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Abstract

In this paper, we investigate the boundedness and uniformly asymptotically stability of
the solutions to a certain third order non-autonomous differential equations with bounded
delay. By constructing a Lyapunov functional, sufficient conditions for the stability and
boundedness of solutions for equations considered are obtained. We used an example to
demonstrate the feasibility of our results. The results essentially improve, include, and
complement the results in the literature.

1. Introduction

For years, researchers have focused on the qualitative behavior of differential equation solutions, such as stability, asymptotic stability,
uniform asymptotic stability, boundedness, and uniform boundedness. In the application areas of mathematics such as physics, chemistry,
biology, engineering and dynamical systems, many events are modeled with differential equations [1, 2]. The qualitative behavior of the
differential equations corresponding to these models is important and finds concrete responses in the application areas [3]-[5]. Also, the rapid
expansion of differential equations with lag arguments in recent years and now covers not only many physics and technology questions, but
also certain areas of economics and biological sciences [6, 7]. Therefore, the qualitative behavior of the solutions of differential equations
with delay arguments remains up-to-date and attracts the attention of many researchers.
The fact that the trajectory curve of a solution starting in a region does not leave this region is known as the stability of the solution [8]. A
great advantage of the method known as Lyapunov’s second method for determining the stability behavior of solutions of linear and nonlinear
systems is to examine the stability of the solutions without any prior knowledge of the solutions [9]. The simplest form of third-order
differential equations is of the form

x′′′+ax′′+bx′+ cx = 0 (1.1)

where a,b,c are constants. In this case it is well known that all solutions tend to the trivial solution, as t→∞ provided that the Routh-Hurwitz
criteria a > 0,c > 0,ab− c > 0 are satisfied [10]. In [10], author obtains sufficient conditions for the asymptotic stability of the trivial
solution of differential equations of the form

x′′′+ f (x,x′)x′′+g(x′)+h(x) = 0 (1.2)

considering the criteria Routh-Hurwitz for equation (1.1).
In [11]-[19], the authors investigated the behavior of solutions of differential equations such as asymptotic stability, global asymptotic
stability, global stability, boundedness, uniform boundedness in different third-order nonlinear models using the Lyapunov method.
In [20], the author constructed some new Lyapunov functions to examine the asymptotic stability and boundedness of the solutions of
non-linear delay differential equation described by

x′′′+a(t)x′′+b(t)x′+ c(t) f (x(t− r)) = p(t) (1.3)
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with p≡ 0 and p 6= 0, respectively. In [21], the authors established sufficient conditions for the asymptotic stability and boundedness of
solutions of a certain third order nonlinear non-autonomous delay differential equation described by

[g(x(t))x′(t)]′′+a(t)x′′(t)+b(t)x′(t))+ c(t) f (x(t− r)) = p(t) (1.4)

with p(t)≡ 0 and p(t) 6= 0, respectively. In recent years [22]-[33], the authors obtained remarkable results by using the Lyapunov method of
the behavior of the solutions of differential equations with or without delay in different third-order nonlinear models. For detailed information
on the behavior of solutions of third order lagged or undelayed differential equations, references and their references can be consulted.
Inspired by the studies above, especially by expanding the scope of [21], that is, the behavior of the solutions of a new equation is examined
by taking the delay variable and the coefficients as the functions of the dependent variable.
In this paper, we investigate the uniform asymtotic stability of the solutions for p(t,x,x′,x′′)≡ 0 and additionally boundedness of solutions
to the third order nonlinear differential equation with bounded delay

[P(x(t))x′(t)]′′+a(t)(Q(x(t))x′(t))′+b(t)(R(x(t))x′(t))+ c(t) f (x(t− r(t))) = p(t,x,x′,x′′). (1.5)

For convenience, we let

θ1(t) =
P′(x(t))
P2(x(t))

x′(t),

θ2(t) =
Q′(x(t))P(x(t))−Q(x(t))P′(x(t))

P2(x(t))
x′(t),

and

θ3(t) =
R′(x(t))P(x(t))−R(x(t))P′(x(t))

P2(x(t))
x′(t).

We write (1.5) in the system form

x′ =
1

P(x)
y,

y′ = z,

z′ = −a(t)θ2(t)y−
a(t)Q(x)

P(x)
z− b(t)R(x(t))y

P(x(t))
− c(t) f (x(t))+ c(t)

t∫
t−r(t)

1
P(x)

f ′(x)ydη + p(t,x,y,z) (1.6)

where r is a bounded delay, 0 ≤ r(t) ≤ Ω, r′(t) ≤ λ , 0 < λ < 1, λ and Ω some positive constants, Ω which will be determined late, the
functions a,b,c are continuously differentiable functions and the functions P,Q,R, f , p are continuous functions depending only on the
arguments shown. Also derivatives P′(x),P′′(x),Q′(x),R′(x) and f ′(x) exist and are continuous, f (0) = 0. The continuity of the functions
a,b,c,P,Q,R, f and p guarantees the existence of the solutions of equation (1.5). If the right hand side of the system (1.6) satisfies a Lipchitz
condition in x(t),y(t),z(t) and x(t− r(t)) and exists of solutions of system (1.6) , then it is unique solution of system (1.6).
Assume that there are positive constants a0,b0,c0, p0,q0,r0,a1,b1,c1, , p1,q1, and r1 such that the following assumptions hold:

(A1) 0 < a0 ≤ a(t)≤ a1, 0 < b0 ≤ b(t)≤ b1 and 0 < c0 ≤ c(t)≤ c1 for all t ≥ 0;
(A2) 0 < p0 ≤ P(x)≤ p1, 0 < q0 ≤ Q(x)≤ q1, and 0 < r0 ≤ R(x)≤ r1 for x ∈ R;
(A3) f (x)

x ≥ δ0 > 0 for x 6= 0 and | f ′(x)| ≤ δ1 for all x; and
(A4) |p(t,x,y,z)| ≤ |e(t)| .

Using the Lyapunov’s functional approach, we establish some new results on the uniformly asymtotically stability and boundedness of the
solutions, which are motivated by the results of references. Our results differ from those existing in the literature (see, references and the
references therein). By this way, we mean that this work offers to the literature on the subject and may be significant for researchers who
study the qualitative behaviour of solutions of higher-order functional differential equations. The uniqueness and originality of the present
paper can be checked based on all of the above facts.

2. Preliminaries

We also consider the functional differential equation
.
x = f (t,xt), xt(θ) = x(t +θ), − r ≤ θ ≤ 0, t ≥ 0 (2.1)

where f : I×CH →Rn is a continuous mapping, I = [0,∞), f (t,0) = 0,CH := {φ ∈ (C[−r,0],Rn) : ‖φ‖ ≤H}, and for H1 < H, there exists
L(H1)> 0, with | f (t,φ)|< L(H1) when ‖φ‖< H1.

Lemma 2.1. ([5]) Let V (t,φ) : I×CH → R be a continuous functional satisfying a local Lipchitz condition, V (t,0) = 0 , and wedges Wi
such that :

(i) W1(‖φ‖)≤V (t,φ)≤W2(‖φ‖);
(ii) V ′(3)(t,φ)≤−W3(‖φ‖).

Then, the zero solution of equation (2.1) is uniformly asymptotically stable.
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3. The Main Results

Theorem 3.1. In addition to the basic assumptions imposed on the functions a,b,c,P,Q,R and e suppose that there are positive constants
δ0,δ1,η1 and η2 such that the following conditions are satisfied:

(i) p1δ1
r0

< d < a0q0;
(ii) c(t)≤ b(t) and b′(t)≤ c′(t)≤ 0 for t ∈ [0,∞);

(iii) 1
2 da′(t)Q(x)−b0(dr0− p1δ1)≤−ε < 0;

(iv)
∞∫
−∞

(|P′(u)|+ |Q′(u)|+ |R′(u)|)du≤ η1 < ∞; and

(v)
∞∫
0
|e(s)|ds≤ η2 < ∞.

Then any solution x(t) equation (1.5) are bounded and trival solution of equation (1.5) for p(t,x,x′,x′′) ≡ 0 is uniformly asymtotically
stability, if

Ω <
2p0

p1c1δ1
min

{
ε(1−λ )p0

p1 (p0 +d(2−λ ))
, (a0q0−d)

}
. (3.1)

Proof. To prove the theorem, we define a Lyapunov functional

W =W (t,x,y,z) = exp
(
−1
η

∫ t

0
γ(s)ds

)
V, (3.2)

where

γ(t) = |θ1(t)|+ |θ2(t)|+ |θ3(t)| , (3.3)

and

V =V (t,x,y,z) = dc(t)F(x)+ c(t) f (x)y+
b(t)R(x)

2P(x)
y2 +

1
2

z2 +
1
2

da(t)Q(x)
P2(x)

y2 +
d

P(x)
yz+σ

∫ 0

−r(t)

∫ t

t+s
y2(γ)dγds (3.4)

with F(x) =
∫ x

0 f (s)ds, and η are positive constants that will be determined at a later point of the proof. We can write V as

V = dc(t)F(x)+M(x,y)− c2(t)P(x) f 2(x)
2b(t)R(x)

+
1
2

z2 +
d

P(x)
yz+

da(t)Q(x)
2P2(x)

y2 +σ

∫ 0

−r(t)

∫ t

t+s
y2(γ)dγds

where

M(x,y) =
b(t)R(x)

2P(x)

{
y+

c(t) f (x)P(x)
b(t)R(x)

}2
≥ 0.

Note that

1
2

f 2(x) =
∫ x

0
f (u) f ′(u)du≤

∫ x

0
f (u)δ1du

and

σ

∫ 0

−r(t)

∫ t

t+s
y2(γ)dγds≥ 0.

From conditions (A1)–(A3) and (ii), we have

−c2(t)P(x) f 2(x)
2b(t)R(x)

≥− c(t)
b(t)

c(t)p1

r0

f 2(x)
2
≥−c(t)p1

r0
δ1

∫ x

0
f (u)du.

Hence,

V ≥ dc(t)
∫ x

0

(
1− p1δ1

dr0

)
f (u)du+

1
2

(
z+

d
P(x)

y
)2

+
d(a0q0−d)

2P2(x)
y2 ≥ δ4δ0

2
x2 +

1
2

(
z+

d
P(x)

y
)2

+
d(a0q0−d)

2P2(x)
y2,

where δ4 = dc0

(
1− p1δ1

dr0

)
> 0 by (i). So we can find a constant d0 > 0 small enough, such that

V ≥ d0(x2 + y2 + z2). (3.5)
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It is clear that V (t,x,y,z)≥ 0 and V (t,0,0,0) = 0 if and only if x2 = y2 = z2 = 0. Now contidions (A2) and (iv) imply

t∫
0

γ(s)ds ≤ (1+ r1 +q1)
∫

α2(t)

α1(t)

|P′(u)|
P2(u)

du+
∫

α2(t)

α1(t)

|R′(u)|+ |Q′(u)|
P2(u)

du

≤ (1+ r1 +q1)

p2
0

∫
α2(t)

α1(t)
|P′(u)|du+

1
p0

∫
α2(t)

α1(t)
(|R′(u)|+ |Q′(u)|)du

≤ N < ∞, (3.6)

where α1(t) = min{x(0),x(t)} and α2(t) = max{x(0),x(t)}. Hence,

W ≥ D0(x2 + y2 + z2) (3.7)

for some D0 > 0. Also, from (A1)–(A3), it is not difficult to see that

W ≤ D1(x2 + y2 + z2), (3.8)

for all x, y, and z.
From (3.7), and (3.8), it is easy to see that W (t,x,y,z) = 0 if and only if x2 +y2 + z2 = 0 for all t ≥ 0, and W (t,x,y,z)> 0 if x2 +y2 + z2 6= 0.
Now, we illustrate that

.
W is a negative definite function. The derivative of the function V along any solution (x(t),y(t),z(t)) of system (1.6),

with respect to t is after rearranging

d
dt

V (t) =

[
da′(t)Q(x)+2c(t)P(x) f ′(x)−2db(t)R(x)

2P2(x)

]
y2

+V1(t)+V2(t)+
1

P(x)
(d−a(t)Q(x))z2 +σr(t)y2(t)−σ(1− r′(t))

∫ t

t−r(t)
y2(η)dη

+c(t)
(

d
P(x)

y+ z
) t∫

t−r(t)

1
P(x)

f ′(x)ydη +

(
d

P(x)
y+ z

)
p(t,x,y,z)

where

V1 = dc′(t)F(x)+ c′(t)y f (x)+
b′(t)R(x)

2P(x)
y2

V2 = −dθ1(t)
(

yz+
a(t)Q(x)

2P(x)
y2
)
+

b(t)
2

θ3(t)y2−a(t)θ2(t)
(

yz+
d

2P(x)
y2
)
.

By regarding conditions (A2), (A3), and (ii), we have the following

da′(t)Q(x)+2c(t)P(x) f ′(x)−2db(t)R(x)≤ da′(t)Q(x)+2c(t)P(x)δ1−2db(t)r0 ≤ da′(t)Q(x)+2b(t)(p1δ1−dr0).

From (A1), (A2), (i) and (iii), and using the inequality 2ab≤ a2 +b2, we can rearrange

V ′(t) ≤ V1(t)+V2(t)−

(
ε

p2
1
−σr(t)− dδ1c1r(t)

2p2
0

)
y2−

(
1
p1

(a0q0−d)− δ1c1r(t)
2p0

)
z2

+

(
δ1c1 p0 +dδ1c1

2p2
0

−σ(1−λ )

) t∫
t−r(t)

y2(η)dη +

(
d

P(x)
|y|+ |z|

)
|p(t,x,y,z)| (3.9)

By choosing σ = δ1c1 p0+dδ1c1
2p2

0(1−λ )
, we have

V ′(t) ≤ −

(
ε

p2
1
− δ1c1 p0 +dδ1c1(2−λ )

2p2
0(1−λ )

Ω

)
y2−

(
1
p1

(a0q0−d)− δ1c1

2p0
Ω

)
z2

+V1(t)+V2(t)+
(

d
P(x)

|y|+ |z|
)
|p(t,x,y,z)| . (3.10)

We claim that V1(t)≤ 0. To show this we distinguish two cases. If c′(t) = 0, then V1 =
b′(t)R(x)

2P(x) y2 ≤ 0.

If c′(t)< 0, then we can write

V1(t) = dc′(t)
[

F(x)+
1
d

y f (x)+
b′(t)R(x)

2dP(x)c′(t)
y2
]

= dc′(t)

[
F(x)+

b′(t)R(x)
2dP(x)c′(t)

{
y+

c′(t)P(x) f (x)
b′(t)R(x)

}2
− c′(t)P(x) f 2(x)

2db′(t)R(x)

]
,
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from which condition (ii) implies

V1(t) ≤ dc′(t)
∫ x

0

(
1− P(x) f ′(u)

dR(x)

)
f (u)du

≤ dc′(t)
∫ x

0

(
1− p1δ1

dr0

)
f (u)du

≤ c′(t)
δ4

c0
F(x)≤ 0.

Combining the two cases, we have V1(t)≤ 0.
Using the inequality 2ab≤ a2 +b2, we obtain the estimate

V2 ≤
[

d
2
|θ1(t)|

(
1+

a1q1

p0

)
+

a1

2
|θ2(t)|

(
1+

d
p0

)]
(y2 + z2)+

b1

2
|θ3(t)|y2

≤ k1(|θ1(t)|+ |θ2(t)|+ |θ3(t)|)(y2 + z2),

where k1 = max
{

d
2

(
1+ a1q1

p0

)
, a1

2

(
1+ d

p0

)
, b1

2

}
. Using these estimates for V1 and V2 in (3.10), we obtain

V ′(t)≤−D2

(
y2 + z2

)
+ k1(|θ1(t)|+ |θ2(t)|+ |θ3(t)|)(y2 + z2)+

(
d

P(x)
y+ z

)
p(t,x,y,z) (3.11)

where D2 = min
{

ε

p2
1
− δ1c1 p0+dδ1c1(2−λ )

2p2
0(1−λ )

Ω, 1
p1
(a0q0−d)− δ1c1

2p0
Ω

}
.

From (A4), (3.5), (3.6), (3.7), (3.11) and the Cauchy Schwartz inequality, we get

.
W (2) =

(
.

V (2)−
1
η

γ(t)V
)

exp
(
−1
η

∫ t

0
γ(s)ds

)
≤

(
−D2

(
y2 + z2

)
+

(
d

P(x)
y+ z

)
p(t,x,y,z)

)
exp
(
−1
η

∫ t

0
γ(s)ds

)
≤

(
d
p0
|y|+ |z|

)
|p(t,x,y,z)|

≤ D3

(
2+ y2 + z2

)
|e(t)|

≤ D3

(
2+

1
D0

W
)
|e(t)|

≤ 2D3 |e(t)|+
D3

D0
W |e(t)| , (3.12)

where D3 = max
{

d
p0
,1
}
, η = d0

k1
. Using the Gronwall inequality and the condition (v) and integrating inequalty (3.12) from 0 to t, we have

W ≤ W (0,x(0),y(0),z(0))+2D3η2 +
D3

D0

∫ t

0
W (s,x(s),y(s),z(s)) |e(s)|ds

≤ (W (0,x(0),y(0),z(0))+2D3η2)exp
(

D3

D0

∫ t

0
|e(s)|ds

)
≤ (W (0,x(0),y(0),z(0))+2D3η2)exp

(
D3

D0
η2

)
= K1 < ∞ (3.13)

Because of inequalities (3.7) and (3.13), we write

(
x2 + y2 + z2

)
≤ 1

D0
W ≤ K2, (3.14)

where K2 =
K1
D0

. Clearly (3.14) imlies that

|x(t)| ≤
√

K2, |y(t)| ≤
√

K2, |z(t)| ≤
√

K2 for all t ≥ 0.

That is

|x(t)| ≤
√

K2,
∣∣x′(t)∣∣≤√K2,

∣∣x′′(t)∣∣≤√K2 for all t ≥ 0 (3.15)

which completes the proof boundedness solutions of equation (1.5).
Now we show that the solutions of equation (1.5) for p(t,x,x′,x′′)≡ 0 is uniformly asymtotically stability. The inequality (3.12) can write as

.
W (2) =

(
.

V (2)−
1
η

γ(t)V
)

e−
1
η

∫ t
0 γ(s)ds

≤ −D2

(
y2 + z2

)
e−

1
η

∫ t
0 γ(s)ds

≤ −µ(y2 + z2),

where µ =D2e−
N
η . It can also be observed that the unique solution of system (1.6) for which

.
W(2)(t,x,y,z,w) = 0 is the solution x= y= z= 0.

Due to the the above discussion, the trival solution of the equation system (1.6) is uniformly asymptotically stable.
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Example 3.2. We consider the following third order non-autonomous nonlinear differential equation with delay[(
xcosx

7(1+ x6)
+2
)

x′
]′′

+

(
e−t cos t

4
+

1
2

)((
x2 sinx

7(1+ x6)
+3
)

x′
)′

+

(
1

2+ t6 +1
)(

x
2(e2x + e−2x)

+
21
10

)
x′

+
1

50

(
1

3+ t6 +
1
4

)(
x(t− 1

et +100
)+

x(t− 1
et+100 )

1+ x6(t− 1
et+100 )

)
(3.16)

=
2sin t

t2 +1+ x2 +(x′x′′)2

where P(x) = xcosx
7(1+x6)

+ 2, Q(x) = x2 sinx
7(1+x6)

+ 3, R(x) = x
2(e2x+e−2x)

+ 21
10 , f (x) = x+ x

1+x6 , r(t) = 1
et+100 , a(t) = e−t cos t

4 + 1
2 ,

b(t) = 1
2+t6 +1, c(t) = 1

3+t6 +
1
4 , p(t) = 2sin t

t2+1+x2+(x′x′′)2 .

It is easy to see that p0 = 1, p1 = 3, q0 = 1, q1 = 3, r0 = 2, r1 =
7
3 , a0 = 0.25, a1 = 0.75, b0 = 1, b1 = 1.5, c0 = 0.25, c1 =

7
12

δ0 =
1

50
≤ f (x)

x
=

1
50

(
1+

1
1+ x2

)
for x 6= 0, | f ′(x)| ≤ 1

25
= δ1,

p1δ1

r0
=

3
50

< d <
1
4
= a0q0,

and

1
2

da′(t)Q(x)−b0(dr0− p1δ1)≤−
d
8
+

3
25

< 0 for d =
1
10

.

Also we have ∫ +∞

0
|a′(t)|dt =

∫ +∞

0

∣∣∣∣−e−t cos t− e−t sin t
4

∣∣∣∣dt ≤
∫ +∞

0

2
4

e−tdt =
1
2
,

∫ +∞

−∞

|P′(u)|du =
1
7

∫ +∞

−∞

∣∣∣∣ (cosu−usinu)(1+u6)−6u6 cosu
(1+u6)2

∣∣∣∣du

=
1
7

∫ +∞

−∞

∣∣∣∣ cosu
1+u6 −

usinu
1+u6 −

6u6 cosu
(1+u6)2

∣∣∣∣du

≤ 1
7

∫ +∞

−∞

[
7

1+u6 +
u2

1+u6

]
du

=
5
7

π,

∫ +∞

−∞

|Q′(u)|du =
1
7

∫ +∞

−∞

∣∣∣∣ (2usinu+u2 cosu)(1+u6)−6u7 sinu
(1+u6)2

∣∣∣∣du

=
1
7

∫ +∞

−∞

∣∣∣∣2usinu
1+u6 +

u2 cosu
1+u6 −

6u7 sinu
(1+u6)2

∣∣∣∣du

≤ 1
7

∫ +∞

−∞

[
3u2

1+u6 +
6u8

(1+u6)2

]
du

=
2
7

π,

∫ +∞

−∞

|R′(u)|du =
1
2

∫ +∞

−∞

∣∣∣∣ (e2u + e−2u)−2u(e2u− e−2u)

(e2u + e−2u)2

∣∣∣∣du

=
1
2

∫ +∞

0

[
1

e2u + e−2u +2u
e2u− e−2u

(e2u + e−2u)2

]
du+

1
2

∫ 0

−∞

[
1

e2u + e−2u +2u
e2u− e−2u

(e2u + e−2u)2

]
du

=
π

4
,

and ∫ +∞

0
|p(t,x,x′,x′′)|dt ≤

∫ +∞

0
| 2sin t
t2 +1+ x2 +(x′x′′)2 |dt

≤
∫ +∞

0

∣∣∣∣ 2sin t
t2 +1

∣∣∣∣dt

≤
∫ +∞

0

2
t2 +1

dt

= π

As a result, all of Theorem assumptions hold, indicating that any solution x(t) equation (3.16) are bounded and trival solution of equation
(3.16) for p(t,x,x′,x′′)≡ 0 is uniformly asymtotically stability.
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4. Conclusion

For the asymptotic stability of solutions of a class of nonlinear differential equation systems with bounded delay is obtained new sufficient
conditions using a theorem presented in this paper. Since the special cases of our equation are the studies done in the literature, our results
include the present results. The effectiveness of the theorem is demonstrated using an example.
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[7] L. È. Èl’sgol’ts, S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Translated from the

Russian by John L. Casti. Mathematics in Science and Engineering, Vol. 105. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers],
New York, London, 1973.

[8] N. N. Krasovskii, Stability of Motion, Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay, Translated by J. L.
Brenner Stanford University Press, Stanford, Calif. 1963.

[9] A. M. Lyapunov, The General Problem of the Stability of Motion, Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian
original and edited by A. T. Fuller. Taylor & Francis, Ltd., London, 1992.

[10] J. O. C. Ezeilo, On the stability of solutions of certain differential equations of the third order, Quart. J. Math. Oxford Ser., 11(2) (1960), 64-69.
[11] K. Swick, On the boundedness and the stability of solutions of some nonautonomous differential equations of the third order, J. London Math. Soc., 44

(1969), 347-359.
[12] K. E. Swick, Asymptotic behavior of the solutions of certain third order differential equations, SIAM J. Appl. Math. 19 (1970), 96-102.
[13] T. Hara, On the asymptotic behavior of solutions of certain of certain third order ordinary differential equations, Proc. Japan Acad., 47 (1971), 903-908.
[14] H. O. Tejumola, A note on the boundedness and the stability of solutions of certain third-order differential equations, Ann. Mat. Pura Appl., 92(4)

(1972), 65-75.
[15] T. Hara, On the asymptotic behavior of the solutions of some third and fourth order non-autonomous differential equations, Publ. Res. Inst. Math. Sci.,

9(74) (1973), 649-673.
[16] T. Hara, On the asymptotic behavior of solutions of certain non-autonomous differential equations, Osaka J. Math., 12 (1975), 267-282.
[17] T. Hara, On the uniform ultimate boundedness of the solutions of certain third order differential equations, J. Math. Anal. Appl., 80 (1981), 533-544.
[18] Y. F. Zhu, On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system, Ann. Differential

Equations, 8(2) (1992), 249-259.
[19] C. Qian, On global stability of third-order nonlinear differential equations, Nonlinear Anal. 42 (2000), 651-661.
[20] M. O. Omeike, Stability and boundedness of solutions of some non-autonomous delay differential equation of the third order, An. Stiint. Univ. Al. I.

Cuza Iasi. Mat. (NS), 55(1) (2009), 49-58.
[21] M. Remili, L. D. Oudjedi, Stability and boundedness of the solutions of nonautonomous third order differential equations with delay, Acta Univ. Palack.

Olomuc. Fac. Rerum Natur. Math., 53 (2014), 139-147.
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