Research Article
BibTex RIS Cite

Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey

Year 2018, Volume: 4 Issue: 2, 133 - 143, 31.12.2018

Abstract

Urban soils in Çankırı city have a high potential impact on water and air quality in residential areas. High heavy metal contents of these soils may pose considerable risk to the urban residences as most of the soils are bare due to inappropriate conditions for plant growth. We evaluated vertical and horizontal distribution of heavy metals concentrations in soils along the highway crossing the city in NE to SW direction. Each of ten sampling sites was sampled at five soil depths (0-2,5; 2,5-7,5; 7,5-12,5;12,5-17,5; 17,5-30 cm). The concentrations of heavy metals were measured using an Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Means of heavy metal concentrations were Fe>Mg>Mn>Ni>Cr>Zn>Cu>Ca>Co> Pb>Na>K>Cd>Hg. Concentrations of Fe and Mg were higher than critical values set for their maximum threshold soil concentrations for human health. The spatial distributions of Mg, Cr, Mn,
Fe, Co, Ni, K, and Ca concentrations gradually decreased from NE to SW. Concentrations of Hg was far greater in the NE-half than SW-half, while concentration of Na was far greater in the SW-half of the transect than its NE- half. Concentrations of Cd, Cu, and Pb showed patchy distribution, and greater Zn concentrations occurred at both ends of the transect compared to values closer to city center. No significant correlation was found between pH and concentration of any of the studied heavy metals. In general, horizontal variation of heavy metals were greater compared to their vertical variation. Concentration of Mg was far greater than that of Ca and this was attributed to the parent material of the soils, which comprises considerable amount of serpentine. Potential contamination indices of the soil samples were: Fe, Mg, Na, Ca, K, Cr, Ni, Co, Cu, Mn, Zn, Cd, Pb, and Hg in decreasing order. Integrated pollution index showed that Fe and Mg concentrations of all samples were greater than 1, suggesting that these heavy metals have a significant risk on health of city residents.

References

  • Anonymous, 2017. Çankırı meteoroloji bülteni, T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü Kayıtları, Ankara.
  • Bilos, C., Colombo, J.C., Skorupka, C.N., Rodrigues, P.M.J., 2001. Sources, distribution and variability of airbone trace metal in La Plata City area, Argentina. Environ. Pollut., 111, 149–158. doi:org/10.1016/S0269-7491(99)00328-0
  • Brady, N.C., Weil, RR., 2011. The Nature and Properties of Soils. Upper Saddle River, NJ,Prentice-Hall.
  • Burgos, P., Madejón, M., Pérez-de-Mora, A., Cabrera, F., 2008. Horizontal and vertical variability of soil properties in a trace element contaminated area. International Journal of Applied Earth Observation & Geoinformation, 10, 11–25.
  • Chen, T., Zheng, Y., Lei, M., Huang, Z., Wu, H., Chen, H., Fan, K., Yu, K., Wu, X. Tian, Q. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China, Chemosphere, 60, 542–551.
  • Douay, F., Roussel, H., Fourrier, H., Heyman C., Chateau G., 2007. Investigation of heavy metal concentrations on urban soil, dust and vegetables nearby a former smelter site in Mortagne du Nord, Northern France. Journal of Soil and Sediments, 7, 143–146.
  • Facchinelli, A., Sacchi, E., & Mallen, L., 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.
  • Gee, G.W., Bauder, J.W. 1986. Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Manag. 9. ASA and SSSA, Madison, WI.
  • Ji, Y.Q., Y.C. Feng, J.H. Wu, T. Zhu, Z.P. Bai, C.Q. Duan., 2008. Using geo-accumulation index to study source profiles of soil dust in China, Journal of Environmental Sciences 20, 571–578.
  • Jung, M., 2001. Heavy metal contamination of soils and waters in and around the Imcheon Au-Agmine, Korea. Applied Geochem, 16, 1369-1375.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distributlon, in: A. Klute (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Soil Science Society of America, Madison, pp. 425–442.
  • Li, J., Lu, Y., Yin, W., Gan, H., Zhang, C., Deng, X., Lian, J., 2008. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China, Environ Monit Assess, 153, 365-375. doi:10.1007/s10661-008-0363-x.
  • Loew O, May D.W., 1901. The relation of lime and magnesia to plant growth. U.S. Dep. Agric. Bur. Plant Ind. Bull., 1,1–53.
  • Luo, W., Wang, T. Y., Lu, Y. L., Giesy, J. P., Shi, Y. J., Zheng, Y. M., et al., 2007. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatisticsl analyses of metals in soils. Environmental Pollution, 146, 567–576.
  • Markus, J., Mc Bratney, A. B., 2001. A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environment International, 27, 399–411.
  • McGrath, D., Zhang, C. S., & Owen, C. T., 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127, 239–248.
  • McLean, E., 1982. Soil pH and lime requirement, in: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy and SSSA, Madison, pp. 199–224.
  • Miguel, E. De, Llamas, J.F., Chacon, E., Berg, T., Larssen, S., Royset, O., Vadset, M., 1997. Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead, Atmospheric Environment, 31, 2733–2740.
  • Muller, G., 1969. Index of geo-accumulation in sediments of the Rhine River, Geojournal, 2 108–118.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter, in: Page, A.L., Miller, R., Keeney, D. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, pp. 539–579.
  • O’Dell, R., Claassen, V., 2009. Serpentine revegetation: A Review. Soil and Biota of Serpentine: A World View Northeastern. Naturalist 16 (Special Issue 5), 253-271.
  • Odoi , J., Armah, F., Luginaah, I., 2011. Assessment of Spatial Variability of Heavy Metals in Soils Under The Influence of Industrıal Soap and Detergent Waste Water Discharge. IJRRAS, 9(2), 322-329.
  • Palumboa, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., Wilsond, J. 2000. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma, 95(3–4), 247-266.
  • Park, J., Lee, J., Chon, H., Jung, M., 2006. Microbial effects on geochemical behavior of arsenic in As contaminated sediments. J. Geochem. Explo, 88, 134-138
  • Robertson, G.P., 2001. GS+; Geostatistics for the Environmental Sciences, Version 7.0. Plainwell, Michigan, United States, Gamma Design Software.
  • Romić M., Romić, D., 2003. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol., 43(7), 795-805.
  • Salonen, V., Korkka-Niemi, K., 2007. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland, Applied Geochemistry, 22, 906–918.
  • Schaetzl, R.J., Anderson, S., 2005. Soils: Genesis and Geomorphology. cambridge university press, Cambridge
  • Sposito, G., 2008. The Chemistry of Soils. Second Edition. Oxford University Press.
  • Vince, T., Szabó, G., Csoma, Z., Sándor, G., Szabó, S., 2014. The spatial distribution pattern of heavy metal concentrations in urban soils - a study of anthropogenic effects in Berehove, Ukraine. Cent. Eur. J. Geosci., 6(3), 330-343.
  • Wei, B., Jiang,F., Li, X., Mu, S., 2009. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China, Microchemical Journal, 93 (2)-147-152. doi:10.1016/j.microc.2009.06.001.
  • Wei, B. and Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

Bazı Çankırı Şehir Topraklarında Toksik Elementlerin Uzaysal Değişimi

Year 2018, Volume: 4 Issue: 2, 133 - 143, 31.12.2018

Abstract

Çankırı şehir toprakları, şehirdeki hava ve su üzerinde önemli potansiyel kirletici etkiye sahiptir. Bu topraklar, içerdikleri yüksek miktarlardaki ağır metaller ve yüzeylerinin çıplak olması nedeniyle şehir sakinleri üzerinde önemli sağlık riski taşımaktadır. Bu çalışmada, şehri kuzeydoğu ve güneybatı yönünde ikiye ayırmakta olan şehirlerarası ana yol boyunca toprakların ağır metal içeriklerinin dikey ve yatay yöndeki değişimi incelenmiştir. Bu bağlamda hat belirlenen 10 noktadan derinlik esasına göre (0-2,5; 2,5-7,5; 7,5-12,5;12,5-17,5; 17,5-30 cm) alınan toprak örnekleri Inductively Coupled Plasma (ICP-MS) kullanılarak ağır metaller için analiz edilmiştir. Sonuçlar ortalamaların Fe>Mg>Mn>Ni>Cr>Zn>Cu>Ca>Co> Pb>Na>K>Cd>Hg şeklinde olduğunu göstermiştir. Mg, Cr, Mn, Fe, Co, Ni, K ve Ca konsantrasyonu kuzey batından güneydoğuya doğru azalan bir seyir göstermiştir. Cıva konsantrasyonu hattın kuzeydoğu yarısında, güneybatı yarısına nazaran daha yüksek bulunurken; Na içeriğinin güney batı kısmında kuzey doğu kısmına nazaran çok daha yüksek olduğu belirlenmiştir. Kadmiyum, Cu ve Pb konsantrasyonu yamalı/parçalı (patchy) bir dağılım göstermiş, Zn içeriği ise hattın uçlarına yakın bölgelerde merkeze göre çok daha yüksek değerler almıştır. Toprakların pH değerleri ile ağır metal konsantrasyonları arasında önemli bir ilişki çıkmamıştır. Genellikle, ağır metal konsantrasyonları dikey yöne nazaran yatay yönde daha yüksek değişkenlik göstermiştir. Düşük Ca/Mg oranı, bazı toprakların ana materyalinin önemli ölçüde serpantin içerdiğini göstermektedir. Toprakların potansiyel kirlenme indislerinin azalan yönde Fe, Mg, Na, Ca, K, Cr, Ni, Co, Cu, Mn, Zn, Cd, Pb ve Hg şeklinde olduğu belirlenmiştir. Entegre kirlilik riski Fe ve Mg diğerlerinin 1’den büyük olması nedeniyle bu metallerin şehirdeki insanların sağlığı üzerine önemli risk oluşturduğunu göstermektedir.

References

  • Anonymous, 2017. Çankırı meteoroloji bülteni, T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü Kayıtları, Ankara.
  • Bilos, C., Colombo, J.C., Skorupka, C.N., Rodrigues, P.M.J., 2001. Sources, distribution and variability of airbone trace metal in La Plata City area, Argentina. Environ. Pollut., 111, 149–158. doi:org/10.1016/S0269-7491(99)00328-0
  • Brady, N.C., Weil, RR., 2011. The Nature and Properties of Soils. Upper Saddle River, NJ,Prentice-Hall.
  • Burgos, P., Madejón, M., Pérez-de-Mora, A., Cabrera, F., 2008. Horizontal and vertical variability of soil properties in a trace element contaminated area. International Journal of Applied Earth Observation & Geoinformation, 10, 11–25.
  • Chen, T., Zheng, Y., Lei, M., Huang, Z., Wu, H., Chen, H., Fan, K., Yu, K., Wu, X. Tian, Q. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China, Chemosphere, 60, 542–551.
  • Douay, F., Roussel, H., Fourrier, H., Heyman C., Chateau G., 2007. Investigation of heavy metal concentrations on urban soil, dust and vegetables nearby a former smelter site in Mortagne du Nord, Northern France. Journal of Soil and Sediments, 7, 143–146.
  • Facchinelli, A., Sacchi, E., & Mallen, L., 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.
  • Gee, G.W., Bauder, J.W. 1986. Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Manag. 9. ASA and SSSA, Madison, WI.
  • Ji, Y.Q., Y.C. Feng, J.H. Wu, T. Zhu, Z.P. Bai, C.Q. Duan., 2008. Using geo-accumulation index to study source profiles of soil dust in China, Journal of Environmental Sciences 20, 571–578.
  • Jung, M., 2001. Heavy metal contamination of soils and waters in and around the Imcheon Au-Agmine, Korea. Applied Geochem, 16, 1369-1375.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distributlon, in: A. Klute (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Soil Science Society of America, Madison, pp. 425–442.
  • Li, J., Lu, Y., Yin, W., Gan, H., Zhang, C., Deng, X., Lian, J., 2008. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China, Environ Monit Assess, 153, 365-375. doi:10.1007/s10661-008-0363-x.
  • Loew O, May D.W., 1901. The relation of lime and magnesia to plant growth. U.S. Dep. Agric. Bur. Plant Ind. Bull., 1,1–53.
  • Luo, W., Wang, T. Y., Lu, Y. L., Giesy, J. P., Shi, Y. J., Zheng, Y. M., et al., 2007. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatisticsl analyses of metals in soils. Environmental Pollution, 146, 567–576.
  • Markus, J., Mc Bratney, A. B., 2001. A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environment International, 27, 399–411.
  • McGrath, D., Zhang, C. S., & Owen, C. T., 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127, 239–248.
  • McLean, E., 1982. Soil pH and lime requirement, in: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy and SSSA, Madison, pp. 199–224.
  • Miguel, E. De, Llamas, J.F., Chacon, E., Berg, T., Larssen, S., Royset, O., Vadset, M., 1997. Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead, Atmospheric Environment, 31, 2733–2740.
  • Muller, G., 1969. Index of geo-accumulation in sediments of the Rhine River, Geojournal, 2 108–118.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter, in: Page, A.L., Miller, R., Keeney, D. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, pp. 539–579.
  • O’Dell, R., Claassen, V., 2009. Serpentine revegetation: A Review. Soil and Biota of Serpentine: A World View Northeastern. Naturalist 16 (Special Issue 5), 253-271.
  • Odoi , J., Armah, F., Luginaah, I., 2011. Assessment of Spatial Variability of Heavy Metals in Soils Under The Influence of Industrıal Soap and Detergent Waste Water Discharge. IJRRAS, 9(2), 322-329.
  • Palumboa, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., Wilsond, J. 2000. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma, 95(3–4), 247-266.
  • Park, J., Lee, J., Chon, H., Jung, M., 2006. Microbial effects on geochemical behavior of arsenic in As contaminated sediments. J. Geochem. Explo, 88, 134-138
  • Robertson, G.P., 2001. GS+; Geostatistics for the Environmental Sciences, Version 7.0. Plainwell, Michigan, United States, Gamma Design Software.
  • Romić M., Romić, D., 2003. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol., 43(7), 795-805.
  • Salonen, V., Korkka-Niemi, K., 2007. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland, Applied Geochemistry, 22, 906–918.
  • Schaetzl, R.J., Anderson, S., 2005. Soils: Genesis and Geomorphology. cambridge university press, Cambridge
  • Sposito, G., 2008. The Chemistry of Soils. Second Edition. Oxford University Press.
  • Vince, T., Szabó, G., Csoma, Z., Sándor, G., Szabó, S., 2014. The spatial distribution pattern of heavy metal concentrations in urban soils - a study of anthropogenic effects in Berehove, Ukraine. Cent. Eur. J. Geosci., 6(3), 330-343.
  • Wei, B., Jiang,F., Li, X., Mu, S., 2009. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China, Microchemical Journal, 93 (2)-147-152. doi:10.1016/j.microc.2009.06.001.
  • Wei, B. and Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sabit Erşahin 0000-0003-2463-7893

Gülay Karahan 0000-0003-1285-6546

Ebru Gül This is me

Seval Sünal This is me 0000-0002-0560-0086

Ülkü Dikmen 0000-0001-5031-0523

Publication Date December 31, 2018
Submission Date November 26, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Erşahin, S., Karahan, G., Gül, E., Sünal, S., et al. (2018). Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey. Anadolu Orman Araştırmaları Dergisi, 4(2), 133-143.
AMA Erşahin S, Karahan G, Gül E, Sünal S, Dikmen Ü. Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey. AJFR. December 2018;4(2):133-143.
Chicago Erşahin, Sabit, Gülay Karahan, Ebru Gül, Seval Sünal, and Ülkü Dikmen. “Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey”. Anadolu Orman Araştırmaları Dergisi 4, no. 2 (December 2018): 133-43.
EndNote Erşahin S, Karahan G, Gül E, Sünal S, Dikmen Ü (December 1, 2018) Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey. Anadolu Orman Araştırmaları Dergisi 4 2 133–143.
IEEE S. Erşahin, G. Karahan, E. Gül, S. Sünal, and Ü. Dikmen, “Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey”, AJFR, vol. 4, no. 2, pp. 133–143, 2018.
ISNAD Erşahin, Sabit et al. “Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey”. Anadolu Orman Araştırmaları Dergisi 4/2 (December 2018), 133-143.
JAMA Erşahin S, Karahan G, Gül E, Sünal S, Dikmen Ü. Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey. AJFR. 2018;4:133–143.
MLA Erşahin, Sabit et al. “Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey”. Anadolu Orman Araştırmaları Dergisi, vol. 4, no. 2, 2018, pp. 133-4.
Vancouver Erşahin S, Karahan G, Gül E, Sünal S, Dikmen Ü. Spatial Distribution of Some Toxic Elements in Some Urban Soils of Çankırı, Turkey. AJFR. 2018;4(2):133-4.