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Abstract 

Identifying protein-protein interactions is essential to predict the behavior of the virus 

and to design antiviral drugs against an infection. Like other viruses, SARS-CoV-2 

virus must interact with a host cell in order to survive. Such interaction results in an 

infection in the host organism. Knowing which human protein interacts with the 

SARS-CoV-2 protein is an essential step in preventing viral infection. In silico 

approaches provide a reference for in vitro validation to protein-protein interaction 

studies by finding interacting protein pair candidates. The representation of proteins 

is one of the key steps for protein interaction network prediction. In this study, we 

proposed an image representation of proteins based on position-specific scoring 

matrices (PSSM). PSSMs are matrices that are obtained from multiple sequence 

alignments. In each of its cells, there is information about the probability of the 

occurrence of amino acids or nucleotides. PSSM matrices were handled as gray-scale 

images and called PSSM images. The main motivation of the study is to investigate 

whether these PSSM images are a suitable protein representation method. To 

determine adequate image size, conversion to grayscale images was performed at 

different sizes. SARS-CoV-2-human protein interaction network prediction based on 

image classification with siamese neural network and Resnet50 was performed on 

PSSM image datasets of different sizes. The accuracy results obtained with 200x200 

size images and siamese neural network as 0.915, and with 400x400 size images and 

Resnet50 as 0.922 showed that PSSM images can be used for protein representation.  
 

 
1. Introduction 

 

Proteins are polymers formed by the polymerization 

of amino acids. Each protein has its own features due 

to its amino acid sequences. These sequences also 

determine the function of the protein [1]. Many 

biological events in our body occur as a result of the 

binding/dissociation of proteins with each other. 

Understanding protein-protein interactions has a 

critical role in drug and peptide design. Additionally, 

understanding the root causes of protein interactions 

is a big step towards controlling events at the 

molecular level. The proteins interact via their surface 

domains as shown in Figure 1. In order for it to 

interact, the two protein interfaces must be 

compatible with each other, both shapely and 

chemically [2]. 

 

*Corresponding author: zeynepozger@ksu.edu.tr             Received: 16.12.2022, Accepted: 26.02.2023 

 

 

Figure 1. Protein protein interaction [8]. 

 

Detection of protein interactions is performed by in 

vitro, in vivo or in silico methods [3]. Interaction 

detection by in vitro methods is done with 
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microorganisms, cells or biological molecules other 

than living organisms [4]. In vivo methods are 

performed on living organisms or cells, as are clinical 

studies in animals. It is usually applied after in vitro 

tests [5]. Both have time, place, and cost constraints 

as they must be performed in a clinical setting. In 

silico studies are studies performed with computers or 

simulations [6]. It provides an advantage in terms of 

reducing the need for clinical research. Considering 

the existence of a large number of proteins in the 

body, it is a costly process to investigate whether they 

interact with each other in the clinical setting. Instead, 

by identifying proteins with high interaction potential, 

clinical validation of only these proteins saves time 

[7]. In this context, different approaches are applied. 

Studies on the classification of medical documents [9] 

make it easier to reach the studies presented in a 

certain field. Protein primary structures [10-12], 

association rule mining [13], protein domain profiles 

[14], gene ontology [15, 16], 3D structures of proteins 

[17], domain-domain motif interactions [18], domain 

and sequence signature [19], network topology [20], 

phylogenetic trees [21], text mining [22] are common 

methods for identifying protein-protein interactions 

(PPI). 

Virus genomes require a host cell to replicate 

themselves. The way of entry into the host cell is 

through protein interactions. That is, a protein of the 

virus and a protein of the host cell must interact with 

each other [23]. Coronaviruses are infections in which 

animal viruses such as bat and mink acquires the 

ability to infect humans [24]. In drug development for 

coronavirus outbreaks, targeting proteins involved in 

host-pathogen interactions is important to prevent the 

spread of epidemics [25]. Like other viruses, SARS-

CoV-2 must interact with host cell proteins to reach 

the host cell and replicate its genome.  

Although the SARS-CoV-2 epidemic seems 

to be under control, it continues to exist in the world. 

However, the presence of epidemic diseases such as 

MERS and SARS-CoV seen in the past is an 

indication that there may be various epidemics 

belonging to the coronavirus family in the future. 

Genome data from past coronavirus outbreaks has 

been pioneering in treatment studies developed for the 

SARS-CoV-2 virus. Therefore, it is important to 

determine the entry routes of the SARS-CoV-2 virus 

into the host cell, so that the world does not fall into a 

bottleneck, as in SARS-CoV-2, in future coronavirus 

outbreaks. In order to develop preventive and 

therapeutic drugs, researchers continue their studies 

to understand the interactions of SARS-CoV-2 and 

human proteins. So, there are a limited number of in 

silico studies presented in the literature. Lanchantin et 

al. [26], proposed a transfer learning method for 

predicting SARS-CoV-2-human protein interactions. 

The work is based on the idea that polypeptide 

sequences that occur between interacting proteins can 

be conserved in different organisms. Authors used 

transfer learning to learn these short protein motifs. 

Because known interaction data for SARS-CoV-2 is 

limited, the model was trained with pathogen-host 

interaction data of other viruses [27]. The success of 

the proposed method was also applied to predict the 

interaction of different viruses, and the obtained 

AUROC (area under receiver operating 

characteristics curve) value for SARS-CoV-2 has 

been reported as 0.753.  

According to Du et al. [27], SARS-CoV-2 can 

infect humans as well as some mammals such as cats, 

dogs, and tigers. These infected animals can infect the 

virus humans. In the study, a 2-level multi-level 

perceptron network (MLP) with 2 levels was used to 

build a protein-protein interaction network. The MLP 

network was trained with 7 human coronaviruses and 

17 hosts. In conclusion, the authors found 19 possible 

interactions between human and SARS-CoV-2 

proteins. The SARS-CoV-2 virus belongs to beta 

coronavirus family. This coronavirus family has 5 

subtypes: sarbecovirus, embecovirus, merbecovirus, 

hibecovirus and nobecovirus [28]. Since SARS-CoV 

and SARS-CoV-2 viruses belong to the sarbecovirus 

type, Khorsand et al. [29], focused on these types of 

viruses. The authors used a three-layer neural network 

in their study. The first layer contains the proteins of 

alpha influenza viruses similar to SARS-CoV-2 

viruses. The second layer includes the known alpha 

influenza virus-human protein interactions. And the 

third one contains the known SARS-CoV-2-human 

protein interactions. Of the 87894 sarbevirus-human 

interactions found, 7201 were reported to be SARS-

CoV-2-human protein-protein interactions. Khan and 

Khan [25] investigated protein-protein interactions 

for MERS, SARS-CoV, and SARS-CoV-2 and they 

identified common host targets with bioinformatics 

tools for these outbreaks. The known interactions are 

obtained from BioGrid [30] database. Dey et al. [31], 

determined SARS-CoV-2-human protein-protein 

interactions using machine learning techniques with 

sequence-based data. The algorithms were trained on 

332 interactions discovered by Gordon et al. [32] 

using affinity purification mass spectrometry method. 

In the study, three sequence-based features (amino 

acid composition, conjoint triad, pseudo amino acid 

composition) were obtained from protein amino acid 

sequences. The decisions of SVM and random forest 

learners were combined with the ensemble majority 

voting technique. The best prediction score obtained 

was reported as 72.33% accuracy rate. In addition, the 

authors presented a gene ontology term analysis of 
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predicted 1326 human proteins interactions. Pirolli et 

al. [33] aimed to find the binding receptors between 

the spike protein of SARS-CoV-2 and the human 

angiotensin converting enzyme (ACE2) protein. They 

focused their research on the ACE2 protein because 

the spike protein uses ACE2 to enter the host cell. In 

their study, the authors predicted binding receptors 

with a convolutional neural network-based 

quantitative structure activity relationship (QSAR) 

model. Lee [34] proposed a virus type-independent 

PPI estimation method. The authors obtained 80,775 

virus-human PPI from the STRING database. They 

represented the PPI network of known interactions 

with a bipartite graph. Using the nodes in the graph, 

they obtained fractional compositions of 20 amino 

acids. Then, they extracted features from these 

composition profiles with 72 different 

distance/similarity measurements. They made 

predictions with models trained with random forest 

and XGBoost. The XGBoost model achieved the best 

performance with an accuracy value of 68%. SARS-

CoV-2-human protein interaction prediction with the 

trained models was performed with an accuracy of 

58%. In the study presented at [35], Bell et al. 

presented a pipeline they call PEPPI. PEPPI is a virus 

type-independent consensus model and includes 

structure similarity, conjoint-triad-based neural 

network, sequence similarity, and functional 

association data. The modules are combined with the 

naive Bayesian consensus classifier.  The authors 

tested their model also on SARS-CoV-2-human 

protein interactions. The pipeline correctly predicted 

94 out of 128 interactions. 

A protein-protein interaction detection 

problem with computational methods can be handled 

as a binary or multi-label classification problem. The 

training data consists of host proteins interacting and 

non-interacting with a pathogen protein. There may 

be more than one known protein for a virus species. 

In the binary classification approach, it is not 

necessary to know which protein of the virus a host 

protein interacts with. That is, if a host protein 

interacts with any protein of the virus, its label will be 

1, otherwise it will be 0. In the multi-class 

classification approach, however, it is necessary to 

know which protein of the virus interacts with the host 

protein. The label of each different protein of the virus 

is different. In the dataset, each host protein is labeled 

with the label of the virus protein that interacts with 

or does not interact with that protein of the virus. 

The binary classification approach does not 

need to know which protein of the virus an interaction 

is with. It is sufficient for the virus to know that any 

protein interacts with a host protein. This approach is 

advantageous given the difficulty of obtaining 

validated interaction data in a lab setting. However, 

the trained model can only tell whether it interacts 

with the virus of interest for a given host protein. To 

train a model with a multi-class approach the model 

needs data with sufficient interactions for each protein 

of the virus. However, such a model tells not only that 

the given host protein interacts with the virus protein 

but with which protein of the virus it interacts with.  

In protein-protein interaction network 

studies, position specific scoring matrices are 

generally used for inferences such as the biological 

information they contain and some properties of 

amino acids. Within the scope of this study, it is being 

investigated whether PSSM matrices can be used as 

images to realize a protein-protein interaction 

prediction problem for SARS-CoV-2. For this 

purpose, the known interacting protein pairs were 

converted into gray-scale images of different sizes.  

Based on the lack of studies on protein interaction 

network prediction by in silico analysis for SARS-

CoV-2, a method has been proposed to identify 

possible proteins that could be targeted in treatment 

development for SARS-CoV-2.  The problem was 

handled both as a multi-class problem using siamese 

neural network and a binary-class problem using 

Resnet50. 

There are numerous approaches to extract 

features from proteins for protein interaction network 

prediction. These approaches are generally geared 

towards exploiting protein primary and secondary 

sequences and the physicochemical properties of 

proteins. The contribution of this study is to show that 

proteins can be converted into image data with PSSM 

matrices, and protein interaction network prediction 

can be made with siamese neural networks trained 

with positive and negative interactions. 

 

2. Material and Method 

 

2.1. Dataset Description 

 

Classification algorithms need samples in each class 

in the dataset for training. The positive class samples 

are taken from the study by Gordon et al. [32]. In the 

dataset, there are 332 interactions between 27 SARS-

CoV-2 proteins and 332 human proteins. The dataset 

consists of 2 columns. The first column contains the 

primary amino acid sequence of a SARS-CoV-2 

protein and the second column contains the primary 

amino acid sequence of the human protein determined 

to interact with this SARS-CoV-2 protein. The  
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Table 1. Numbers of human proteins interacted with SARS-CoV-2 proteins 

 SARS-CoV-2 

Protein  

#interacting 

human protein 

SARS-CoV-2 

Protein  

#interacting 

human protein 

SARS-CoV-2 

Protein  

#interacting 

human protein 

Envelope  6 Nsp7 32 Orf3a 8 

Membran 30 Nsp8 24 Orf3b 1 

Nucleocapside 15 Nsp9 16 Orf6 3 

Spike 2 Nsp10 5 Orf7a 2 

Nsp1 6 Nsp11 1 Orf8 47 

Nsp2 7 Nsp12 20 Orf9b 11 

Nsp4 8 Nsp13 40 Orf9c 26 

Nsp5 3 Nsp14 3 Orf10 9 

Nsp6 4 Nsp15 3   

shortest of these sequences consists of 13 amino acids 

and the longest consists of 5596 amino acids. Since 

there is more than one human protein determined to 

interact with a SARS-CoV-2 protein, information on 

how many human proteins each SARS-CoV-2 protein 

interacts with is given in Table 1. 

In the learning phase, algorithms need both 

interactive and non-interactive examples. However, 

experiments to identify interacting protein pairs are 

not focused on finding non-interacting proteins. 

Therefore there is no gold standard for saying that a 

protein is non-interacting with a specific virus [36]. 

Different approaches such as random sampling [37], 

subcellular localization [38], and sequence similarity 

[23] techniques were used in studies to determine 

negative proteins. In our study, we used the sequence 

similarity [12] approach. The basic idea underlying 

this method is that the sequence similarity of host 

proteins interacting with a virus protein can be high. 

In bioinformatics, the most similar regions of 

different gene or protein sequences can be detected by 

sequence alignment methods. Thus, information such 

as the functions of these genes or proteins and which 

organism they belong to can be determined to a large 

extent. Substitution matrices are used to calculate the 

similarity scores of proteins. Substitution matrices are 

matrices consisting of the biological significance or 

randomness scores of the occurrences of the standard 

20 amino acids. Blosum62 [39] was used as the 

substitution matrix in this process performed in the R 

environment.  

5873 human proteins not found in the positive 

dataset were obtained from Uniprot [40]. These are 

candidate negative proteins. The sequence similarity 

matrix was constructed with 332 positive proteins and 

candidate negative proteins. The sequence identity 

matrix contains similarity ratios of the proteins. Rows 

represent the positive human proteins and columns 

represent candidate negative proteins. Therefore, the 

size of this matrix was 332x5873. Each cell includes 

the similarity ratio of the corresponding positive 

protein and the candidate negative protein. 

As seen in Table 1, the number of human 

proteins that interact with each SARS-CoV-2 protein 

varies. The negative dataset was created by 

considering the protein counts in the positive dataset. 

For example, the dataset includes 6 human proteins 

identified to interact with the envelope protein of 

SARS-CoV-2 (Table 1). Of the candidate negative 

proteins, 6 proteins with the lowest sequence 

similarity to these 6 human proteins were identified. 

These were added to the negative dataset and labeled 

as human proteins non-interacting proteins with the 

envelope protein. This process was repeated for all 

SARS-CoV-2 proteins. Thus, as many non-

interacting proteins were added to the dataset as the 

number of interacting proteins for each SARS-CoV-2 

protein. As the total number of interacting proteins 

was 332, the number of non-interacting proteins 

added to the dataset was also 332.  

 

2.2. Position Specific Scoring Matrices (PSSM) 

 

Proteins are polypeptides formed by the covalent 

bonding of amino acids to each other in a certain type, 

in a certain number and in a certain sequence [41]. 

There are 20 amino acids. When amino acids come 

together in a different order, different proteins are 

formed. PSSM matrices contain the probability of 

occurrence of each amino acid and nucleotide at each 

position [42]. For proteins, the row number of the 

PSSM matrix is equal to the amino acid number, i.e. 

20. The number of columns of the matrix is equal to 

the length of the protein sequence. The value of each 

cell is the probability that the corresponding amino 

acid is in the corresponding position. These 

probabilities are derived from multiple sequence 

alignment [43] scores. In bioinformatics, PSSM 

matrices can be used for a variety of tasks such as 
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predicting the attributes of a protein [44]. Building a 

PSSM matrix is given in Figure 2.  

Protein sequences were downloaded from 

Uniprot in Fasta format. PSSM matrices of positive, 

negative and SARS-CoV-2 proteins were constructed 

separately using Blosum62 substitution matrix in R 

environment with “protr” [45] package. 

 

Figure 2. Building a PSSM matrix [44]. 

 

2.3. Convolutional Neural Networks (CNN)  

 

The convolutional neural network is a deep learning 

architecture that is generally used for image 

processing. CNN uses different processes to capture 

features in images. Then, using these features, a CNN 

network classifies the images. A CNN network 

basically consists of a convolutional layer, a pooling 

layer, and a fully connected layer. Images are matrices 

of pixels. The purpose of the convolution layer is to 

try to capture certain features in the image with a filter 

smaller than the original image size. The pooling 

layer aims to reduce dimensionality [46]. In this way, 

computational complexity is reduced and unnecessary 

features are eliminated. The fully connected layer 

transforms the pixel matrix which passes through the 

convolutional and pooling layers several times into a 

flat vector. After these processes, images can be 

classified using traditional neural networks [47]. The 

general architecture of CNN is given in Figure 3. 

 

2.4. Residual Neural Networks (RNN)  

Resnet is an enhanced version of CNNs [49]. When 

deep networks begin to converge, the problem of 

degradation arises [50]. Resnet was developed to 

 

Figure 3. General architecture of CNN [48]. 

 

solve this degradation problem of CNN. In Resnet, 

there are shortcuts between layers. Resnet includes 

residual blocks to reduce training errors. The scheme 

of residual blocks are given in Figure 4. These 

shortcut links allow one or more layers to be skipped. 

Thus, now blocks and inputs can propagate faster over 

the remaining connections between layers. In this 

way, the degradation problem is prevented as the 

network deepens [49]. Resnet also uses bottleneck 

blocks to make training faster. The general network 

architecture of Resnet is given in Figure 5. 

 

Figure 4. Residual blocks of Resnet [48]. 

 

Resnet50 [49] is a pre-trained 50-layer 

network. The authors in [49] trained the network with 

the ImageNet dataset. ImageNet [51] is a reference 

dataset created for use in object recognition research. 

Thus, researchers working on object recognition can 

perform transfer learning by applying fine-tuning on 

previously learned parameters according to their own 

datasets. In this study, we used the Resnet50 

architecture for the protein interaction network 

prediction problems. We converted the protein 

sequences to PSSM images and trained the network 

with this images. Since protein interaction network 

detection is not an object recognition problem, we did 

not use pre-trained parameters. 

 

 

Figure 5. General architecture of Resnet [49]. 
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2.5. Siamese Neural Networks (SNN)  

 

The siamese network does similarity learning using 

two identical network architectures. Two entries are 

given to the network. Siamese network contains two 

separate neural networks. Subnets share parameters. 

These shared parameters allow to distinguish between 

two entries that are the same or different. The first 

subnet encodes the first input, and the second subnet 

encodes the second input. The Siamese network 

decides that these inputs belong to the same or 

different things, based on the difference between the 

two encoding outputs [52]. The general architecture 

of the Siamese network is given in Figure 6. 

 

 

Figure 6. General architecture of SNN [53]. 

SNNs are powerful networks, especially for 

learning complex relationships between two images 

[54]. We trained SNN with interacting and non-

interacting protein pairs. For interacting protein pairs, 

the first input is the PSSM image of positive protein 

and the second is the PSSM image of SARS-CoV-2 

protein. For non-interacting protein pairs, the first 

input is the PSSM image of negative protein and the 

second is the PSSM image of SARS-CoV-2 protein. 

Convolutional layers learn the filters and are 

responsible for finding common patterns between 

proteins. Because the two subnets share parameters, 

the network is expected to find similar properties for 

interacting proteins. SNN takes a pair of images as 

input and gives the probability of similarity of these 

two images as output. In our problem, the image pairs 

supplied to the network are PSSM images of SARS-

CoV-2 and human proteins with and without 

interaction. The output of the network is the 

probability whether a pair of PSSM images given to 

it are interactive. According to the similarity value, it 

is important to determine the threshold value correctly 

in order to decide whether the proteins are interacting 

or not. According to the results obtained from the 

positive and negative samples during the training 

phase, it was decided experimentally that the value of 

0.5 was an appropriate threshold value (Eq. 1). 

𝒙𝒊

= {
𝒏𝒐𝒏 − 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒏𝒈, 𝒊𝒇 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 < 𝟎. 𝟓

𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒏𝒈, 𝒊𝒇 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 ≥ 𝟎. 𝟓
 (𝟏) 

 

2.6. General Framework of the Proposed Method 

 

In this study, it was investigated whether the use of 

PSSM matrices as images is suitable for the protein-

protein interaction problem. The general framework 

for converting PSSM matrices to images is given in 

Figure 7.  Protein sequences of human and SARS-

CoV-2 proteins were obtained from Uniprot database. 

Uniprot [40] is a public and universal database. It 

contains detailed information about proteins such as 

protein sequences and functions. PSSM matrices were 

obtained using the Blosum62 substitution matrix. The 

size of the PSSM matrix is 20xL. 20 indicates the 

unique amino acid number and L indicates the length 

of the protein. All matrices were converted to 

grayscale images of different sizes (20x20, 50x50, 

100x100, 200x200, 400x400). The prediction phase 

was applied separately for each image scale.  

 

 

Figure 7. Encoding proteins as Images. 
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Figure 8. Framework of interaction prediction process. 

 

Table 2. Parameters of networks 

Network #Layers Batch size Epochs Act. func. Loss func. 

SNN 2 2D conv layers, a flatten layer, a dense layer.  16 20 Relu Contrasive loss 

Resnet50 48 conv layers, a max pool layer, an average pool 

layer. 

32 20 Relu Binary-

crossentropy 

The prediction phase of the proposed method is given 

in Figure 8. In the prediction phase, two image 

classification algorithms were applied and the results 

were compared. The dataset is divided into train and 

test sets as 70% and 30% respectively. An SNN 

network is trained with pairs of images that are related 

and unrelated to each other. This trained model 

predicts whether a new pair of images to be given are 

related to each other. In our problem, "associated" 

means that a virus and host protein pair are 

interacting. Therefore, in the training phase, we gave 

the PSSM images of interacting and non-interacting 

protein pairs to the SNN. There are 332 interacting 

protein pairs and 332 non-interacting protein pairs in 

the dataset. After the network was trained, the SNN 

learned the common features between these 

interacting protein pairs. Also, the network learned 

common features between non-interacting protein 

pairs. The architecture of Resnet50 is different from 

SNN. Resnet50 was trained with PSSM images of 

positive and negative proteins. In the dataset, there are 

332 positive proteins and 332 negative proteins. After 

the network was trained, Resnet50 learned the 

features of positive and negative proteins. 

SNN algorithm was applied as suggested in 

Chicco [42] using Python environment and Keras 

library. Resnet50 was implemented using the Matlab 

environment and Deep Learning Toolbox. Parameters 

of networks are given in Table 2. 

 

2.7. Evaluation Metrics 

To decide whether PSSM matrices are suitable data 

for detecting interacting proteins, we compared the 

performances of the algorithms and the performances 

of PSSM matrices of different sizes according to 

accuracy, positive predictive value (PPV), negative 

predictive value (NPV), sensitivity, and F-measure 

scores. All of these metrics are used to evaluate the 

classification performance of an algorithm and 

calculated from the confusion matrix [55]. Confusion 

matrix diagram is given in Table 3. Accuracy [56] is 

the ratio of the number of correctly predicted 

interacting and non-interacting proteins to the total 

number of samples. Accuracy is a metric that is 

widely used to measure the success of a model but 

does not appear to be sufficient on its own. PPV [57], 

also known as precision, shows how many of the 

proteins that the model predicts as interacting are 

actually interacting. NPV [57] shows how many of 

the proteins that the model predicts as non-interacting 

are actually non-interacting. Sensitivity [57], also 

known as recall, measures how many of the proteins 

known to interact are correctly predicted. F-Measure 

[58] is calculated by taking the harmonic average of 

precision and recall values. It is especially important 

for unevenly distributed datasets. Because it measures 

not only the error costs of false negatives or false 

positives but all error costs as well. The mathematical 

expressions of all these metrics are given in equations 

2-6. In the equations, TP, FP, TN, and FN represent 

true positives, false positives, true negatives, and false 

negatives, respectively. 
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Table 3. Confusion matrix 

  Prediction Results 

A
ct

u
al

 R
es

u
lt

s 

 Positive (PP) Negative (NP) 

Positive (P) True Positive 

(TP) 

False Negative 

(FN) 

Negative 

(N) 

False Positive 

(FP) 

True Negative 

(TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2) 

𝑃𝑃𝑉/𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
  (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (6) 

 

 

3. Results and Discussion 

We investigated whether we could predict the protein-

protein interaction network for SARS-CoV-2 from 

PSSM matrices, which are considered as images 

within the scope of the study. For this purpose PSSM 

matrices were converted to grayscale images to train 

the networks. To decide, which size is appropriate, 

conversion was done in different sizes. We converted 

PSSM matrices of positive, negative, and SARS-

CoV-2 proteins into 20x20, 50x50, 100x100, 

200x200, and 400x400 images, separately. It is clear 

that big-size images can contain more features but at 

the same time, big-size images require more 

computation time. 

To compare the performances of binary and 

multi-class classification approaches, a model for 

both approaches was applied. The interaction data 

were labeled as binary classes (positive proteins 

labeled as 1 and negative proteins labeled as 0) and 

trained with Resnet50. The output of the network is 

information whether the relevant human protein 

interacts with any SARS-CoV-2 protein. SNN 

behaves like a multi-class classifier by its nature. 

Because the network receives a pair of images. In our 

problem, given to the network is PSSM images of 

SARS-CoV-2 and human proteins. The network 

output returns information about whether these 2 

proteins interacted with each other. This output also 

acts as a multi-class classifier, as it can tell which 

SARS-CoV-2 protein interacts with the relevant 

human protein. In other words, since the inputs given 

in SNNs determine the classes, there is no need to 

define multiple classes. In our solution, one of them 

is a specific protein of a virus and the other one is a 

host protein. If the output of the network is close to 1, 

it means that these two proteins are interacting and it 

also tells which protein of the virus is in interacting. 

The data set was randomly divided into train and test 

sets. The test set ratio was determined as 30%. It was 

ensured that there were equal numbers of positive and 

negative samples in the test set. As seen in Table 1, 

the number of human proteins with which SARS-

CoV-2 proteins interact in the data set varies. To 

avoid the results from being specific to a particular 

training-test set, we repeated the dividing train-test 

sets process 5 times and took into account the average 

results. In order to determine whether the PSSM 

matrices, which are considered as images, are suitable 

for detecting interacting protein pairs, image 

classification was performed with SNN and Resnet50 

and their performances were compared. In addition, 

the performances of different-sized images were also 

compared to decide on the appropriate image size.  

The Table 4 includes a comparison of the 

average accuracy, PPV, and NPV results of the test 

phase according to learners and size of PSSM images. 

Standard deviation values are also given in the Table 

4 to examine how the results vary according to 

different test sets. According to the results, both 

algorithms can detect virus-host protein interactions 

with PSSM matrices for SARS-CoV-2. While SNN 

got the best accuracy results with 200x200 PSSM 

images, Resnet50 got the best results with 400x400 

PSSM images. Although promising results are 

obtained with PSSM images smaller than 200x200, it 

can be seen from the results that images of 200x200 

and 400x400 sizes contain more distinctive features. 

PPV is an important metric because it contains 

information about how many of the proteins that the 

algorithm finds interactive are actually interactive. 

NPV on the other hand gives the accuracy rate of 

proteins labeled as non-interacting. Studies for 

protein-protein interaction network detection focus on 

finding interacted proteins rather than non-interacting 

proteins. One of the advantages of an in silico analysis 

is to reduce candidate solutions that need to be 

validated by in vitro or in vivo analyses. For all these 

reasons, a high PPV value is preferred. SNN achieved 

better results for big images (200x200 and 400x400) 

however Resnet50 achieved better results for small 

images. The standard deviation values calculated 

according to the results of the test set are generally 

low. This shows that the algorithms do not obtain very 

different results compared to the different test sets,  
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Table 4. Average results for test process 

Image Size 

SNN Resnet50 

Acc PPV NPV Acc PPV NPV 

20x20 0.805±0.097 0.821±0.122 0.802±0.11 0.844±0.02 0.866±0.044 0.834±0.055 

50x50 0.885±0.093 0.867±0.103 0.907±0.08 0.877±0.054 0.874±0.05 0.909±0.112 

100x100 0.891±0.054 0.892±0.083 0.896±0.042 0.910±0.024 0.896±0.026 0.933±0.069 

200x200 0.915±0.084 0.893±0.112 0.957±0.055 0.840±0.136 0.879±0.111 0.895±0.183 

400x400 0.903±0.059 0.937±0.075 0.888±0.087 0.922±0.02 0.896±0.024 0.960±0.063 

 

Figure 9.  Sensitivity charts according to different test sets 

 

 

Figure 10.  F-Measure charts according to different test sets 
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that is, the results obtained are not dependent on a 

specific test set. 

The sensitivity and F-measure results 

obtained from the test sets are given in Figure 9 and 

Figure 10 respectively. In the charts, the metrics are 

compared according to the results from each test set. 

It has been observed that increasing the size does not 

always increase success for the same PSSM images in 

a test set. In some test sets like Test 1 and Test 3, the 

sensitivity value is 1 and the F-Measure value is very 

close to 1 for 200x200 and 400x400 image sizes. The 

dataset contains many human proteins that have been 

confirmed to interact for one SARS-CoV-2 protein, 

while there are very few human proteins for some 

SARS-CoV-2 proteins. Because test sets were 

generated with randomly selected samples, 

interactions for some SARS-CoV-2 proteins are 

represented adequately and for others are 

underrepresented. This situation caused the 

algorithms not to learn some interaction features well. 

It is also seen that the algorithms can not obtain results 

to close each other in the same test set and the same 

PSSM image size. This is an indication that 

algorithms learn different features from the same 

dataset. Resnet's results were more affected by the 

size of the images, while SNN's results were less 

dependent on data size.  

As mentioned earlier, there are very few in 

silico studies in the literature to predict protein-

protein interaction for SARS-CoV-2. In terms of 

giving an idea, in Table 5, we compared the results of 

these studies. Lanchantin et al. [26] used transfer 

learning, Du et al. [27] used multi-layer perceptron 

and Dey et al. [31] proposed machine learning 

algorithms. In the datasets used by Lanchantin et al. 

[26] and Du et al. [27], there are protein interactions 

for different viruses as well as SARS-CoV-2. Dey et 

al. [31], on the other hand, predicted protein 

interaction network with the dataset used in this study. 

The machine learning algorithms were trained with 

sequence-based features extracted from SARS-CoV-

2 and human proteins in the dataset. Lee [34] 

performed a virus type-independent PPI estimation 

method. They extracted features based on text mining 

and network similarity from a dataset of interactions 

of different virus strains with human proteins. They 

trained the feature dataset with random forest and 

XGBoost, and performed SARS-CoV-2-human 

protein interaction prediction with the obtained 

model. SARS-CoV-2-human interactions were 

obtained from the IntAct database. The accuracy 

value of the model developed by the authors for 

SARS-CoV-2 data was given as 57%. Bell et al. [35] 

predicted the SARS-CoV-2-human protein 

interaction network with their pipeline named PEPPI. 

Estimates were made for 128 interactions obtained 

from the PSICQUIC27 database. These interactions 

are between SARS-CoV and/or SARS-CoV-2 and 

human proteins. The proposed method correctly 

predicted 94 out of 128 interactions. It can be seen 

from the results that more successful predictions were 

obtained with the proposed method. 

Table 5. Comparison with recent studies 

 F-Measure Accuracy 

Lanchantin et al. [26] 0.114 - 

Du et al. [27] 0.867 - 

Dey et al. [31] - 0.723 

Lee [34] - 0.571 

Bell et al. [35]  0.734 

Proposed Method 0.880 0.922 

 

The main motivation of this study was the 

question of whether a model for protein interaction 

network prediction can be developed with PSSM 

images. The results obtained show that PSSM images 

are suitable data for this purpose. The strength of the 

SNN network is that it can tell which protein of a virus 

a host protein is interacting with. In other words, the 

network learns the common features of the virus 

protein and the host protein with which it interacts. Its 

high success in predicting positive interactions is 

another strength of the network. The weakness of the 

network was its inability to show high performance in 

learning both negative and positive interactions. As 

can be seen from Table 4, while it learned only 

negative interactions well for 200x200 images, it 

learned positive interactions better for 400x400 

images  

In cases where experimental data are scarce, 

a binary classifier developed with a strong network 

such as Resnet50 can identify whether a host protein 

interacts with a virus. The weakness of the model 

developed with Resnet50 is that it cannot tell which 

virus protein the interaction is with. If the training 

data can be increased, this deficiency can be 

eliminated by handling the problem with a multi-class 

classification approach. However, it will take time to 

increase the data as the training data are obtained with 

in-vitro and in-vivo analyzes. 
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4. Conclusion and Suggestions 

 

The emergence of SARS-CoV-2 virus after SARs-

CoV and MERS viruses and causing a pandemic 

reveals the importance of developing rapid treatment 

for viral diseases, but it is an indication that similar 

epidemics may be repeated in the future. In order to 

understand the behavior of pathogenic viruses that 

need a host cell to copy their genome, it is necessary 

to know which protein in the host cell interacts with 

it. Protein-protein interactions are the main way 

proteins perform their functions. Therefore, analyzing 

the protein-protein interactions between the host and 

pathogenic viruses is useful for understanding the 

mechanisms of viral infections. In this way, effective 

antiviral drugs against drug resistance can be 

designed. Laboratory experiments are needed to 

definitively identify interacting protein pairs. 

However, in silico studies can shed light on in vivo 

analyzes. 

Here, an in silico-based prediction of SARS-

CoV-2-human protein interaction was performed. 

Most in silico approaches benefit learning algorithms, 

and appropriate representations of protein pairs must 

be obtained in order to make a prediction with 

learning algorithms. We proposed using PSSM 

matrices of proteins. The PSSM matrices were 

converted to grayscale images and SNN and Resnet 

algorithms were trained with these images. The 

dataset used for training consists of experimentally 

confirmed SARS-CoV-2-human protein pairs with 

which they interact. Because the size of PSSM 

matrices depends on the length of the protein, 

different proteins have different sizes of PSSM 

matrices. A standard scaling was used during the 

conversion of PSSM matrices to images to obtain 

images of the same size for all proteins. We converted 

PSSM matrices into 20x20, 50x50, 100x100, 

200x200 and 400x400 size images to decide what size 

is sufficient to perform a successful protein-protein 

interaction process. The networks were individually 

trained with groups of this image size. The randomly 

selected 30% of the data set was used as the test set. 

The dataset was divided into train-test sets 5 times 

with the same procedure. For each training set, 

models were trained separately and tested with 

corresponding test set. The average results of the test 

performances of the models were taken into account 

in the comparisons. SNN achieved the best average 

performance with 200x200 PSSM images with an 

accuracy of 0.915, while Resnet50 achieved the best 

average performance with 400x400 PSSM images 

with an accuracy of 0.922. These results showed that 

protein-protein interaction network prediction can be 

performed successfully with images obtained from 

PSSM matrices. The 2 identical subnets contained in 

the SNN can successfully learn the common 

properties of interacting and non-interacting human-

virus protein pairs. Since PSSM matrices include 

biological information and some amino acid features, 

they are used to obtain this information about protein 

pairs in protein-protein interaction problems. We 

converted PSSM matrices to images. Obtained results 

demonstrate that PSSM image approach is useful for 

predicting interacting protein pairs. It is hoped that the 

proposed method will provide reference for in vivo 

studies by applying to protein pairs with unknown 

interaction status. 
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