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Abstract

In the present paper, we study the J-iterative scheme of Bhutia and Tiwary (J. Linear Topol. Algebra, 8(4), (2019), 237-250) in Kohlenbach
hyperbolic space. We prove the weak w2-stability and data dependence theorems of this iterative scheme for contraction mappings. We
also give some 4-convergence and strong convergence theorems for generalized α-nonexpansive mappings and finite families of total
asymptotically nonexpansive mappings using J-iterative scheme. The results presented here can be viewed as a generalization of several
well-known results in CAT(0) space and uniformly convex Banach space.
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1. Introduction

Kohlenbach [8] introduced the concept of hyperbolic space, defined below, which plays a significant role in many branches of mathematics.
A hyperbolic space is a triple (X ,d,W ) where (X ,d) is a metric space and W : X×X× [0,1]→ X is a mapping such that
(H1) d(z,W (x,y,α))≤ (1−α)d(z,x)+αd(z,y),
(H2) d(W (x,y,α),W (x,y,β )) = |α−β |d(x,y),
(H3) W (x,y,α) =W (y,x,1−α),

(H4) d(W (x,z,α),W (y,w,α))≤ (1−α)d(x,y)+αd(z,w)
for all x,y,z,w ∈ X and α,β ∈ [0,1].
A mapping η : (0,∞)× (0,2]→ (0,1] which provides δ = η(r,ε) for given r > 0 and ε ∈ (0,2] is called a modulus of uniform convexity of
X . The function η is monotone if it decreases with r for a fixed ε .
In [10], it is noticed that any normed space is a hyperbolic space with the mapping W (x,y,γ) = (1− γ)x+ γy and it is proved that CAT(0)
space is uniformly convex hyperbolic space with the quadratic modulus of uniform convexity η(r,ε) = ε2

8 . Thus, the class of uniformly
convex hyperbolic space is a natural generalization of both uniformly convex Banach space and CAT(0) space.
Remember that a sequence {xn}∞

n=1 in X is said to be 4-convergent to x ∈ X if x is the unique asymptotic center which is denoted by
A(X ,{unk}) = {x} (see [11, 17]) of {unk}

∞

k=1 for every subsequence {unk}
∞

k=1 of {xn}∞

n=1. In this case, we write4-limn→∞ xn = x and call
x as4-limit of {xn}∞

n=1 .

In 2019, Bhutia and Tiwary [3] introduced a new iterative scheme in Banach space which is called J-iterative scheme, as follows:
x1 ∈C,

zn = T [(1−βn)xn +βnT xn],

yn = T [(1−αn)zn +αnT zn],

xn+1 = Tyn, ∀n≥ 1.

They proved that this iterative scheme is faster than the recent schemes such as K-iterative [4], K*-iterative [19, 24], M*-iterative [23] and
M-iterative [7, 17, 25] for contraction mappings. Also, they obtained a result for Suzuki generalized nonexpansive mappings under J-iterative
scheme. In 2021, Izhar-ud-din et al. [5] modified the J-iterative scheme and proved some4-convergence and strong convergence theorems
of the modified J-iterative scheme in CAT(0) space using total asymptotically nonexpansive mappings defined in [1].
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Motivated by these papers, we study the weak w2-stability, data dependence and convergence theorems of the J-iterative scheme in
Kohlenbach hyperbolic space. This paper contains four sections. In Section 2, we establish the weak w2-stability and data dependence
results of the J-iterative scheme for contraction mappings. In Section 3, we prove some4-convergence and strong convergence theorems of
the J-iterative scheme for the class of generalized α-nonexpansive mappings which contains the class of Suzuki generalized nonexpansive
mappings. In Section 4, we also prove some4-convergence and strong convergence theorems for a finite family of total asymptotically
nonexpansive mappings using the J-iterative scheme. Our results generalize the corresponding theorems of Bhutia and Tiwary [3] for
uniformly convex Banach space and the theorems of Izhar-ud-din et al. [5] for CAT(0) space and many others in this direction.

2. The weak w2-stability and data dependence results

We first extend the J-iterative scheme into the hyperbolic space as follows:
x1 ∈C,

zn = T (W (xn,T xn,βn)),

yn = T (W (zn,T zn,αn)),

xn+1 = Tyn, ∀n≥ 1.

(2.1)

Throughout the paper, we presume that C is a nonempty, closed, convex subset of a hyperbolic space X and T : C→C is a contraction
mapping such that the fixed point set F(T ) is nonempty. In this case, it is known that the fixed point of T is unique.
The following theorem is a generalization of Theorem 2.1 in [3] to hyperbolic space.

Theorem 2.1. Let {xn}∞

n=1 be the iterative sequence given by (2.1) with the real sequences {αn}∞

n=1 and {βn}∞

n=1 in [0,1] satisfying ∑
∞
n=1

βn = ∞. Then the sequence {xn}∞

n=1 converges to a fixed point of T strongly.

Proof. Let the unique fixed point be p. From (H1), (2.1) and the contractionness of T , we have

d(xn+1, p) = d(Tyn, p)≤ ad(yn, p), (2.2)

d(yn, p) = d(T (W (zn,T zn,αn)), p)

≤ ad(W (zn,T zn,αn), p)

≤ a [(1−αn)d(zn, p)+αnd(T zn, p)]

≤ a [(1−αn)d(zn, p)+αnad(zn, p)]

= a(1−αn(1−a))d(zn, p)≤ ad(zn, p) (2.3)

and

d(zn, p) = d(T (W (xn,T xn,βn)), p)

≤ ad(W (xn,T xn,βn), p)

≤ a [(1−βn)d(xn, p)+βnd(T xn, p)]

≤ a [(1−βn)d(xn, p)+βnad(xn, p)]

= a(1−βn(1−a))d(xn, p). (2.4)

Combining (2.2), (2.3) and (2.4), we obtain

d(xn+1, p) ≤ a3(1−βn(1−a))d(xn, p)

≤ a3(1−βn(1−a))a3(1−βn−1(1−a))d(xn−1, p)

≤ ·· ·

≤
(

a3
)n

∏
n
k=1(1−βk(1−a))d(x1, p). (2.5)

It is well-known from the classical analysis that 1− x≤ e−x for all x ∈ [0,1]. Taking into account this fact together with (2.5), we have

d(xn+1, p)≤
(

a3
)n

e−(1−a)∑
n
k=1 βk d(x1, p).

Since ∑
∞
n=1 βn = ∞ and a ∈ [0,1), then we get that limn→∞ d(xn+1, p) = 0. Thus we obtain xn→ p ∈ F(T ).

Remark 2.2. If the condition ∑
∞
n=1 βn = ∞ replace with ∑

∞
n=1 αn = ∞ in Theorem 2.1, then we can rewrite (2.5) as

d(xn+1, p)≤
(

a3
)n

∏
n
k=1(1−αk(1−a))d(x1, p).

Therefore, we get the same result.

Timiş [22] has defined the following concept of weak w2-stability by adopting equivalent sequences instead of arbitrary sequences in the
definition of T -stability in [2].
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Definition 2.3. (see [22, Definition 2.4]) Let (X ,d) be a metric space, T be a self mapping on X and {xn}∞

n=1 ⊂ X be an iterative sequence
produced by a general relation of the form {

x1 ∈ X ,

xn+1 = f (T,xn), ∀n≥ 1,

where f (T,xn) denotes all parameters in the given iterative scheme. Suppose that {xn}∞

n=1 converges to p ∈ F(T ) strongly. If for any
equivalent sequence {yn}∞

n=1 ⊂ X of {xn}∞

n=1 ,

lim
n→∞

d (yn+1, f (T,yn)) = 0 =⇒ lim
n→∞

yn = p,

then the iterative sequence {xn}∞

n=1 is said to be weak w2-stable with respect to T .

Next we show that the J-iteration process is weak w2-stable with respect to T.

Theorem 2.4. Suppose that the condition of Theorem 2.1 holds. Then the iteration process (2.1) is weak w2-stable with respect to T.

Proof. Let {xn}∞

n=1 be the iterative sequence given by (2.1) and {pn}∞

n=1 ⊂C be an equivalent sequence of {xn}∞

n=1. Set

εn = d(pn+1,T qn),

where qn = T (W (rn,Trn,αn)) with rn = T (W (pn,T pn,βn)). Suppose that limn→∞ εn = 0. It follows from (H4) and (2.1) that

d(pn+1, p) ≤ d(pn+1,xn+1)+d(xn+1, p)

≤ d(pn+1,T qn)+d(T qn,Tyn)+d(xn+1, p)

≤ εn +ad(yn,qn)+d(xn+1, p),

d(yn,qn) = d(T (W (zn,T zn,αn)),T (W (rn,Trn,αn)))

≤ ad(W (zn,T zn,αn),W (rn,Trn,αn))

≤ a [(1−αn)d(zn,rn)+αnd(T zn,Trn)]

≤ a [(1−αn)d(zn,rn)+αnad(zn,rn)]

= a(1−αn(1−a))d(zn,rn)≤ ad(zn,rn)

and

d(zn,rn) = d(T (W (xn,T xn,βn)),T (W (pn,T pn,βn)))

≤ ad(W (xn,T xn,βn),W (pn,T pn,βn))

≤ a [(1−βn)d(xn, pn)+βnd(T xn,T pn)]

≤ a [(1−βn)d(xn, pn)+βnad(xn, pn)]

= a(1−βn(1−a))d(xn, pn).

These inequalities imply that

d(pn+1, p)≤ εn +a3(1−βn(1−a))d(xn, pn)+d(xn+1, p). (2.6)

From Theorem 2.1, it follows that limn→∞ d(xn+1, p) = 0. Since {xn}∞

n=1 and {pn}∞

n=1 are equivalent sequences, we have limn→∞ d(xn, pn) =
0. Now taking the limit of both sides of (2.6) as n→ ∞ and then using the assumption limn→∞ εn = 0, we have limn→∞ d(pn+1, p) = 0. Thus
{xn}∞

n=1 is weak w2-stable with respect to T.

Next we prove the data dependence result for the J-iterative scheme.

Theorem 2.5. Let T : C→C be an approximate operator of T, that is d(T x,T x) ≤ ε for all x ∈C and for a fixed ε > 0. Suppose that
{xn}∞

n=1 and {xn}∞

n=1 are two iterative sequences defined by (2.1) and
x1 ∈C,

zn = T (W (xn,T xn,βn)),

yn = T (W (zn,T zn,αn)),

xn+1 = T yn, ∀n≥ 1,

(2.7)

respectively, where {αn}∞

n=1 and {βn}∞

n=1 are real sequences in [0,1] satisfying ∑
∞
n=1 βn = ∞. If p = T p and p = T p then we have

d(p, p)≤ (a3 +2a2 +a+1)ε
1−a3 ,

where a ∈ [0,1).
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Proof. It follows from (2.1) and (2.7) that

d(xn+1,xn+1) = d(Tyn,T yn)

≤ d(Tyn,T yn)+d(T yn,T yn)

≤ ad(yn,yn)+ ε,

d(yn,yn) = d(T (W (zn,T zn,αn)),T (W (zn,T zn,αn)))

≤ d(T (W (zn,T zn,αn)),T (W (zn,T zn,αn)))

+d(T (W (zn,T zn,αn)),T (W (zn,T zn,αn)))

≤ ad(W (zn,T zn,αn),W (zn,T zn,αn))+ ε

≤ a
[
(1−αn)d(zn,zn)+αnd(T zn,T zn)

]
+ ε

≤ a(1−αn)d(zn,zn)+aαn
[
d(T zn,T zn)+d(T zn,T zn)

]
+ ε

≤ a(1−αn)d(zn,zn)+aαn[ad(zn,zn)+ ε]+ ε

= a(1−αn(1−a))d(zn,zn)+aαnε + ε

and

d(zn,zn) = d(T (W (xn,T xn,βn)),T (W (xn,T xn,βn)))

≤ d(T (W (xn,T xn,βn)),T (W (xn,T xn,βn)))

+d(T (W (xn,T xn,βn)),T (W (xn,T xn,βn)))

≤ ad(W (xn,T xn,βn),W (xn,T xn,βn))+ ε

≤ a
[
(1−βn)d(xn,xn)+βnd(T xn,T xn)

]
+ ε

≤ a(1−βn)d(xn,xn)+aβn
[
d(T xn,T xn)+d(T xn,T xn)

]
+ ε

≤ a(1−βn)d(xn,xn)+aβn[ad(xn,xn)+ ε]+ ε

= a(1−βn(1−a))d(xn,xn)+aβnε + ε.

Combining these inequalities, we get

d(xn+1,xn+1) ≤ a3(1−αn(1−a))(1−βn(1−a))d(xn,xn)+a3(1−αn(1−a))βnε

+a2(1−αn(1−a))ε +a2
αnε +aε + ε. (2.8)

If a3 ∈ (0,1) then we can find a real number k ∈ (0,1) such that a3 = 1− k. Hence, by the facts of αn, βn ≤ 1, 1−αn(1− a) ≤ 1 and
1−βn(1−a)≤ 1 for all n≥ 1, we can rewrite (2.8) as

d(xn+1,xn+1)≤ (1− k)d(xn,xn)+ k
a3ε +2a2ε +aε + ε

k
.

By Lemma 2.2 in [20], we have

d(p, p)≤ (a3 +2a2 +a+1)ε
1−a3 .

If a3 = 0, from (2.8), we get d(p, p)≤ ε . This completes the proof.

Remark 2.6. In the proof of Theorem 2.5, we can also rewrite (2.8) as

d(xn+1,xn+1)≤ (1− k)d(xn,xn)+ k
a3βnε +a2ε +a2αnε +aε + ε

1−a3 .

If the condition limn→∞ αn = limn→∞ βn = 0 is added for the sequences {αn}∞

n=1 and {βn}∞

n=1 in the hypotheses of Theorem 2.5 then we
obtain that

d(p, p)≤ ε

1−a
.

3. Some convergence results for a generalized α-nonexpansive mapping

The following theorem is a generalization of the results in Section 3 of [3].

Theorem 3.1. Let C be a nonempty, closed, convex subset of a complete, uniformly convex hyperbolic space X with the monotone modulus
of uniform convexity η and T : C→C be a generalized α-nonexpansive mapping. Let {xn}∞

n=1 be the iterative sequence (2.1) with real
sequences {αn}∞

n=1 and {βn}∞

n=1 in [a,b] for some a,b ∈ (0,1).
(a) If F(T ) 6= /0, then limn→∞ d(xn, p) exists for each p ∈ F(T ).
(b) Then, F(T ) 6= /0 if and only if {xn}∞

n=1 is bounded and limn→∞ d(xn,T xn) = 0.
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Proof. (a) Let p ∈ F(T ). By Proposition 3.5 in [13], we have

d(xn+1, p) = d(Tyn, p)≤ d(yn, p), (3.1)

d(yn, p) = d(T (W (zn,T zn,αn)), p)

≤ d(W (zn,T zn,αn), p)

≤ (1−αn)d(zn, p)+αnd(T zn, p)

≤ (1−αn)d(zn, p)+αnd(zn, p) = d(zn, p) (3.2)

and

d(zn, p) = d(T (W (xn,T xn,βn)), p)

≤ d(W (xn,T xn,βn), p)

≤ (1−βn)d(xn, p)+βnd(T xn, p)

≤ (1−βn)d(xn, p)+βnd(xn, p) = d(xn, p). (3.3)

By (3.1), (3.2) and (3.3), we obtain

d(xn+1, p)≤ d(xn, p). (3.4)

Hence the sequence {d(xn, p)}∞

n=1 is non-increasing and bounded below, which implies that

lim
n→∞

d(xn, p) exists for all p ∈ F(T ). (3.5)

(b) Suppose F(T ) 6= /0 and choose p ∈ F(T ). Then, by (3.5), limn→∞ d(xn, p) exists and {xn}∞

n=1 is bounded. Let

lim
n→∞

d(xn, p) = c for some c≥ 0. (3.6)

Noting d(T xn, p)≤ d(xn, p), by (3.6) we have

limsup
n→∞

d(T xn, p)≤ c. (3.7)

Taking the lim sup on both sides of (3.3), we obtain

limsup
n→∞

d(zn, p)≤ c. (3.8)

By (3.1) and (3.2), we get

d(xn+1, p)≤ d(zn, p),

which yields that

c≤ liminf
n→∞

d(zn, p). (3.9)

From the estimates of (3.8) and (3.9), we have that

lim
n→∞

d(zn, p) = c. (3.10)

Thus, from (3.3), (3.6) and (3.10), we obtain

lim
n→∞

d(W (xn,T xn,βn), p) = c. (3.11)

With the help of (3.6), (3.7), (3.11) and Lemma 2.5 in [9], we get

lim
n→∞

d(xn,T xn) = 0. (3.12)

Conversely, we assume that {xn}∞

n=1 is bounded and limn→∞ d(xn,T xn) = 0. Let p ∈ A(C,{xn}) . By Lemma 5.2 in [13], we have

r(T p,{xn}) = limsup
n→∞

d(xn,T p)

≤
(

3+α

1−α

)
limsup

n→∞

d(xn,T xn)+ limsup
n→∞

d(xn, p)

= limsup
n→∞

d(xn, p) = r(p,{xn}).

Hence, we conclude that T p ∈ A(C,{xn}) . Since the sequence {xn}∞

n=1 is bounded, by Proposition 3.3 in [11], A(C,{xn}) consists of a
unique element. Hence, we have T p = p. Thus, F(T ) 6= /0.

We now prove the4-convergence theorem of the iterative sequence {xn}∞

n=1 defined by (2.1) for a generalized α-nonexpansive mapping in
a hyperbolic space.
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Theorem 3.2. Let X ,C,T and {xn}∞

n=1 be the same as in Theorem 3.1 and F(T ) 6= /0. Then the sequence {xn}∞

n=1 is4-convergent to a fixed
point of T .

Proof. By Proposition 3.3 in [11], the sequence {xn}∞

n=1 has a unique asymptotic center A(C,{xn}) = {x}. Let {unk}
∞

k=1 be any subsequence
of {xn}∞

n=1 such that A(C,{unk}) = {u}. Then, by Theorem 3.1, we have that limk→∞ d(unk ,Tunk ) = 0. It follows similarly from the proof of
Theorem 3.1 that u is a fixed point of T . Next, we claim that the fixed point u is the unique asymptotic center for each subsequence {unk}

∞

k=1
of {xn}∞

n=1 . Assume on the contrary that x 6= u. Since limn→∞ d(xn,u) exists, by the uniqueness of asymptotic center, therefore we have

limsup
k→∞

d(unk ,u) < limsup
k→∞

d(unk ,x)

≤ limsup
n→∞

d(xn,x)

< limsup
n→∞

d(xn,u)

= limsup
k→∞

d(unk ,u).

This is a contradiction. Hence x = u. Since {unk}
∞

k=1 is an arbitrary subsequence of {xn}∞

n=1 , therefore A(C,{unk}) = {u} for all
subsequences {unk}

∞

k=1 of {xn}∞

n=1. It is proved that the sequence {xn}∞

n=1 is4-convergent to a fixed point of T .

Next, we prove the strong convergence theorem.

Theorem 3.3. Suppose that all conditions of Theorem 3.2 hold. Then the sequence {xn}∞

n=1 converges to a fixed point of T strongly if and
only if liminfn→∞ d(xn,F(T )) = 0 or limsupn→∞ d(xn,F(T )) = 0, where d(x,F(T )) = inf{d(x, p) : p ∈ F(T )} .

Proof. If the sequence {xn}∞

n=1 converges to p ∈ F(T ) strongly then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn,F(T )) ≤ d(xn, p), we have
liminfn→∞ d(xn,F(T )) = limsupn→∞ d(xn,F(T )) = 0.
Conversely, suppose that liminfn→∞ d(xn,F(T )) = 0 or limsupn→∞ d(xn,F(T )) = 0. It follows from (3.5) that limn→∞ d(xn,F(T )) exists
and hence limn→∞ d(xn,F(T )) = 0. Therefore, there exist a subsequence {xnk}

∞

k=1 of {xn}∞

n=1 and {pk}∞

k=1 in F(T ) such that d(xnk , pk)<
1
2k

for all k ≥ 1. By (3.4), we have

d(xnk+1 , pk+1)≤ d(xnk , pk)<
1
2k ,

which implies that

d(pk+1, pk)≤ d(pk+1,xnk+1)+d(xnk+1 , pk)<
1

2k+1 +
1
2k <

1
2k−1 → 0 as k→ ∞.

Hence, we conclude that {pk}∞

k=1 is a Cauchy sequence in F(T ) and so it converges to some p strongly. By Lemma 3.6 in [13], F(T ) is
closed and so p ∈ F(T ). By (3.5), limn→∞ d(xn, p) exists and hence p is the strong limit of {xn}∞

n=1.

Now we prove the following strong convergence theorem using the concepts of condition (I) which is defined in [14] and compact set.

Theorem 3.4. Under the assumptions of Theorem 3.2, if T satisfies the condition (I) or C is a compact subset of X, then the sequence
{xn}∞

n=1 converges to a fixed point of T strongly.

Proof. If T satisfies the condition (I), then by (3.12), we have

lim
n→∞

f (d(xn,F(T )))≤ lim
n→∞

d(xn,T xn) = 0.

Therefore, we get that limn→∞ f (d(xn,F(T ))) = 0. Since f is a non-decreasing function satisfying f (0) = 0 and f (r)> 0 for all r ∈ (0,∞),
we have limn→∞ d(xn,F(T )) = 0. The rest of the proof follows in lines of Theorem 3.3.
If C is compact subset of X , then there exists a subsequence {xnk}

∞

k=1 of {xn}∞

n=1 such that {xnk}
∞

k=1 converges strongly to p for some p ∈C.
By Lemma 5.2 in [13] and (3.12), we have

lim
k→∞

d(xnk ,T p)≤
(

3+α

1−α

)
lim
k→∞

d(xnk ,T xnk )+ lim
k→∞

d(xnk , p) = 0.

Then, we obtain T p = p, that is, p∈ F(T ). It follows from (3.5) that limn→∞ d(xn, p) exists for every p∈ F(T ) and hence {xn}∞

n=1 converges
to p strongly.

4. Some convergence results for a finite family of total asymptotically nonexpansive mappings

First, we modify the J-iterative scheme for a finite family of mappings into hyperbolic space:
x1 ∈C,

zn = T n
i (W (xn,T n

i xn,βn)),

yn = T n
i (W (zn,T n

i zn,αn)),

xn+1 = T n
i yn, ∀n≥ 1,

(4.1)

where Ti = Ti(modN)(here the function mod N takes values in {1,2, ...,N}) and for each i = 1,2, ...,N,Ti : C→ C is an uniformly Li-

Lipschitzian and ({v(i)n },{µ
(i)
n },ζ (i))-total asymptotically nonexpansive mapping.
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Remark 4.1. In fact, letting

L = max{Li; i = 1,2, ...,N},vn = max{v(i)n ; i = 1,2, ...,N},

µn = max{µ(i)
n ; i = 1,2, ...,N},ζ = max{ζ (i); i = 1,2, ...,N},

then {Ti}N
i=1 is a finite family of uniformly L-Lipschitzian and ({vn} ,{µn} ,ζ )-total asymptotically nonexpansive mappings.

From now on for a finite family {Ti}N
i=1, we denote F =

N⋂
i=1

F(Ti) 6= /0.

We prove some convergence theorems of the iterative sequence {xn}∞

n=1 defined by (4.1) for a finite family of total asymptotically
nonexpansive mappings in a hyperbolic space.

Theorem 4.2. Let C be a nonempty, closed, convex subset of a complete, uniformly convex hyperbolic space X with the monotone modulus
of uniform convexity η . Let {Ti}N

i=1 be a finite family of uniformly L-Lipschitzian and ({vn} ,{µn} ,ζ )-total asymptotically nonexpansive self
mappings on C. If the following conditions are satisfied:
(i) ∑

∞
n=1 vn < ∞ and ∑

∞
n=1 µn < ∞;

(ii) there exist constants a,b ∈ (0,1) such that {αn}∞

n=1 ,{βn}∞

n=1 ⊂ [a,b];
(iii) there exists a constant M > 0 such that ζ (r)≤Mr,∀r ≥ 0;
then
(a) the sequence {xn}∞

n=1 defined by (4.1) is4-convergent to a point in F.
(b) the sequence {xn}∞

n=1 converges to some p ∈ F strongly if and only if liminfn→∞ d(xn,F) = 0 or limsupn→∞ d(xn,F) = 0.

Proof. (a) Let p ∈ F . Since {Ti}N
i=1 is a finite family of total asymptotically nonexpansive mappings, by the condition (iii), we get

d(zn, p) = d(T n
i (W (xn,T n

i xn,βn)), p)

≤ d(W (xn,T n
i xn,βn), p)+ vnζ (d(W (xn,T n

i xn,βn), p))+µn

≤ (1+ vnM)d(W (xn,T n
i xn,βn), p)+µn

≤ (1+ vnM) [(1−βn)d(xn, p)+βnd(T n
i xn, p)]+µn

≤ (1+ vnM) [(1−βn)d(xn, p)+βn{d(xn, p)+ vnζ (d(xn, p))+µn}]+µn

≤ (1+ vnM) [(1+βnvnM)d(xn, p)+βnµn]+µn

≤ (1+ vnM)2d(xn, p)+(2+ vnM)µn. (4.2)

Similarly, we obtain

d(yn, p) = d(T n
i (W (zn,T n

i zn,αn)), p)

≤ (1+ vnM)d(W (zn,T n
i zn,αn), p)+µn

≤ (1+ vnM)2d(zn, p)+(2+ vnM)µn. (4.3)

Substituting (4.2) into (4.3), we have

d(yn, p)≤ (1+ vnM)4d(xn, p)+(2+ vnM)(1+(1+ vnM)2)µn. (4.4)

Also, we obtain

d(xn+1, p) = d(T n
i yn, p)≤ d(yn, p)+ vnζ (d(yn, p))+µn

≤ (1+ vnM)d(yn, p)+µn. (4.5)

Combining (4.4) and (4.5), we have

d(xn+1, p)≤ (1+σn)d(xn, p)+ξn, ∀n≥ 1 and p ∈ F(T ),

where σn = 5(vnM)+10(vnM)2 +10(vnM)3 +5(vnM)4 +(vnM)5 and ξn = 1+(1+ vnM)(2+ vnM)(1+(1+ vnM)2). By virtue of the
condition (i), we get

∞

∑
n=1

σn < ∞ and
∞

∑
n=1

ξn < ∞.

By Lemma 2 in [12],

lim
n→∞

d(xn, p) exists for each p ∈ F. (4.6)

We may assume that

lim
n→∞

d(xn, p) = c≥ 0. (4.7)

Taking lim sup on both sides of the inequality (4.2), we have

limsup
n→∞

d(zn, p)≤ c. (4.8)
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Since

d(T n
i zn, p) ≤ d(zn, p)+ vnζ (d(zn, p))+µn

≤ (1+ vnM)d(zn, p)+µn, ∀n≥ 1,

we have

limsup
n→∞

d(T n
i zn, p)≤ c. (4.9)

Similarly, we get

limsup
n→∞

d(T n
i xn, p)≤ c. (4.10)

Now, we can write

d(xn+1, p) ≤ (1+ vnM)d(yn, p)+µn

≤ (1+ vnM)
[
(1+ vnM)2d(zn, p)+(2+ vnM)µn

]
+µn

= (1+ vnM)3d(zn, p)+ [1+(1+ vnM)(2+ vnM)]µn.

Taking lim inf on both sides of the above inequality, we have that liminfn→∞ d(zn, p)≥ c. Combining with (4.8), it yields that

lim
n→∞

d(zn, p) = c. (4.11)

On the other hand, since

lim
n→∞

d(zn, p) ≤ lim
n→∞

d(T n
i (W (xn,T n

i xn,βn)), p)

≤ lim
n→∞

[(1+ vnM)d(W (xn,T n
i xn,βn), p)+µn]

= lim
n→∞

d(W (xn,T n
i xn,βn), p)

≤ lim
n→∞

[(1−βn)d(xn, p)+βnd(T n
i xn, p)]

≤ lim
n→∞

[(1+βnvnM)d(xn, p)+βnµn]

= lim
n→∞

d(xn, p),

we have

lim
n→∞

d(W (xn,T n
i xn,βn), p) = c. (4.12)

By Lemma 2.5 in [9] and (4.7), (4.10), (4.12), we get

lim
n→∞

d(xn,T n
i xn) = 0. (4.13)

From (4.4) and (4.5), we conclude that

limsup
n→∞

d(yn, p)≤ c and liminf
n→∞

d(yn, p)≥ c,

respectively. Hence, limn→∞ d(yn, p) = c. Likewise, since

lim
n→∞

d(yn, p) ≤ lim
n→∞

d(T n
i (W (zn,T n

i zn,αn)), p)

≤ lim
n→∞

[(1+ vnM)d(W (zn,T n
i zn,αn), p)+µn]

= lim
n→∞

d(W (zn,T n
i zn,αn), p)

≤ lim
n→∞

[(1−αn)d(zn, p)+αnd(T n
i zn, p)]

≤ lim
n→∞

[(1+αnvnM)d(zn, p)+αnµn]

= lim
n→∞

d(zn, p),

we have

lim
n→∞

d(W (zn,T n
i zn,αn), p) = c. (4.14)

Again, by Lemma 2.5 in [9] and (4.9), (4.11), (4.14), we get

lim
n→∞

d(zn,T n
i zn) = 0. (4.15)
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By (4.13) and (4.15), we have

d(T n
i xn,T n

i zn) ≤ d(xn,zn)+ vnζ (d(xn,zn))+µn

≤ (1+ vnM)d(xn,T n
i (W (xn,T n

i xn,βn)))+µn

≤ (1+ vnM) [d(xn,T n
i xn)+d(T n

i xn,T n
i (W (xn,T n

i xn,βn)))]+µn

≤ (1+ vnM)d(xn,T n
i xn)+(1+ vnM)[d(xn,W (xn,T n

i xn,βn))

+vnζ (d(xn,W (xn,T n
i xn,βn)))+µn]+µn

≤ (1+ vnM)d(xn,T n
i xn)+(1+ vnM)2d(xn,W (xn,T n

i xn,βn))+(2+ vnM)µn

≤ (1+ vnM)d(xn,T n
i xn)+(1+ vnM)2

βnd(xn,T n
i xn)+(2+ vnM)µn

→ 0 as n→ ∞ (4.16)

and

d(T n
i zn,T n

i yn) ≤ d(zn,yn)+ vnζ (d(zn,yn))+µn

≤ d(zn,yn)+ vnζ (d(zn,yn))+µn

≤ (1+ vnM)d(zn,T n
i (W (zn,T n

i zn,αn)))+µn

≤ (1+ vnM) [d(zn,T n
i zn)+d(T n

i zn,T n
i (W (zn,T n

i zn,αn)))]+µn

≤ (1+ vnM)d(zn,T n
i zn)+(1+ vnM)[d(zn,W (zn,T n

i zn,αn))

+vnζ (d(xn,W (zn,T n
i zn,αn)))+µn]+µn

≤ (1+ vnM)d(zn,T n
i zn)+(1+ vnM)2d(zn,W (zn,T n

i zn,αn))+(2+ vnM)µn

≤ (1+ vnM)d(zn,T n
i zn)+(1+ vnM)2

αnd(zn,T n
i zn)+(2+ vnM)µn

→ 0 as n→ ∞, (4.17)

respectively. From (4.13), (4.16) and (4.17), we get

d(xn,xn+1) = d(xn,T n
i yn)

≤ d(xn,T n
i xn)+d(T n

i xn,T n
i zn)+d(T n

i zn,T n
i yn)

→ 0 as n→ ∞. (4.18)

Since {Ti}N
i=1 is a finite family of uniformly L-Lipschitzian, we obtain

d(xn,T xn) ≤ d(xn,xn+1)+d(xn+1,T n+1
i xn+1)+d(T n+1

i xn+1,T n+1
i xn)+d(T n+1

i xn,Tixn)

≤ (1+L)d(xn,xn+1)+d(xn+1,T n+1
i xn+1)+Ld(T n

i xn,xn).

Hence, (4.13) and (4.18) imply that

lim
n→∞

d(xn,Tixn) = 0 for each i = 1,2, ...,N. (4.19)

The rest of proof follows the pattern of Theorem 3.4 in [6].
(b) The necessity of the conditions is obvious. Thus, we only prove the sufficiency. It follows from (4.6) that limn→∞ d(xn,F) exists.
Moreover, liminfn→∞ d(xn,F) = 0 or limsupn→∞ d(xn,F) = 0 implies that limn→∞ d(xn,F) = 0. The rest of the proof is similar to Theorem
4 in [26] and therefore is omitted.

By using the concept of semi-compactness which is defined in [18] and the condition (A) which is introduced by Khan et al. [9], we prove
the following strong convergence theorem.

Theorem 4.3. Under the assumptions of Theorem 4.2, if one of the mappings in the family {Ti}N
i=1 is semi-compact or the family {Ti}N

i=1
satisfies the condition (A), then the sequence {xn}∞

n=1 converges to a point in F strongly.

Proof. First, we assume that the mapping Tk in the family {Ti}N
i=1 is semi-compact. By (4.19) and semi-compactness of Tk, there exists

a subsequence {xnk}
∞

k=1 ⊂ {xn}∞

n=1 such that {xnk}
∞

k=1 converges to some point p ∈C strongly. Moreover, by the uniform continuity of
{Ti}N

i=1, we have

d(p,Ti p) = lim
k→∞

d(xnk ,Tixnk ) = 0 for each i = 1,2, ...,N.

This satisfies that p ∈ F . It follows from (4.6) that limn→∞ d(xn, p) exists and hence limn→∞ d(xn, p) = 0. As a result, {xn}∞

n=1 converges
strongly to a point p in F .
Second, we can suppose that the family {Ti}N

i=1 satisfies the condition (A). Then we have that

max{d(x,Tix) : i = 1,2, ...N} ≥ f (d(x,F)) for all x ∈C (4.20)

holds. Thus, from (4.19) and (4.20), we obtain limn→∞ f (d(xn,F)) = 0. Since f is a non-decreasing mapping with f (0) = 0 and
f (r)> 0 ∀r > 0, we have limn→∞ d(xn,F) = 0. The conclusion now can be seen from Theorem 4.2.

Remark 4.4. Theorems 4.2, 4.3 generalize the results of Izhar-ud-din et al. [5] in two ways: (i) from a total asymptotically nonexpansive
mapping to a finite family of total asymptotically nonexpansive mappings, (ii) from a CAT(0) space to a uniformly convex hyperbolic space.
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5. Conclusion

In the above sections, we have modified the J-iterative scheme into the hyperbolic space and established the weak w2-stability, data
dependence results for contraction mappings and derived some convergence results for generalized α-nonexpansive mappings using this
iterative scheme. Also, we have extended the J-iterative scheme for a finite family of total asymptotically nonexpansive mappings in
hyperbolic space and have presented some convergence theorems of this iterative scheme.
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