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Abstract: The effects of the studies performed for the development of cells, which are the fundamental 

components of electrochemical battery units are felt in many different areas such as electric rail 

transportation systems, battery-based energy storage systems, battery units in electric vehicles, and 

energy storage units for individual use. For this goal, studies conducted by other searchers in the 

similar field have been investigated. In this paper, optimization techniques are used to guess the 

model parameters with major righteousness using the electrical equivalent circuit model of the 

battery. The discharge processes of the 18650 cylindrical type 2000 mAh Li-NCM battery cell with 

1 A pulsed constant current at 25 ºC have been investigated. The real parameter values obtained 

have been transferred to the electrical equivalent circuit model. The open circuit voltage is 

determined as a functional term depending on the state of current supply level by using the curve 

fitting method in the Matlab. Studies have been carried out on particle swarm optimization 

algorithm, artificial bee colony algorithm, and genetic algorithm to estimate the battery output 

terminal voltage by using the open circuit voltage. Comparisons have been made and differences 

have been analyzed between the technics by using different statistical methods of true error values, 

the correct prediction ability, and response speed. As a result, the optimization method that makes 

the most accurate estimation has been determined. 
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1. INTRODUCTION 

In order to ensure reliable, stable, and efficient energy flow in battery-based energy storage units, which 

are frequently encountered in daily life, charge/discharge processes should be monitored and functional 

optimization studies used in these processes should be identified. It is noteworthy to use a appropriate 

battery model to select the preferred algorithm parameters in optimization processes with acceptable 

accuracy. Although the price of lithium-ion (Li-Ion) battery cells is predicted to decrease by about 60% 

in the near future [1], it is obvious that the use of an accurate battery model and appropriate optimization 

algorithms will provide additional benefits. Model-based control and prediction algorithms provide 

better utilization of cell performance, safety, and longevity by protecting against the root causes of 

battery cell deterioration [2]. 

The correct selection of the model and optimization way enables more certain conclusions to be obtained 

in simulation studies that can be adapted to practical studies. Another issue affecting the correct 

parameter estimation is the charge/discharge profile [3]. There are many charging and discharging 

methods used in current studies. Charge/discharge types have advantages/disadvantages relative to each 

other, depending on where they are used. When the case studies in the literature on detailing the preferred 

discharge topologies in the study are examined [4,5], it is seen that the pulsed constant current (PCC) is 

suitable for the study. The frequent use of constant current (CC) in industrial applications and the 

updating of the parameters at each pulse of the pulsed current (PC) have been effective in the use of 

PCC in paper [6]. Open circuit voltage (Voc) and state of charge (SoC) can be included in significant 

parameters in PCC discharge processes [7]. Voc is a critical variable in determining the characteristics of 

the battery cell and the electrode in the cell structure. The Voc curve, which varies depending on the SoC 

in the study, plays a significant role in knowing the electrode properties of the battery cell with the help 

of the rest period after the kinetic processes [8]. 

Table 1. Studies on PSO, GA, and ABC optimization methods used for parameter estimations of batteries in the 

last 10 years 
Used 
Method 

Paper 
Year 

Researcher(s) Battery Model Chemical Structure 
Used 
Parameter 

Estimated 
Parameter 

PSO 

2012 Hu etc. [9] Thevenin EECM. Li-NMC, Li-FePO4 SoC, T Voc 

2016 Mesbani etc. [10] Thevenin EECM. Li-NMC SoC Voc, RΩ 

2018 Kai etc. [11] Thevenin EECM. Li-Ion SoC Voc 
2020 Li etc. [12] Thevenin EECM. Li-Ion SoC Voc 

GA 

2016 Sangwan etc. [13] Developed Thevenin EECM. Li-Ion T, I, SoC Voc 

2017 Chen etc. [14] Thevenin EECM. Li-NMC SoC Voc, VT 

2018 Brondani etc. [15] Shepherd Model. Li-Po I, Voc, T 𝜂, Nc 

2020 Carmona etc. [16] Developed Thevenin EECM. Li-CO SoC Voc, RΩ 

ABC 

2015 Patil etc. [17] 

Support Vector Machine 

Classification Model and 

Regression Model. 

Li-Ion Nc Ccap 

2019 Wang etc. [18] Support Vector Regression. Li-Ion Nc Ccap 

2021 Zhang etc. [19] 
Single Linear Model, Machine 

Learning Model. 
Li-Ion Ccap Nc 

2022 Yan etc. [20] 
Empirical Model, Exponential 

Model. 
Li-Ion Nc Ccap 

PSO, GA, 
ABC 

2022 
Çarkıt and Alçı 
[This Study] 

Thevenin EECM. Li-NMC SoC VT 

In studies conducted by different researchers in previous years, it is potential to encounter studies based 

on parameter estimation of Li-Ion batteries. Among these studies, parameter estimation applications of 

batteries are made by using various algorithms and optimization methods. Some of the studies conducted 

in the literature regarding the techniques used in the paper are shown in Table 1 in a classified way. As 

seen in the table, while parameters such as SoC, terminal voltage (VT), temperature (T), internal 

resistance (RΩ), charge/discharge efficiency (𝜂), current (I), number of cycles (Nc), and current capacity 

(Ccap) are predicted in some studies, they are taken into account as a factor affecting the estimation in 

other studies. In addition, there are limited number of estimation processes made with artificial bee 
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colony (ABC) in the literature. In studies involving such new generation algorithms, methods with 

artificial technologies are preferred as battery model. 

In this study, which is different from its counterparts in the literature, the VT value of the battery cell is 

tried to be estimated accurately by using ABC algorithm, which is a current optimization method, 

genetic algorithm (GA), which is one of the traditional methods, and particle swarm optimization (PSO), 

that is a fundamental method. In addition, the application of ABC to the electrical equivalent circuit 

model (EECM) in the study increases the number of resources by contributing to the literature for battery 

parameter estimation. Voc and VT are defined as a functional expression linked to the SoC within the 

study. By using optimization methods, it is investigated which algorithm exhibits more successful results 

in VT estimation. In the literature, different methods are used to compare multiple optimization methods 

with each other, as listed below [21-27]: 

 Absolute error (AE), 

 Mean absolute error (MAE), 

 Mean squared error (MSE), 

 Least square of errors (LSE), 

 The sum of LSE or mean LSE (SLSE or MLSE), 

 Root mean squared error (RMSE), 

 Mean percentage error (MPE), 

 Mean absolute percentage error (MAPE), 

 Coefficient of determination (R2), 

 Standard deviation, 

 The best value, 

 The worst value…etc. 

Inspired by the methods used in different studies in the field of battery technologies LSE, maximum 

LSE, mean LSE, MAPE, MAE, and RMSE of AE values are taken into account for comparing the 

techniques in this paper with each other. In addition, the response times are included in the comparison 

to obtain information about the speed of the optimization methods. As the objective function of the 

optimization methods, it is desired that the errors between the actual data and the predicted results are 

minimal by following the LSE, maximum LSE, mean LSE, MAPE, MAE, and RMSE of the algorithmic 

prediction data. 

The sections of this study are organized as follows: In Section 2, information is given about the EECMs 

of Li-Ion batteries, which are among today's technological studies. How to calculate the parameters of 

the model and the points to be considered in the calculation are mentioned. In Section 3, detailed 

information about the optimization methods used in parameter estimation is given. The experimental 

discharge result obtained from the database for the Li-NMC battery cell and the outputs of the 

optimization methods are compared in Section 4. In Section 5, which constitutes the conclusion of the 

study, inferences are made by interpreting the maximum values of the squares of errors (SE), the mean 

values of squares of errors (MSE), and the response rates of the estimation methods. 

 

2. CREATING THE BATTERY MODEL AND DETERMINING THE PARAMETERS 

For the selection of the circuit model aimed to be used in optimization-based parameter estimation and 

computer-based simulation application, Thevenin EECM of the battery with one R//C block, which is 

illustrated in Fig. 1, has been preferred. In choosing this model, the experience of the authors' previous 

study is used [28, 29]. This model provides the following outputs and parameters for Li-NMC battery 

units: 

 RΩ change and voltage decrease across the ohmic resistor, 

 Long/short term transient behavior caused by polarization effect, 

 SoC effect that changes according to discharge current and discharge time, 
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 The efficacy of enhancement Nc on the discharge state, 

 Charge/discharge transfer polarization effect. 

The EEC model being given in Fig. 1 shows Voc as the internal voltage source. The voltage drop due to 

the RΩ of the battery cell is considered as the loss that turns into heat, which is called the copper loss 

[30]. In the recovery operation later the discharge is ended, the polarization capacity Cp, which is 

accepted as the transient capacity, and the transient resistance Rp are effective in determining the short 

and long term transient behavior of the battery. The voltage drop on the Rp//Cp arm of the circuit model 

is due to the polarization effect and is represented by Vp. 

  
Figure 1. Electrical equivalent circuit model of the 

battery 

Figure 2. An example discharge step and model 

parameters 

 

R
Ω
 = 

Va - Vb

IL

 (1) 
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The instantaneous voltage drop in Fig. 2 is used to calculate the RΩ on the model of the Li-NMC battery 

cell given in Fig. 1. The expression in Eq. (1) is used to calculate RΩ. In this expression, the cell voltage 

before the discharge process starts is Va, cell voltage at the moment when the load is activated and the 

discharge process starts is Vb [31]. Similar to RΩ, Eq. (2) is used to calculate Rp [32]. In this equation, Ve 

is the cell voltage after discharge process. In the equation, Vc defines the cell voltage that reaches 

equilibrium after the rescue effect. The Vp used in the determination of the polarization losses in the 

model is obtained by using Eq. (3). In this equation, t defines the discharge step time and is accepted as 

1 second. Eq. (4) is used to calculate Voc with model-dependent arithmetic methods. In the equation, the 

output terminal voltage of the battery cell is VT, the time constant 𝒯, which is equal to the multiplication 

of the polarization resistance and the capacitance. 

 

3. OPTIMIZATION METHODS USED IN PARAMETER ESTIMATION 

Optimization methods, which are defined as finding the best, are generally examined under two main 

headings: Classical methods and heuristic methods. Classical optimization methods reveal some 

inadequacies on the subject discussed in this study owing to their properties like as: 

 The existence of uncertainties in various algorithms, 

 The program may terminate at unwanted times due to limited memory size, 

 Not having the flexibility to respond quickly to changes [33]. 

Another method in the optimization topology is heuristic optimization methods. Heuristic methods are 

frequently preferred in studies due to their features such as; 
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 Ability to instantly adapt to changes in algorithms and formulas in flowcharts, 

 Be able to read a widespread space of solutions quickly, 

 Approach to the most appropriate solution. 

ABC and PSO algorithms based on swarm intelligence are preferred because of their advantages on 

"accurate estimation of battery parameters", which is the focus of this study. In addition, it is aimed to 

compare the performance outputs of the optimization methods as a result of using GA among the 

heuristic methods based on development. The fact that ABC is a current and widely used algorithm, 

PSO is a swarm-based fundamental algorithm, and GA is frequently preferred in dissimilar works in the 

literature have been effective in the selection of these techniques. 

3.1. Artificial Bee Colony Optimization Algorithm 

ABC, one of the most recent heuristic optimization methods, has been developed by Karaboga in 2004 

to solve numerical problems [34]. Inspired by the movement and type of communication of bee groups 

in habitat, ABC is a optimization procedure based on the segmentation of labor that bees do by 

instinctively classifying them as employees, discoverers and observers for providing nutrition [35]. As 

in swarm intelligence-based methods, ABC also has the opportunity to self-organize and share work 

without a command from the command center. In the ABC, that is a assembling of global and local 

search methods, each iteration consists of three main stages with bee class names and functions: 

employed bee stage, onlooker bee stage, and scout bee stage [36]. In the decision-making process in 

ABC, there are traces of the collective decision-making approach used by the bees in the natural life in 

their daily processes [26]. 

Solutions presented for the issue in ABC show the position of nutrient resources. The quantity of 

nourishment in nutrient centers matches to the suitability of the answers presented to the problem. In 

other words, it corresponds to the qualification of the resolutions. The number of foods in the springs 

interrelates with the qualification of the results [37]. For obtaining the best consequence in algorithm, 

firstly Eq. (5) is used to generate the nutrition source regions symbolized by Xij. The suitability rate is 

computed as in Eq. (6) with respect to the case of aim function. The aliment source is chosen using Eq. 

(7) and then the employed bees are organized for directing through the goal. The fitness value in Eq. (8) 

is regarded for seeing selection status of the food sources by the relevant bees. In Eq. (8), the food source 

variable rank is i, dimension rank is j, fitness function is fit, objective function is f, the probability of 

choosing the source is pi, the total number of worker bees is represented by TB. λ defines a haphazard 

numeral between 0 and 1. The φ, which provides the displacement operation, represents the random 

count between -1 and 1. Xmax and Xmin define the lower and upper bound limits of the relevant variable. 

The number k represents a random value chosen from the numbers starting from 1 to the number of 

food. Some of the reasons why ABC is preferred in studies are listed below: 

 Based on herd intelligence, 

 Having flexible behavior, 

 Easy to adapt, 

 Uses few control parameters 

 Simultaneous execution of the search for local and global optimum within the algorithm [38], 

 Does not need mutation and crossover rates that determine priority, 

 It has a balanced use and exploration ability [39]. 

Xij = Xj
min + λ (Xj

max - Xj
min) (5) 

fit = {
1/(1+f       f ≥ 0

1+|f|           f < 0 
} (6) 

Xnew = Xij + φ (X
ij
 - Xkj) (7) 

p
i
 = 

f
itj

∑  f
itj

TB

j=1

 
(8) 
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3.2. Particle Swarm Optimization Algorithm 

This algorithm has been gived form by Kennedy & Eberhart in 1995. Like many optimization 

techniques, PSO is inspired by the life cycle in nature and the behavior in this cycle. During the creation 

of the PSO, the behavior of fish, insect and bird herds (population) has been observed and transferred to 

the algorithm [40]. This method that is proposed for the remedy of nonlinear issues is used for the 

solution of multivariate and multi-parameter problems. Some causes why PSO is given priority in 

scientific studies in many varied fields are listed below: 

 Ability to offer high quality solutions within short calculations, 

 Ability to provide acceptable solutions to single-purpose or multi-purpose target functions [41], 

 The low number of parameters to be adjusted [42], 

 Does not need derivative information, 

 It is not complicated to set up in a computer [43], 

 It can give fast and effective results [44], 

 It can exhibit a stable convergence property [45]. 

vnm+1=w vnm + c1 λ1 (pnm
best -  xnm) + c2 λ2 (snm

best  −  xnm) (9) 

xnm+1 = xnm + vnm+1 (10) 

In the operation of PSO, natural particles in the herd act casually for arrive the aim. All individual strives 

to make its present situation similar to the situation of the best particle in the swarm. By adopting the 

principle of continuous improvement, the particles aim to become better than their former location in 

each reiteration. To achieve this goal, each individual uses the direction-related speed vector in Eq. (9) 

and location-related position vector in Eq. (10). In the equations, w is inertia coefficient, c1 and c2 are 

scaling factors, λ1 and λ2 are step sizes which are included in the equations as random numbers chosen 

between 0 and 1. According to the coefficients c1, c2, λ1 and λ2, the PSO algorithm searches for both 

local and global solutions [46]. Due to the possibility that local solutions are global solutions, λ1 and λ2 

take random values in the specified range. m is the number of iterations, vnm is the velocity of the nth 

particle at the mth iteration, m+1 is the following repeat value, pbest and sbest are accepted as the best of 

the particle and the swarm respectively. When the velocity equation is divided into three different parts 

and the expressions are followed, the mathematical term in the introduction indicates the claim of each 

particle in the swarm to sustain its previous position. This condition can be related to the inertia weight, 

which is an important optimization parameter interest to the past acceleration. These parameters are an 

important factor to facilitate reaching the local optimum and the global optimum [47]. In the second part 

of the Eq. (9), the particle remembers its best position and wants to update its position accordingly. In 

the last part of the equation; the particle remembers the position of the best of the swarm and wants to 

update itself accordingly. 

3.3. Genetic Algorithm 

Among the heuristic methods, the GA process, which is one of the versions of evolutionary algorithms 

(EA) based on probability-based development, is frequently encountered in the literature. Based on the 

principle of natural selectivity and evolution, GA has been studied on binary codes by Holland and 

researches in the 1970s. When GA is coded appropriately, it can offer acceptable solutions to real-life 

problems. GA, that is an adaptable optimization procedure, is based on the way of using the most skilled 

solutions by looking for convenient individuals in the prior generations to achieve the following 

generations. This scanning, which is included in evolutionary algorithms, can be included in meta-

heuristic techniques in some scientific researches. GA is frequently used to create convenient resolutions 

to optimization topics that are in engineering [48]. 

Searching for a global solution rather than a local one, GA uses codes instead of actual parameter values 

when searching for the solution. GA is based on the survival of individuals who adapt to the living 

conditions of the environment and the disappearance of those who cannot adapt. Since the genes of an 
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individual are subject to mutation or crossover processes for different reasons, new generations are 

derived due to such changes in the genes. It is aimed to get the best consequence from the solution space, 

which includes existing genes and genes resulting from changes. Some of the reasons why GA is 

preferred in studies are listed below: 

 Based upon the principle of natural selectivity, adaptation and evolution, 

 Does not need estimation about the solution region, 

 Does not need derivative information, 

 Being resistant to irregular problem formulations [49], 

 Being resistant to equational constraints, 

 Using encodings instead of actual parameter values. 

p
i
= 

𝑓

∑𝑓
 (11) 

ci = ci - 1 + pi
 (12) 

tp
ij
 = tp

ij
 + α Δ (ubj - lbj) (13) 

It is known that three basic functions occur for GA as selection, crossover and mutation. In Eq. (11), pi 

is the probability of survival and f is the objective function. Eq. (12) is used to calculate the cumulative 

probability “ci” required for selection. Eq. (13) is used to obtain the intermediate population resulting 

from the operators. In the equation, α represents the randomly selected number, tp is the intermediate 

population, Δ defines the neighborhood ratio, ub represents the upper limit, and lb is the lower limit. 

The parameters of the optimization ways used in the paper are presented in Table 2. Forecasting 

simulation studies have been carried out according to these parameters. 

Table 2. Parameters of optimization algorithm 

Algorithm Initial Optimization Parameters 

ABC 

Dimension = 8 

Colony Size = 64 

Repetition = 100 

Food Source = 128 

Limit = 256 

Selection Type = Greedy Selection 

GA 

Dimension = 8 

Population Size = 64 

Repetition = 100 

Crossover Ratio = 0.9 

Mutation Rate = 0.005 

Neighborhood Ratio = 0.05 

Selection Type = Roulette Wheel 

PSO 

Dimension = 8 

Swarm Size = 64 

Repetition = 100 

Inertia Parameter = 0.8 

Social Coefficient = 1 

Cognitive Coefficient = 1 

4. COMPARISON OF EXPERIMENTAL DATA WITH SIMULATION RESULTS 

The preference of Li-NMC battery cells, especially in electric vehicles and individual user-sized energy 

storage systems, has been the motivation for this paper. The test data of the 18650 cylindrical type 2000 

mAh Li-NCM electrochemical battery cell by the University of Maryland CALCE Battery Research 

Group have been examined [50]. Referring to Fig. 2 and Fig. 3, the sample PCC profile used in the 

experimental tests has a 7200 second rest and recovery time after a 720 seconds discharge process per 

pulse. During the discharge test performed with a 1 A PCC in accordance with the current profile at 25 

ºC, the voltage of the battery cell changes as in Fig. 4. Although the data obtained at different 

temperatures can be analyzed, the effect of temperature on the parameters constitutes a different study 
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subject. Therefore, 25 ºC, which is the optimum working environment and room temperature, has been 

preferred in the paper. 

  
(a) (b) 

Figure 3. Performed with pulsed constant current; a) PCC discharge profile, b) a sample discharge pulse current 

and voltage information 

 
Figure 4. Variation of cell voltage depending on discharge profile. 

Parameter calculations are made by adapting the obtained data to the battery model in Fig. 1. At this 

stage, the exponential function in Eq. (14) and Eq. (15) is used. In the equation, “y1…5” values represent 

dynamic coefficients that can take different values according to changing environmental conditions. In 

the expression in Eq. (15), which allows dynamically changes in the coefficients, the coefficients of 

"y1…5" are updated by the algorithm at the SoC level where each data is taken. Although this situation 

increases the complexity of the process, it provides the opportunity to achieve more successful results 

that can be adapted to practical studies, have high adaptability. Limit values of these coefficients are 

given in Table 3. While defining Voc, SoC is taken into account as the dependent state variable. On the 

other hand, since the temperature is taken as 25 ºC, the effect of temperature on the parameters is 

neglected. In the literature, at the stage of defining the parameters depending on the variables, the 

regression coefficient is required to be greater than 95% [51, 52]. 

In this study, it is desired that the regression coefficient is especially greater than 99%. In addition, when 

using the parameters obtained as a result of the experimental results and the estimation process, it is 

desired that the absolute error and the squares of the errors should be as close to 0 as possible. In 

accordance with these conditions, the VT equation created with the help of curve fitting method (CF) 

according to the SoC change and planned to be used in optimization processes is expressed as in Eq. 

(16). The circuit model in Fig. 1 and the mathematical definitions in Eq. (4) and Eq. (15) are used to 

create the equation. Although RΩ, Rp parameters depend on SoC, they are selected by the algorithm 

according to the lower limit (lb) and upper limit (ub) values in Table 3 in accordance with the 
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optimization problem. The advantage of this selection is that the RΩ and Rp values are also optimized 

within themselves. The lb and ub values have been chosen according to the internal resistance and 

polarization resistance variation in Fig. 5 obtained by reading the experimental data and discharge graph. 

The limits of y1…5 parameters are formed by expanding the coefficient ranges obtained by the CF method. 

 Voc = f (SoC)
 3  (14) 

Voc(SoC) = y1 e( - 35 SoC) + y
2
 (SoC)

3
 + y

3
 (SoC)

2
 + y

4
 (SoC) + y

5
 (15) 

V
T
 = V

oc(SoC)
-  I

L
 RΩ -  IL Rp e

-  t
𝒯  (16) 

SoCt+1 = SoCt + 
∫ IL dt

t+1

t

3600 Cref

 (17) 

{
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∑
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  𝑓 =  𝑚𝑖𝑛(𝑆𝐸)  }
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 (18) 

Table 3. Limits of battery model parameters 
Bound RΩ Rp y1…5 
lb 0.1079 0.0523 -100 
ub 0.3170 0.8077 +100 

 
Figure 5. Change of actual values of RΩ and Rp according to SoC in 20 sample points. 
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(a) (b) (c) 

Figure 6. In the PSO algorithm; a) Actual data and optimization prediction values, b) LSE values between actual 

data and optimization data, c) Different Statistical Error Values for PSO 

The variation of the SoC is obtained by using the "ampere hour" count in Eq. (17) depending on the 

time. In the equation, t represents the previous time and t+1 represents the next time. Cref is the initial 

current holding capacity of the battery and is included in the calculation of the SoC. Limit and purpose 

information used in optimization studies made in line with the information given in Section 3 and 

Section 4 up to this point are given in Eq. (18). In the equation, the absolute error is expressed as e, the 

experimental test result of the terminal voltage is Vreal, the estimated terminal voltage value is Vest that 

is as a result of the optimization, the squares of the errors are SE, the the mean value of the summation 

of the squares of the errors is MSE, the number of data is n, the objective function is f. 

   
(a) (b) (c) 

Figure 7. In ABC algorithm, a) actual data and optimization prediction values, b) LSE values between actual data 

and optimization data, c) different statistical error values for ABC. 

   
(a) (b) (c) 

Figure 8. In GA, a) actual data and optimization prediction values, b) LSE values between actual data and 

optimization data, c) different statistical error values for GA. 
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Table 4. Comparison of algorithmic simulation results for VT. 
Temperature 

(ºC) 
Algorithm 

Max. Time for 
Each Iteration 

Mean Time for 
Each Iteration 

Max. LSE Mean LSE MAPE MAE RMSE 

25 

ABC 2.1878 1.6798 (2.8797).106 (1.2443).107 0.0053 (1.8718).104 (3.5275).104 

PSO 10.989 10.035 (1.8854).105 (7.3431).107 0.0123 (4.3857).104 (8.5692).104 

GA 1.2864 0.9911 0.0108 (2.2301).104 0.0948 0.0036 0.0149 

 
Figure 9. Process steps for ABC algorithm. 

Considering the experimental test results performed at 25 ºC, which is the optimum operating 

environment for battery systems, the VT estimates of the PSO, ABC, GA methods and the error values 

of the estimations are given in Fig. 6, Fig. 7, and Fig. 8 respectively. Considering the VT estimations, the 

error values of the estimations, and Table 4 the ABC algorithm presented the most successful result. 

Although PSO has the slowest response speed, it has performed well in second place. Though GA has 

the fastest response time, the performance quality in the simulation result is the lowest. Even though it 

is possible that to develop the efficiency of GA by adjusting the variables in the internal structure of the 

algorithm, GA is not considered suitable for the problem studied. The principal code flow chart of ABC, 

which offers the most successful results and has the potential to support practical studies, is given in 

Fig. 9 in line with the information in Section 3.1. 
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5. CONCLUSION 

Since batteries exhibit non-linear behavior, it is important to perform parameter estimations with 

acceptable performance. High-accuracy predictive data gives more favorable results in computer-based 

studies that are planned to be transferred to applied studies. Working with the right parameters provides 

gains in terms of financial opportunities and time. In this direction, a study has been carried out on Li-

NMC battery technologies, which are considered among the current technologies and are among the 

priority areas. By examining the sample discharge information taken from the database, the equations 

on how to calculate the parameters in accordance with the determined battery model have been obtained. 

Functional expressions have been defined using the Matlab program and the curve fitting method. Data 

obtained from ABC, PSO and GA optimization methods have been compared to estimate the terminal 

voltage. As a result of the comparisons, the artificial bee colony algorithm has revealed the most 

successful performance in the prediction processes for terminal voltage. After ABC, the PSO algorithm 

presented acceptable successful results. The GA which has the fastest response time, could not show the 

expected success. Eventually, it has been seen that the artificial bee colony algorithm is the most 

appropriate method in cases where both successful results and fast processing processes are desired. 
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