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Keywords: Abstract: In the present study, a certain subclass of analytic and univalent functions in
Fekete-Szego problem, the open unit disk in the complex plane is introduced and examined. Then, for the class
univalent function, introduced, we study coefficient bound estimates and investigate the Fekete-Szego
salagean operator problem. Furthermore, we discuss some intriguing special cases of the results found.

Analitik Fonksiyonlarin Belirli Bir Simifi I¢in Katsayr Simir Tahminleri ve
Fekete-Szego Problemi Uzerine

Anahtar Kelimeler: Ozet: Sunulan ¢alismada, kompleks diizlemin agik birim diskinde analitik ve univalent
Fekete-Szego problemi, fonksiyonlarm belirli bir alt sinifi tanitiliyor ve inceleniyor. Sonrasinda tanitilan sinif
univalent fonksiyon, i¢in katsay1 sinir tahminlerini ¢alisiyor ve Fekete-Szego problemini inceliyoruz. Ayrica
salagean operatorii bulunan sonuglarin bazi ilging 6zel durumlarini tartisiyoruz.

1. INTRODUCTION

Let A denote the class of all complex valued

functions f given by

f(z)=z+a,2*+---+a, 2"+

o 1
=7+ a7" z7eC, @)

n=2

*flgiliyazar: 7.gokkus@gmail.com

which are analytic in the open unit disk
U={zeC:|z]<1} in the complex plane C.
By S, we define the class of all univalent
functions in A. For @ €[0,1), some of the

important and well-investigated subclasses of

S include the classes S”(«) and C(a) ,
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respectively, starlike and convex function

classes of order ¢ in U.

For the functions f and g which are analytic
inU, f s said to be subordinate to g and
denoted as f(z)=<g(z), if there exists an

analytic function @ such that
®(0)=0, |w(z)<land f(z)=g(a(z)).

As is known that the coefficient upper bound
problem is one of the important subjects of the
theory of geometric functions. Firstly, by
1967) was

subclass of bi-univalent functions and obtained

Lewin (Lewin, introduced a

the estimate |a,[<1.51 for the function

belonging to this class. Subsequently, Brannan

and Clunie (Brannan and Clunie, 1980)
developed the result of Lewin to [a,|<+/2 for

the bi-univalent function f . Later, Netanyahu
(Netanyahu, 1969) showed that |a, | s% for this

class functions. Brannan and Taha (Brannan
and Taha, 1986) were introduced a certain

subclasses of bi-univalent function class X ,
namely bi-starlike function of order « denoted

S, () and bi-convex function of order «
denoted C, (), respectively. For each of the

function classes S; (a)and C,(a), non-sharp

estimates on the first two coefficients were

found by Brannan and Taha (Brannan and

Taha, 1986). Many researchers have introduced
and investigated several interesting subclasses
of bi-univalent function class X and they have
found non-sharp estimates on the first two
coefficients (see Srivastava et al., 2010; Xu et
al., 2012).

It is well known that the important tools in the
theory of analytic functions is the functional

H, (1) =a, —aZ, which is known as the Fekete-

Szegd functional and one usually considers the
further generalized functional H,(1) = a, — ua’
, Where u is a complex or real number (see
Fekete and Szego, 1983). Estimating the upper
bound of |a, —uaj| is known as the Fekete-

Szegd problem in the theory of analytic
functions. The Fekete-Szegd problem has been
investigated by many mathematicians for
several subclasses of analytic functions (see
Mustafa, 2017; Mustafa and Gilindiiz, 2019;
Zaprawa, 2014). Very soon,

(Mustafa and
2021) examine the

Mustafa and
Mrugusundaramoorthy
Mrugusundaramoorthy,
Fekete-Szegd problem for the subclass of bi-
univalent functions related to shell shaped

region.

For the analytic function f e A, Salagean

(Salagean, 1983) introduced the following

differential operator, which is called the

Salagean operator
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S°f(z)=1(z), S'f(z)=25f (z)=12f'(z),

S*f (z)=12S(sf (2))
=17f"(2),...8"f (z)
=28(8"'f(z)), n=12,....

It follows from that

S”f(z):z+ik”akzk,
k=2

zeU, neNozNu{O}.

Now, let we define the following subclass of
analytic and univalent functions.

Definition 1.1. A function f S is said to be
in the class C(n,¢) if the following condition

is satisfied

4

z(S”f(z))
(S”f(z))’

1+ <p(z),z€U.

In this definition ¢(z)=2z++v1+2* and the
branch of the square root is chosen to be

principal one, that ¢(0)=1. It can be easily

seen that the function ¢(z)=z+~/1+2* maps

the unit disc U onto a shell shaped region on

the right half plane and it is analytic and
univalent in U . The range ¢(U) is symmetric

respect to real axis and ¢ is a function with

positive real part in U, with ¢(0)=¢'(0)=1.

Moreover, it is a starlike domain with respect

to point ¢(0)=1.

In the case n=0, from the Definition 1.1 we

have the subclass C(0,¢)=C(¢p).

Let, P be the set of the functions p(z)
analytic in U and satisfying
Re(p(z))>0, zeU and p(0) =1, with power

series

P(2) =1+ pz+ p,2° + p,z° +-+-

:1+i p,z2", zeU.
=1

In order to prove our main results in this paper,
we shall need the following lemmas (see
Duren, 1983; Grenander and Szego, 1958).

Lemma 1.2. Let peP , then |p,|<2,

n=12,3,.... These inequalities are sharp. In

particular, equality holds for the function

1+z

p(2) =1

forall n=123,... .

Lemma 1.3. Let peP , then |p,[<2

n=12,3,.. and

2p, = p; +(4-pf)x,
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ap,=p;+2(4-pf) px
—2(4-pf)px*+2(4- pf)(1—|x|2)z

for some x and zwith || <1and |z|<1.

Lemma 14. Let peP , Be[01] and

B(2B-1)<D<B.

Then, | p, —2Bp, p, + Dp;| < 2.

Remark 1.5. As can be seen from the serial

expansion of the function ¢ given in

Definition 1.1, this function belong to the class
P.

In this paper, we give coefficient bound

estimates and examine the Fekete-Szegd

problem for the class C(n,¢).

1. MAIN RESULTS

In this section, firstly we give the following
theorem on the coefficient bound estimates for

the class C(n, o).

Theorem 2.1. Let the function f given by (1)

be in the class C(n, ). Then,

5

8y < —

o |a,| < and [a,| <

4.3"

Proof. Let f eC(n,p). Then, according to
Definition 1.1 there exists analytic function
o:U—U with »(0)=0 and |o(z)<1
satisfying the following condition

14

z(S”f (z))

1+—,:go(a)(z))
("1 (2)
= o(2)+41+0*(2), z€U.
(2)

Now, we define the function p P as follows

-y

=1+ pz+ p,2° + P2t +--

:1+i p,z", zeU.
n=1

From here, we write the following equality for

the function o

Changing the expression of the function @(z)

in (2) with expressions in (3), we obtain
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" Then, firstly using the Lemma 1.3 and applying

z(S"f(z)
1+ , triangle inequality and Lemma 1.2 to the
(S f(z)) equality (6), we get
_14 gy %—%ﬂz%(%—%jzﬂ- , ;
< —t?P+(4-17)& |, 0,1

(4)
with & =|x|<1. By maximizing the right-hand
If the operations and simplifications on the left side of the last inequality with respect to the

side of (4) are made and the coefficients of the variable £, we obtain

terms of the same degree are equalized, are

EHES

a,, a, and a, 8-3™

obtained the following equalities for 1 (
2

E+4), te[0,2].

2 2
2"a, =%, 2.3 —4migz= P _P1 Since, the function 0':%+4, te[0,2] is an

2 8

increasing function, from the last inequality

3-4"a,-3-6""a,a,+8""a; = %—%; obtained the second result of theorem.
that is, Finally, let's we find an upper bound estimate
for the coefficient a,. From the equalities (5)-
a, = 2%2 : (5)  (7), we can write
- 1 |3 P PP, Py
1™ 2 1 p12 a4=T+3{_p1(p2__]+(p3_—+_ ;
- 2| a’+ - 6 3.2 4 4 2 6
% 2(3} ? 4-3"“('02 4 ©)
3™ 2" 1 P, pzj that is,
a,=|=-| aa- + -2 |
] R R P X
1 3 c
(7) 342W[Z pl(pz—gpf]+(p3—28p1pz+Dpf)}

By applying the Lemma 1.2 to equality (5), ;

immediately obtained the first result of

withc==, B

landD:
4

N |
ol

theorem.
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Using triangle equality to the last equality, we
obtain

1 [3
|a4|3ww[z|pl|

c

pz_zpl2

(8)

Since 0:16[0,2], Bzie[o,l], D:l and
2 4 6

B(2B-1)<D<B, then according to Lemma

1.2 and Lemma 1.4, we write the following

inequalities

<2 and ‘p3—28plp2+Dpl3 <2,

C
P, _E p12

respectively. Considering these inequalities,

from the inequality (8) obtained desired

estimate for the upper bound of |a,|. With this,

the proof of Theorem 2.1 is completed.

In the case n=0, from the Theorem 2.1

obtained the following result.

Corollary 2.2. Let f €C(¢), then
1 1 5
|a2|s§, |a3|£Z and and |a4|sﬂ.

Now, we give the following theorem on the

Fekete-Szego problem for the class C ((/)) .

Theorem 2.3. Let the function f given by (1)

be in the class C(n,¢) and e C. Then,

+‘p3_28p1p2 + Dpfﬂ_

2
la, - a3 <

. 4 n+l
2 if =] -2
‘(3) g
l[ﬂjmrl
1 2\3)
4.3”+1 3 n+l 4 n+l 4 n+l
2 (2] 2] -2 g )
G 15 - [5) -
l(ﬁjﬂﬂ.
2\3)

Proof. Let f eC(n,p)and xeC. Then, from

<

+1if >

the expressions for the coefficients a, and a,

in the equalities (5) and (6), we can write

n+l
K%j —2,u:|a22+
2_3n+1(p2 4}

Considering (5) and using Lemma 1.3, we

N |-

2
& —pHa, =

write the above expression as follows
3, — pa; =
4 n+l
—| —2ul|pi+
1 |:( 3) /U:| Py

2.4M2 n+l
%Gﬂ [ p2+2(4-p7)x]

for some X with |x|<1. From this, using

triangle inequality we obtain
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£e(0,1)

2.4M? n+l
%(g) [tz +2(4—t2)§]

with &=|x| . If we maximize the right-hand

side of this inequality with respect to the

parameter &, we get

8y — a3 | <

1 4 n+l
247 [(gj o

te [0,2]

n+l n+l
LA e (AL
2\ 3 3

Then, by maximizing the right-hand side of the
last inequality with respect to the variable t,

we arrive at the result of the theorem.

Thus, the proof of the Theorem 2.3 s
completed.

In the case £ =0 and n=0, from the Theorem

2.3 obtained the following results, respectively.

Corollary 2.4. Let f €C(n,¢), then

1
4.3

jas| <
Corollary 2.5. Let f €C(¢), then

1
< =

Remark 2.6. Result obtained in the Corollary
2.4 confirm the second inequality obtained in
Theorem 2.1.
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