1}x_{n+1}) + Ld(T_i^nx_n, x_n). \end{aligned}$$

Hence, (4.13) and (4.18) imply that

$$\lim_{n \to \infty} d(x_n, T_i x_n) = 0 \quad \text{for each } i = 1, 2, ..., N.$$
(4.19)

The rest of proof follows the pattern of Theorem 3.4 in [6].

(b) The necessity of the conditions is obvious. Thus, we only prove the sufficiency. It follows from (4.6) that $\lim_{n\to\infty} d(x_n, F)$ exists. Moreover, $\liminf_{n\to\infty} d(x_n, F) = 0$ or $\limsup_{n\to\infty} d(x_n, F) = 0$ implies that $\lim_{n\to\infty} d(x_n, F) = 0$. The rest of the proof is similar to Theorem 4 in [26] and therefore is omitted.

By using the concept of semi-compactness which is defined in [18] and the condition (A) which is introduced by Khan et al. [9], we prove the following strong convergence theorem.

Theorem 4.3. Under the assumptions of Theorem 4.2, if one of the mappings in the family $\{T_i\}_{i=1}^N$ is semi-compact or the family $\{T_i\}_{i=1}^N$ satisfies the condition (A), then the sequence $\{x_n\}_{n=1}^{\infty}$ converges to a point in F strongly.

Proof. First, we assume that the mapping T_k in the family $\{T_i\}_{i=1}^N$ is semi-compact. By (4.19) and semi-compactness of T_k , there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ such that $\{x_{n_k}\}_{k=1}^{\infty}$ converges to some point $p \in C$ strongly. Moreover, by the uniform continuity of $\{T_i\}_{i=1}^N$, we have

$$d(p,T_ip) = \lim_{k \to \infty} d(x_{n_k},T_ix_{n_k}) = 0$$
 for each $i = 1, 2, ..., N$.

This satisfies that $p \in F$. It follows from (4.6) that $\lim_{n\to\infty} d(x_n, p)$ exists and hence $\lim_{n\to\infty} d(x_n, p) = 0$. As a result, $\{x_n\}_{n=1}^{\infty}$ converges strongly to a point p in F.

Second, we can suppose that the family $\{T_i\}_{i=1}^N$ satisfies the condition (A). Then we have that

$$\max \{ d(x, T_i x) : i = 1, 2, \dots N \} \ge f(d(x, F)) \quad \text{for all} \quad x \in C$$
(4.20)

holds. Thus, from (4.19) and (4.20), we obtain $\lim_{n\to\infty} f(d(x_n, F)) = 0$. Since *f* is a non-decreasing mapping with f(0) = 0 and $f(r) > 0 \forall r > 0$, we have $\lim_{n\to\infty} d(x_n, F) = 0$. The conclusion now can be seen from Theorem 4.2.

Remark 4.4. Theorems 4.2, 4.3 generalize the results of Izhar-ud-din et al. [5] in two ways: (i) from a total asymptotically nonexpansive mapping to a finite family of total asymptotically nonexpansive mappings, (ii) from a CAT(0) space to a uniformly convex hyperbolic space.

5. Conclusion

In the above sections, we have modified the J-iterative scheme into the hyperbolic space and established the weak w^2 -stability, data dependence results for contraction mappings and derived some convergence results for generalized α -nonexpansive mappings using this iterative scheme. Also, we have extended the J-iterative scheme for a finite family of total asymptotically nonexpansive mappings in hyperbolic space and have presented some convergence theorems of this iterative scheme.

Acknowledgements

The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

There are no competing interests.

Author's contributions

The author contributed to the writing of this paper. The author read and approved the final manuscript.

References

- Y. I. Alber, C. E. Chidume and H. Zegeye, Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., [1] 2006:10673, (2006), 20 pages.
- V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007.
- [3] J. D. Bhutia and K. Tiwary, New iteration process for approximating fixed points in Banach spaces, J. Linear Topol. Algebra, 8(4), (2019), 237-250.
- [4] N. Hussain, K. Ullah and M. Arshad, Fixed point approximation for Suzuki generalized nonexpansive mappings via new iteration process, J. Nonlinear Convex Anal., **19**(8), (2018), 1383-1393
- [5] Izhar-ud-din, S. Khatoon, N. Mlaiki and T. Abdeljawad, A modified iteration for total asymptotically nonexpansive mappings in Hadamard spaces, AIMS Math., 6(5), (2021), 4758-4770.
- [6] M. A. A. Khan, H. Fukhar-ud-din and A. Kalsoom, Existence and higher arity iteration for total asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces, Fixed Point Theory Appl., 2016:3, (2016), 18 pages
- [7] S. Khatoon, Izhar-ud-din and M. Başarır, A modified proximal point algorithm for a nearly asymptotically quasi-nonexpansive mapping with an application, Comp. Appl. Math., 40:250, (2021), 19 pages.
- U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc. 357(1), (2004), 89-128.
- [9] A. R. Khan, H. Fukhar-ud-din and M. A. A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012:54, (2012), 12 pages.
- [10] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(1), (2007), 386-399.
- [10] E. Leustean, A quadrate rate of asymptotic regularity for CAT(0) spaces, 5. Math. Anal. Appl., 220(1), 2007), 500 597.
 [11] L. Leustean, Nonexpansive iterations in uniformly convex W-hyperbolic spaces. In A. Leizarowitz, B. S. Mordukhovich, I. Shafrir and A. Zaslavski (eds), Nonlinear Analysis and Optimization I: Nonlinear Analysis, Contemp. Math., Vol. 513, pp. 193-209, Amer. Math. Soc., 2010.
- [12] Q. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. 259, (2001), 18-24.
- [13] D. Pant and R. Shukla, Approximating fixed points of generalized α -nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38(2), (2017), 248-266.
- [14] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc., 44, (1974), 375-380. [15] T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., 8, (1996),
- 197-203.
 [16] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340, (2008), 1088-1095.
 [17] A. Şahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math., 35(2), (2019), 221-232.
- [18] A. Sahin and M. Başarır, Some convergence results for nearly asymptotically nonexpansive nonself mappings in CAT(κ) spaces, Math. Sci. 11, (2017),
- [19] A. Şahin and M. Başarır, Some convergence results of the K*-iteration process in CAT(0) space. In Y. J. Cho, M. Jleli, M. Mursaleen, B. Samet and C. Vetro, (eds), Advances in Metric Fixed Point Theory and Applications, pp. 23-40, Springer, Singapore, 2021.
 [20] Ş. M. Şoltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., 2008:242916, 2009. 7
- (2008), 7 pages
- W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Semin. Rep., 22, (1970), 142-149. [21]
- [22] I. Timiş, On the weak stability of Picard iteration for some contractive type mappings, Annal. Uni. Craiova, Math. Comput. Sci. Series, 37(2), (2010), 106-114. [23] K. Ullah and M. Arshad, New iteration process and numerical reckoning fixed point in Banach spaces, U.P.B. Sci. Bull. (Series A), **79**(4), (2017),
- 113-122. K. Ullah and M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol. Algebra, 7(2), (2018),
- [24]
- 87-100.
 K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32(1), [25] (2018), 187-196. L. L. Wan, Demiclosed principle and convergence theorems for total asymptotically nonexpansive nonself mappings in hyperbolic spaces, Fixed Point
- [26] Theory Appl., 2015:4, (2015), 10 pages.