Research Article
BibTex RIS Cite

Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi

Year 2023, Volume: 23 Issue: 3, 797 - 810, 28.06.2023
https://doi.org/10.35414/akufemubid.1264988

Abstract

Günümüz teknolojisinde, tarımsal ilaçlama makinelerinin genişliklerinin artmasıyla ilaç püskürtücü kanatların katlanma ve montaj usullerinde farklılaşmaya gidilmiştir. Orta ve uzun kanatlı ilaçlama makineleri, daha ekonomik ve hızlı ilaçlama avantajlarını sunmakla birlikte arazi, çevre koşulları ve düşük montaj rijitlik etkisiyle kanatlarda ürün ilaçlama kalitesini etkileyen stabilite problemlerine sebep olmaktadır. Bu çalışmada, tarımsal ilaçlama makinelerinde kullanılan X tipi katlanır kanatlar ile geleneksel kanatlar; tasarım farklılığı, farklı yüklemeler altında oluşan gerilme ve gerinim bakımından mukayese edilmiştir. Konuyla ilgili literatür araştırması yapıldıktan sonra, her iki kanat tipi tasarlanarak gerekli malzeme sabitlerine ve literatürde belirtilen farklı deplasman değerlerine göre yüklemeler altında yapısal sonlu elemanlar analizleri (FEA) yapılmıştır. Taguchi deney tasarımına göre yapılan FEA neticesinde; X tipi katlanan kanatta maksimum gerilme ve gerinimler püskürtücü kanadın kayar mekanizmaya montaj konstrüksiyonunda, geleneksel kanatlarda profillerin kaynaklı montaj bağlantılarında yoğunlaşmıştır. Ayrıca, FEA analiz sonuçları kullanılarak yapılan Taguchi analizi ile yorumlanarak imalata projeksiyon bilgiler elde edilmiştir.

Supporting Institution

ÖNALLAR TARIM MAKİNANALARI AŞ

Project Number

ONAL–T–2022–005

Thanks

Bu çalışma, Önallar Tarım Makineleri A.Ş. Tasarım Merkezi’ nde ONAL–T–2022–005 nolu proje kapsamında üretilmiştir, desteklerinden dolayı teşekkür ederiz.

References

  • Alves A.F., 2013. Finite elements. The basis of CAE technology. São Paulo, 6 ed.
  • Baijing, Q., Ning, Y., Xichao, X., Xianping, G., Chundun, W., 2014. Ideal spray boom response extraction with front and rear tires excited by step track. Trans. Chin. Soc. Agric. Mach., 2, 55–60.
  • Benez, R.C., Antuniassi, U.R., Chechetto, R.G., Motta, A.A.B., Carvalho, F.K., 2016. Behavior of a sprayer boom stabilization system in vertical and horizontal movements, Energia na Agricultura, 31 (1), 1–9.
  • Bisesi, M. and Koren, H., 2003. Handbook of environmental health: Biological, chemical, and physical agents of environmentally related disease. CRC press Boca Raton, New York, 824.
  • Blaylock K.R., 2020. Active air spring control as a method of agricultural sprayer boom system suspension, Iowa State University, Master Theses, Agricultural and Biosystems Engineering, USA, 62.
  • Cui, L.F., Xue, X.Y., Ding, S.M., Le, F.X., 2019. Development of a DSP-based electronic control system for the active spray boom suspension. Comput. Electron. Agric., 166, 105024.
  • Cui, L., Xue, X., Ding, B. Qiao, Le, F., 2017. Analysis and test of dynamic characteristics of large spraying boom and pendulum suspension damping System. Trans. Chin. Soc. Agric. Eng. 33 (9), 61–68.
  • Dudda,W., 2018. Strength analysis of a boom sprayer with the use of CAD/CAE systems. Mechanik, 91 (7), 549–551.
  • Engelen, K., 2008 Passive damping of flexible spray boom structures. Thesis, Katholieke Universiteit Leuven, Faculteit Ingenieurswetenschappen.
  • Ergene, B., Bolat, Ç., 2023. Simulation of Fused Deposition Modeling of Glass Fiber Reinforced ABS Impact Samples: The Effect of Fiber Ratio, Infill Rate, and Infill Pattern on Warpage and Residual Stresses. Hittite Journal of Science and Engineering, 10 (1), 21-31.
  • Gil, E., and Badiola, J., 2007. Design and verification of a portable vertical patternator for vineyard sprayer calibration. American Society of Agricultural and Biological Engineers, 23 (1), 35-42.
  • Griffith, J., Strelioff, B., & Schnaider, J., 2012. The Hockley Index. American Society of Agricultural and Biological Engineers. doi:10.13031/2013.41775.
  • Herbst, A., Osteroth, H.J., Stendel, H., 2018. A novel method for testing automatic systems for controlling the spray boom height. Biosystems Engineering, 174, 115-125.
  • Ilıca, A., Boz, A.F., 2018. Design of a nozzle-height control system using a permanent magnet tubular linear synchronous motor. Tarım Bilimleri Dergisi, 24, 374-385.
  • İtmeç, M., ve Bayat, A., 2017. Comparison of boom design parameters of three different tractor mounted domestically manufactured field crop sprayer booms. Journal of Agricultural Machinery Science, 13 (2), 99-105.
  • Jeon, H.Y., Womac, A.R., Gunn, J., 2004. Sprayer boom dynamic effects on application uniformity. Transactions of the American Society of Agricultural Engineers, 47(3), 647-658.
  • Jing, L., Wei, X,. 2023. Spray deposition and distribution on rice as affected by a boom sprayer with a canopy-opening Device. Agriculture, 13, 94. https://doi.org/10.3390/agriculture13010094
  • Kappaun, R., de Meira Junio, A.D., Walber, M., 2021. Parameters for Modelling Passive Suspensions of Spray Bars. Engenharia Agrícola, 41 (3), 368-378.
  • Koç, C., 2015. Structural analysis of field sprayer booms. Tarım bilimleri Dergisi, 23, 147-155.
  • Kurt, A., 2009, Modelling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks. Expert Syst Appl, 36(6), 9645–9657
  • Lipinski, A.J., Lipinski, S., Burg, P., Sobotka, S.M., 2022. Influence of the instability of the field crop sprayer boom on the spraying uniformity. Journal of Agriculture and Food Research, 10, 10432.
  • Langenakens, J.J., Clijmans, L., Ramon, H., De Baerdemaeker, J., 1999. The effects of vertical sprayer boom movements on the uniformity of spray distribution. J. Agric. Eng. Res., 74 (3), 281–291.
  • Mahendran, M., 2007. Applications of finite element analysis in structural engineering:In Siva Prasad, N. and Sekar, A.S. and Krishnapillai, S., Eds. Proceedings International Conference on Computer Aided Engineering, India, 38-46,
  • Manea, D., Gidea, M., Marin, E., Mateescu, M., 2018. Simulation of mechanical parameters of sprayer boom. Engineering for Ryral Development, 23, 45-53.
  • Miles, L.T., 2018. Developing general procedure to quantitatively analyze boom height control performance on self-propelled agricultural sprayers. Iowa State University, Agricultural Engineering, Graduate Thesis, USA, 86.
  • Önallar, 2022. Agricaltural spreyers, Erişim: https://onallar.com.tr/#0 (12.03.2023).
  • Tang, L., Huang, J., Xie, L., 2011. Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool. Int J Adv Manuf Technol., 53, 1167–1181.
  • Yan, J., Xue, X., Cui, L., Ding, S., Gu, W., Le, F., 2021. Analysis of dynamic behavior of spray boom under step excitation. Appl. Sci., 11, 10129.
  • Wu, J., Miao, Y., 2016. Dynamic characteristic analysis of boom for wide sprayer with different exciting sources. Trans. Chin. Soc. Agric. Eng.,28, 39–44.
  • Yalçın, B. , Ergene, B. & Nar, S. 2019. 1.2367 takım çeliğinden imal edilmiş enjeksiyon yolluk burcunda hasar analizi ve geometrik tasarımda iyileştirme ile hasarı önleme. Uluslararası Teknolojik Bilimler Dergisi, 11 (3), 137-146.
  • Yalçın, B., Yılmaz, N., Kurt, A., 2018. Tool stresses in soft and hard finish turning with low content CBN tool by finite elements analysis. ACTA Physica Polonica A, 134 (1), 48-56.
  • Zang, B., Bagchi, A., 1994. Finite element simulation of chip formation and comparison with machining experiment. J Eng Ind., 116, 289–297.
  • Zhuang, T., Yang, X., Dong, X., Zhang, T., Yan, H., Sun, X., 2018. Research status and development trend of large self-propelled sprayer booms. Trans. Chin. Soc. Agric., 49, 189–198.

Prediction of Stresses and Strains in of X type folding and Conventional Booms and Taguchi Analyses

Year 2023, Volume: 23 Issue: 3, 797 - 810, 28.06.2023
https://doi.org/10.35414/akufemubid.1264988

Abstract

In today technology, differentiation has been made in methods of boom folding and mounting methods with increased width of agricultural spraying machines. Spraying machines with middle and long booms offer advantage of more economical and fast spraying and cause stability problems affecting plant spraying quality due to terrain and environment condition, and also low rigid fixing. In this study, X type folding boom compared with conventional boom in terms of stresses and strains and also design differences. After doing literature surveys, the X type and conventional spraying booms were designed and then the structural finite elements analyses (FEA) were performed by defining of materials constants and under the determined loading according to displacements of booms mentioned in literature. As results of FEA analyses with Taguchi experimental design; the obtained stresses and strains focused on the mounting construction to sliding mechanism of agriculture spraying machine, on the other hand, stresses and strains localized on welding connection of boom profiles. The projection information obtained with interpreting of the Taguchi analyses using FEA results to manufacturing of sprayer boom.

Project Number

ONAL–T–2022–005

References

  • Alves A.F., 2013. Finite elements. The basis of CAE technology. São Paulo, 6 ed.
  • Baijing, Q., Ning, Y., Xichao, X., Xianping, G., Chundun, W., 2014. Ideal spray boom response extraction with front and rear tires excited by step track. Trans. Chin. Soc. Agric. Mach., 2, 55–60.
  • Benez, R.C., Antuniassi, U.R., Chechetto, R.G., Motta, A.A.B., Carvalho, F.K., 2016. Behavior of a sprayer boom stabilization system in vertical and horizontal movements, Energia na Agricultura, 31 (1), 1–9.
  • Bisesi, M. and Koren, H., 2003. Handbook of environmental health: Biological, chemical, and physical agents of environmentally related disease. CRC press Boca Raton, New York, 824.
  • Blaylock K.R., 2020. Active air spring control as a method of agricultural sprayer boom system suspension, Iowa State University, Master Theses, Agricultural and Biosystems Engineering, USA, 62.
  • Cui, L.F., Xue, X.Y., Ding, S.M., Le, F.X., 2019. Development of a DSP-based electronic control system for the active spray boom suspension. Comput. Electron. Agric., 166, 105024.
  • Cui, L., Xue, X., Ding, B. Qiao, Le, F., 2017. Analysis and test of dynamic characteristics of large spraying boom and pendulum suspension damping System. Trans. Chin. Soc. Agric. Eng. 33 (9), 61–68.
  • Dudda,W., 2018. Strength analysis of a boom sprayer with the use of CAD/CAE systems. Mechanik, 91 (7), 549–551.
  • Engelen, K., 2008 Passive damping of flexible spray boom structures. Thesis, Katholieke Universiteit Leuven, Faculteit Ingenieurswetenschappen.
  • Ergene, B., Bolat, Ç., 2023. Simulation of Fused Deposition Modeling of Glass Fiber Reinforced ABS Impact Samples: The Effect of Fiber Ratio, Infill Rate, and Infill Pattern on Warpage and Residual Stresses. Hittite Journal of Science and Engineering, 10 (1), 21-31.
  • Gil, E., and Badiola, J., 2007. Design and verification of a portable vertical patternator for vineyard sprayer calibration. American Society of Agricultural and Biological Engineers, 23 (1), 35-42.
  • Griffith, J., Strelioff, B., & Schnaider, J., 2012. The Hockley Index. American Society of Agricultural and Biological Engineers. doi:10.13031/2013.41775.
  • Herbst, A., Osteroth, H.J., Stendel, H., 2018. A novel method for testing automatic systems for controlling the spray boom height. Biosystems Engineering, 174, 115-125.
  • Ilıca, A., Boz, A.F., 2018. Design of a nozzle-height control system using a permanent magnet tubular linear synchronous motor. Tarım Bilimleri Dergisi, 24, 374-385.
  • İtmeç, M., ve Bayat, A., 2017. Comparison of boom design parameters of three different tractor mounted domestically manufactured field crop sprayer booms. Journal of Agricultural Machinery Science, 13 (2), 99-105.
  • Jeon, H.Y., Womac, A.R., Gunn, J., 2004. Sprayer boom dynamic effects on application uniformity. Transactions of the American Society of Agricultural Engineers, 47(3), 647-658.
  • Jing, L., Wei, X,. 2023. Spray deposition and distribution on rice as affected by a boom sprayer with a canopy-opening Device. Agriculture, 13, 94. https://doi.org/10.3390/agriculture13010094
  • Kappaun, R., de Meira Junio, A.D., Walber, M., 2021. Parameters for Modelling Passive Suspensions of Spray Bars. Engenharia Agrícola, 41 (3), 368-378.
  • Koç, C., 2015. Structural analysis of field sprayer booms. Tarım bilimleri Dergisi, 23, 147-155.
  • Kurt, A., 2009, Modelling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks. Expert Syst Appl, 36(6), 9645–9657
  • Lipinski, A.J., Lipinski, S., Burg, P., Sobotka, S.M., 2022. Influence of the instability of the field crop sprayer boom on the spraying uniformity. Journal of Agriculture and Food Research, 10, 10432.
  • Langenakens, J.J., Clijmans, L., Ramon, H., De Baerdemaeker, J., 1999. The effects of vertical sprayer boom movements on the uniformity of spray distribution. J. Agric. Eng. Res., 74 (3), 281–291.
  • Mahendran, M., 2007. Applications of finite element analysis in structural engineering:In Siva Prasad, N. and Sekar, A.S. and Krishnapillai, S., Eds. Proceedings International Conference on Computer Aided Engineering, India, 38-46,
  • Manea, D., Gidea, M., Marin, E., Mateescu, M., 2018. Simulation of mechanical parameters of sprayer boom. Engineering for Ryral Development, 23, 45-53.
  • Miles, L.T., 2018. Developing general procedure to quantitatively analyze boom height control performance on self-propelled agricultural sprayers. Iowa State University, Agricultural Engineering, Graduate Thesis, USA, 86.
  • Önallar, 2022. Agricaltural spreyers, Erişim: https://onallar.com.tr/#0 (12.03.2023).
  • Tang, L., Huang, J., Xie, L., 2011. Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool. Int J Adv Manuf Technol., 53, 1167–1181.
  • Yan, J., Xue, X., Cui, L., Ding, S., Gu, W., Le, F., 2021. Analysis of dynamic behavior of spray boom under step excitation. Appl. Sci., 11, 10129.
  • Wu, J., Miao, Y., 2016. Dynamic characteristic analysis of boom for wide sprayer with different exciting sources. Trans. Chin. Soc. Agric. Eng.,28, 39–44.
  • Yalçın, B. , Ergene, B. & Nar, S. 2019. 1.2367 takım çeliğinden imal edilmiş enjeksiyon yolluk burcunda hasar analizi ve geometrik tasarımda iyileştirme ile hasarı önleme. Uluslararası Teknolojik Bilimler Dergisi, 11 (3), 137-146.
  • Yalçın, B., Yılmaz, N., Kurt, A., 2018. Tool stresses in soft and hard finish turning with low content CBN tool by finite elements analysis. ACTA Physica Polonica A, 134 (1), 48-56.
  • Zang, B., Bagchi, A., 1994. Finite element simulation of chip formation and comparison with machining experiment. J Eng Ind., 116, 289–297.
  • Zhuang, T., Yang, X., Dong, X., Zhang, T., Yan, H., Sun, X., 2018. Research status and development trend of large self-propelled sprayer booms. Trans. Chin. Soc. Agric., 49, 189–198.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Hacı Erdoğan 0009-0002-7391-4500

Ahmet Sayrugaç 0009-0000-3157-6975

Bekir Yalçın 0000-0002-3784-7251

Project Number ONAL–T–2022–005
Early Pub Date June 22, 2023
Publication Date June 28, 2023
Submission Date March 15, 2023
Published in Issue Year 2023 Volume: 23 Issue: 3

Cite

APA Erdoğan, H., Sayrugaç, A., & Yalçın, B. (2023). Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(3), 797-810. https://doi.org/10.35414/akufemubid.1264988
AMA Erdoğan H, Sayrugaç A, Yalçın B. Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2023;23(3):797-810. doi:10.35414/akufemubid.1264988
Chicago Erdoğan, Hacı, Ahmet Sayrugaç, and Bekir Yalçın. “Tarımsal İlaçlamada X Tipi Katlanabilen Ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini Ve Taguchi Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 3 (June 2023): 797-810. https://doi.org/10.35414/akufemubid.1264988.
EndNote Erdoğan H, Sayrugaç A, Yalçın B (June 1, 2023) Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 3 797–810.
IEEE H. Erdoğan, A. Sayrugaç, and B. Yalçın, “Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 3, pp. 797–810, 2023, doi: 10.35414/akufemubid.1264988.
ISNAD Erdoğan, Hacı et al. “Tarımsal İlaçlamada X Tipi Katlanabilen Ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini Ve Taguchi Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/3 (June 2023), 797-810. https://doi.org/10.35414/akufemubid.1264988.
JAMA Erdoğan H, Sayrugaç A, Yalçın B. Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:797–810.
MLA Erdoğan, Hacı et al. “Tarımsal İlaçlamada X Tipi Katlanabilen Ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini Ve Taguchi Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 3, 2023, pp. 797-10, doi:10.35414/akufemubid.1264988.
Vancouver Erdoğan H, Sayrugaç A, Yalçın B. Tarımsal İlaçlamada X tipi Katlanabilen ve Geleneksel Kanatlarda Oluşan Gerilme-Gerinimin Tahmini ve Taguchi Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(3):797-810.