Review
BibTex RIS Cite

Use of Arbuscular Mycorrhiza in Ornamental Plants

Year 2022, Volume: 36 Issue: 2, 479 - 497, 01.12.2022
https://doi.org/10.20479/bursauludagziraat.1036947

Abstract

Today, many applications are made to increase flower yield in order to meet the high demand in the
flower sector. However, chemical applications to increase productivity both require high costs and cause
irreversible damages by disrupting the physical and chemical balance of the soil. For this reason, it is aimed to reduce the use of chemical fertilizers and pesticides with various microorganisms called biofertilizers, which provide a more economical and environmentally friendly fertilization opportunity, to increase yield, resistance to biotic and abiotic stresses in flowers. One of the mentioned microorganisms is mycorrhizal fungi. These fungi, which have been researched for many years but have been studied more in recent years, have maintained a mutualistic life with plant roots, enabling the plant to grow more durable, obtaining higher yields from the plant, and prolonging the vase life in cut floriculture, which has a large share in the floriculture sector. In this review, it is aimed to bring together the researches on the yield of ornamental plants with mycorrhizal fungi and for researchers who want to work with these fungi in the future, by looking at this review, to see the studies in a single source.

References

  • Abdel-Salam, E., Alatar, A. and El-Sheikh, M.A. 2018. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi journal of biological sciences, 25(8), 1772-1780.
  • Aboul-Nasr, A. 1995. Effects of vesicular-arbuscular mycorrhiza on Tagetes erecta and Zinnia elegans. Mycorrhiza, 6(1), 61-64.
  • Akat, H. 2020. Effects of mycorrhizal inoculation on growth and some quality parameters of Matthiola incana (L.) cultivation under salt stress. Journal of Environmental Biology, 41(2), 375-381.
  • Al-Karaki, G.N. and Al-Raddad, A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7(2), 83-88.
  • Anonymous, 2021. https://www.supagro.fr/ress-pepites/processusecologiques/co/SymbiosesMycorhizienne.html. Erişim tarihi: 15.12.2021
  • Asrar, A.A., Abdel-Fattah, G.M. and Elhindi, K.M. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50(2), 305-316.
  • Asrar, A.W.A.,and Elhindi, K.M. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi journal of biological sciences, 18(1), 93-98.
  • Bagy Araji, D. J. and Powell, C.L. 1985. Effect of vesicular-arbuscular mycorrhizal inoculation and fertiliser application on the growth of marigold. New Zealand journal of agricultural research, 28(1), 169-173.
  • Besmer, Y.L. and Koide, R.T. 1999. Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers. Mycorrhiza, 9(3), 161-166.
  • Birhane, E., Sterck, F.J., Fetene, M., Bongers, F., and Kuyper, T.W. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169(4), 895-904.
  • Cairney, J.W.G. 2000. Evolution of mycorrhiza systems. Naturwissenschaften, 87(11), 467-475.
  • Cardon Z.G. and J.L. Whitbeck. 2007. The rhizosphere. Elsevier Academic Press., 235 pp.
  • Conversa, G., Bonasia, A., Lazzizera, C. and Elia, A. 2015. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Frontiers in plant science, 6, 429.
  • Çığ, A., Gülser, F., Başdoğan, G. and Gülser, E. 2014. Effects of mycorrhiza on growth of Narcissus tazetta (L.) under salt stress. In The International Congress on Green Infrastructure and Sustainable Societies/Cities (GREINSUS), (pp. 08-10).
  • Elhindi, K.M., Al-Mana, F.A., El-Hendawy, S., Al-Selwey, W.A. and Elgorban, A.M. 2018. Arbuscular mycorrhizal fungi mitigates heavy metal toxicity adverse effects in sewage water contaminated soil on Tagetes erecta L. Soil Science and Plant Nutrition, 64(5), 662-668.
  • Engel, R., Szabo, K., Abranko, L., Rendes, K., Füzy, A. and Takács, T. 2016. Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. Journal of agricultural and food chemistry, 64(19), 3733-3742.
  • Ferrante, A., Hunter, D.A., Hackett, W.P. and Reid, M.S. 2002. Thidiazuron—a potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biology and Technology, 25(3), 333-338.
  • Flores, A.C., Luna, A.A.E. and Portugal, V.O. 2007. Yield and quality enhancement of marigold flowers by inoculation with Bacillus subtilis and Glomus fasciculatum. Journal of Sustainable Agriculture, 31(1), 21-31.
  • Garmendia, I., Goicoechea, N. and Aguirreolea, J. 2004a. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biological Control, 31(3), 296-305.
  • Garmendia, I., Goicoechea, N. and Aguirreolea, J. 2004b. Antioxidant Metabolism in Asymptomatic Leaves of Verticillium‐infected Pepper Associated with an Arbuscular Mycorrhizal Fungus. Journal of phytopathology, 152(11‐12), 593-599.
  • Garmendia, I. and Mangas, V.J. 2012. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish Journal of Agricultural Research, (1), 166-174.
  • Gaur, A. and Adholeya, A. 2005. Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. Journal of plant Nutrition, 28(4), 707-723.
  • Gaur, A., Gaur, A. and Adholeya, A. 2000. Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Scientia Horticulturae, 84(1-2), 151-162.
  • Giri, B., Kapoor, R. and Mukerji, K.G. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial ecology, 54(4), 753-760.
  • Goicoechea, N., Antolin, M.C. and Sánchez-Díaz, M. 1997. Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant and soil, 192(2), 261-268.
  • Grover, M., Ali, S.Z., Sandhya, V., Rasul, A. and Venkateswarlu, B. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27(5), 1231-1240.
  • Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Wirth, S. and Egamberdieva, D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in microbiology, 7, 1089.
  • Heijden van der, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken A. and Sanders, I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature., 396: 69-72.
  • Jamshidi, M., Hadavi, E. and Naderi, R. 2012. Effects of salicylic acid and malic acid on vase life and bacterial and yeast populations of preservative solution in cut gerbera flowers. International Journal of AgriScience, 2(8), 671-674.
  • Janowska, B. and Andrzejak, R. 2017. Effect of mycorrhizal inoculation on development and flowering of Tagetes patula L.‘Yellow Boy’and Salvia splendens Buc’hoz ex Etl.‘Saluti Red’. Acta agrobotanica, 70(2), 1703.
  • Kuldeep Yadav, K., Tanwar, A. and Aggarwal, A. 2015. Impact of arbuscular mycorrhizal fungi and Pseudomonas fluorescens with various levels of superphosphate on growth enhancement and flowering response of Gerbera. Journal of Ornamental Plants, 3(3), 161-170.
  • Kumar, S. and Gupta, A. K. 2013. Influence of arbuscular mycorrhiza, gibberellic acid and kinetin on growth, quality parameters and petal senescence in gladiolus cv. Jessica. Indian Journal of Horticulture, 70(1), 82-89.
  • Lin, X., George, E. and Marschner, H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil., 136: 41-48.
  • Long, L.K., Yao, Q., Huang, Y.H., Yang, R.H., Guo, J. and Zhu, H.H. 2010. Effects of arbuscular mycorrhizal fungi on zinnia and the different colonization between Gigaspora and Glomus. World Journal of Microbiology and Biotechnology, 26(8), 1527-1531.
  • Lu, X.,and Koide, R.T. 1994. The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytologist, 128(2), 211-218.
  • Malloch, D.W., Pirozynski, K.A. and Raven, P.H. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proceedings of the National Academy of Sciences, 77(4), 2113-2118.
  • Matsubara, Y., Ishioka, C., Maya, M. A., Liu, J. and Takami, Y. 2013. Bioregulation potential of arbuscular mycorrhizal fungi on heat stress and anthracnose tolerance in cyclamen. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037(pp. 813-818).
  • Maya, M.A. and Matsubara, Y.I. 2013. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza, 23(5), 381-390.
  • Maya, M.A., Ito, M. and Matsubara, Y. 2012. Tolerance to heat stress and anthracnose in mycorrhizal cyclamen. In International Symposium on Orchids and Ornamental Plants 1025(pp. 143-148).
  • Mohammadi, K. 2011. Soil, plant and microbe interactions. Lambert Academic Publishing., 113 pp.
  • Navarro, A., Elia, A., Conversa, G., Campi, P. and Mastrorilli, M. 2012. Potted mycorrhizal carnation plants and saline stress: growth, quality and nutritional plant responses. Scientia Horticulturae, 140, 131-139.
  • Nazari Deljou, M. J., Marouf, A. and Jaberian Hamedan, H. 2013. Effect of inoculation with arbuscular mycorrhizal fungi (AMF) on Gerbera cut flower (Gerbera jamesonii) production in soilless cultivation. In International Symposium on Growing Media and Soilless Cultivation 1034(pp. 417-422).
  • Nowak, J. 2004. Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilization on Growth, Flowering, Nutrient Uptake, Photosynthesis and Transpiration of Geranium (Pelargonium hortorum LH Bailey ‘Tango Orange’. Symbiosis.
  • Perner, H., Schwarz, D., Bruns, C., Mäder, P. and George, E. 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17(5), 469-474.
  • Philip, L. J., Posluszny, U. and Klironomos, J. N. 2001. The influence of mycorrhizal colonization on the vegetative growth and sexual reproductive potential of Lythrum salicaria L. Canadian Journal of Botany, 79(4), 381-388.
  • Prasad, K., Aggarwal, A., Yadav, K. and Tanwar, A. 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. Journal of soil science and plant nutrition, 12(3), 451-462.
  • Rakbar, S., Jabbarzadeh, Z. and Barin, M. 2022. Effect of Putrescine and Mycorrhiza on Growth, Photosynthesis and Vase Life of Gerbera (Gerbera jamesonii) ‘Dune’ Flowers in Hydroponic Conditions. Journal Of Horticultural Science, 35(1), 117-133.
  • Rao, G. V., Manoharachary, C. and Rao, B. R. 2002. Beneficial influence of arbuscular mycorrhizal fungal association on growth, yield and nutrient uptake of rose-scented geranium (Pelargonium species). Philippine Journal of Science, 131(1), 49-58.
  • Read, D.J. 1999. Mycorrhiza—the state of the art. In Mycorrhiza (pp. 3-34). Springer, Berlin, Heidelberg.
  • Rondina, A.B.L., Lescano, L.E.A.M., de Almeida Alves, R., Matsuura, E.M., Nogueira, M.A. and Zangaro, W. 2014. Arbuscular mycorrhizas increase survival, precocity and flowering of herbaceous and shrubby species of early stages of tropical succession in pot cultivation. Journal of Tropical Ecology, 599-614.
  • Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M. and Colla, G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae,196, 91-108.
  • Saini, I., Aggarwal, A. and Kaushik, P. 2019a. Inoculation with mycorrhizal fungi and other microbes to improve the morpho-physiological and floral traits of Gazania rigens (L.) Gaertn. Agriculture, 9(3), 51.
  • Saini, I., Yadav, K. and Aggarwal, A. 2019b. Response of arbuscular mycorrhizal fungi along with Trichoderma viride and Pseudomonas fluorescens on the growth, biochemical attributes and vase life of Chrysanthemum indicum. Journal of Environmental Biology, 40(2), 183-191.
  • Sánchez-Díaz, M., Pardo, M., Antolin, M., Peña, J. and Aguirreolea, J. 1990. Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science, 71(2), 215-221.
  • Scagel, C.F. 2003. Inoculation with arbuscular mycorrhizal fungi alters nutrient allocation and flowering of Freesia x hybrida.
  • Scagel, C.F. 2004a. Inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobacteria alters nutrient allocation and flowering of harlequin flower. HortTechnology, 14(1), 39-48.
  • Scagel, C.F. 2004b. Soil Pasteurization and Mycorrhizal Inoculation Alter Flower Production and Corm Composition of Brodiaea laxa 'Queen Fabiola'. HortScience, 39(6), 1432-1437.
  • Scagel, C.F.,and Schreiner, R.P. 2006. Phosphorus supply alters tuber composition, flower production, and mycorrhizal responsiveness of container-grown hybrid Zantedeschia. Plant and Soil, 283(1), 323-337.
  • Sezen, I. ve Akpınar Külekçi, E. 2020. Süs Bitkilerinin Gelişim Parametreleri Üzerine Bitki Gelişimini Teşvik Eden Bakterilerin Etkisi. Bursa Uludag Üniv. Ziraat Fak. Derg., 34(Özel Sayı), s. 9-20.
  • Shen, H., Christie, P. and Li, X. 2006. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 28(1-2), 111.
  • Sirisha, B., Naik, M. R., Sudhakar, P. and Gopal, K. 2017. Influence of plant growth promoters and arbuscular mycorrhizal fungi (AMF) on growth, flowering and biochemical attributes of gladiolus cv Arka Amar. International Journal of Farm Sciences, 7(2), 83-87.
  • Smith, S.E. and D. Read, 2008. Mycorrhizal symbiosis. Elsevier Academic Press., 815 pp.
  • Sohn, B.K., Kim, K.Y., Chung, S.J., Kim, W.S., Park, S.M., Kang, J.G., Rim, Y.S., Cho, J.S., Kim, T.H., and Lee, J.H. 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Scientia Horticulturae, 98(2), 173-183.
  • Srivastava, R. and Govil, M. 2005. Influence of biofertilizers on growth and flowering in gladiolus cv. American Beauty. In International Conference and Exhibition on Soilless Culture: ICESC 2005 742, (pp. 183-188).
  • Tognon, G.B., Sanmartín, C., Alcolea, V., Cuquel, F.L. and Goicoechea, N. 2016. Mycorrhizal inoculation and/or selenium application affect post-harvest performance of snapdragon flowers. Plant growth regulation, 78(3), 389-400.
  • Vaingankar, J.D. and Rodrigues, B.F. 2015. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. Journal of Plant Nutrition, 38(10), 1478-1488.
  • Vaingankar, J.D. and Rodrigues, B.F. 2012. Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae. Biological Agriculture and Horticulture, 28(3), 167-176.
  • Venkateswarlu, B. and Shanker, A.K. 2009. Climate change and agriculture: adaptation and mitigation stategies. Indian Journal of Agronomy, 54(2), 226.
  • Xie, M. and Wu, Q. 2017. Mycorrhiza modulates morphology, color and duration of flowers in hyacinth. Biotechnology, 16(3): 116-122.
  • Xie, M.M. and Wu, Q.S. 2018. Arbuscular mycorrhizal fungi regulate flowering of hyacinths orientalis I. Anna marie. Emirates Journal of Food and Agriculture, 144-149.
  • Younis, A., Riaz, A., Ikram, S., Nawaz, T., Hameed, M., Fatima, S. and Ahmad, F. 2013. Salinity-induced structural and functional changes in 3 cultivars of Alternanthera bettzickiana (Regel) G. Nicholson. Turkish Journal of Agriculture and Forestry, 37(6), 674-687.
  • Zaidi, A., Khan, M.S., Ahmad, E., Saif, S., Rizvi, A. and Shahid, M. 2016. Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective. Acta Physiologiae Plantarum, 38(5), 1-21.

Süs Bitkilerinde Arbüskülar Mikoriza Kullanımı

Year 2022, Volume: 36 Issue: 2, 479 - 497, 01.12.2022
https://doi.org/10.20479/bursauludagziraat.1036947

Abstract

Günümüzde, çiçek sektöründeki yüksek talebin karşılanabilmesi için çiçek verimini artırmaya yönelik
birçok uygulama yapılmaktadır. Ancak verimi artırmaya yönelik yapılan kimyasal uygulamalar, hem maliyeti yükseltmekte hem de toprağın fiziksel ve kimyasal dengesini bozarak geri dönüşü olmayan zararlara sebep olmaktadır. Bu yüzden daha ekonomik ve çevre dostu bir gübreleme imkanı sunan ve biyogübre olarak adlandırılan çeşitli mikroorganizmalar kullanılmaktadır. Böylece kimyasal gübre ve pestisit kullanımının azaltılması ile çiçeklerin verim, biyotik ve abiyotik streslere dayanıklılığının artırılması amaçlanmaktadır. Bu hedefle kullanılan mikroorganizmalardan biri de mikoriza mantarlarıdır. Bu mantarlar uzun yıllardır araştırılmakta olup, son yıllarda daha çok çalışmaya konu olmuştur. Mikoriza mantarları bitki kökleriyle mutualist bir yaşam sürdürerek, bitkinin daha sağlıklı büyümesini, bitkiden daha yüksek verim alınmasını, çiçekçilik sektöründe büyük bir paya sahip olan kesme çiçeklerde ise vazo ömrünün uzatılmasını sağlamaktadır. Bu derleme çalışmasında, mikorizal mantarların süs bitkilerinde kullanım alanları ile verim ve kalite üzerindeki etkileri üzerinde yapılan araştırmalar incelenerek, bir araya getirilmiştir. Bu sayede konu ile ilgili çalışmak isteyen araştırıcılara yol gösterecek bir kaynak oluşturulması amaçlanmıştır.

References

  • Abdel-Salam, E., Alatar, A. and El-Sheikh, M.A. 2018. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi journal of biological sciences, 25(8), 1772-1780.
  • Aboul-Nasr, A. 1995. Effects of vesicular-arbuscular mycorrhiza on Tagetes erecta and Zinnia elegans. Mycorrhiza, 6(1), 61-64.
  • Akat, H. 2020. Effects of mycorrhizal inoculation on growth and some quality parameters of Matthiola incana (L.) cultivation under salt stress. Journal of Environmental Biology, 41(2), 375-381.
  • Al-Karaki, G.N. and Al-Raddad, A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7(2), 83-88.
  • Anonymous, 2021. https://www.supagro.fr/ress-pepites/processusecologiques/co/SymbiosesMycorhizienne.html. Erişim tarihi: 15.12.2021
  • Asrar, A.A., Abdel-Fattah, G.M. and Elhindi, K.M. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50(2), 305-316.
  • Asrar, A.W.A.,and Elhindi, K.M. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi journal of biological sciences, 18(1), 93-98.
  • Bagy Araji, D. J. and Powell, C.L. 1985. Effect of vesicular-arbuscular mycorrhizal inoculation and fertiliser application on the growth of marigold. New Zealand journal of agricultural research, 28(1), 169-173.
  • Besmer, Y.L. and Koide, R.T. 1999. Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers. Mycorrhiza, 9(3), 161-166.
  • Birhane, E., Sterck, F.J., Fetene, M., Bongers, F., and Kuyper, T.W. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169(4), 895-904.
  • Cairney, J.W.G. 2000. Evolution of mycorrhiza systems. Naturwissenschaften, 87(11), 467-475.
  • Cardon Z.G. and J.L. Whitbeck. 2007. The rhizosphere. Elsevier Academic Press., 235 pp.
  • Conversa, G., Bonasia, A., Lazzizera, C. and Elia, A. 2015. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Frontiers in plant science, 6, 429.
  • Çığ, A., Gülser, F., Başdoğan, G. and Gülser, E. 2014. Effects of mycorrhiza on growth of Narcissus tazetta (L.) under salt stress. In The International Congress on Green Infrastructure and Sustainable Societies/Cities (GREINSUS), (pp. 08-10).
  • Elhindi, K.M., Al-Mana, F.A., El-Hendawy, S., Al-Selwey, W.A. and Elgorban, A.M. 2018. Arbuscular mycorrhizal fungi mitigates heavy metal toxicity adverse effects in sewage water contaminated soil on Tagetes erecta L. Soil Science and Plant Nutrition, 64(5), 662-668.
  • Engel, R., Szabo, K., Abranko, L., Rendes, K., Füzy, A. and Takács, T. 2016. Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. Journal of agricultural and food chemistry, 64(19), 3733-3742.
  • Ferrante, A., Hunter, D.A., Hackett, W.P. and Reid, M.S. 2002. Thidiazuron—a potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biology and Technology, 25(3), 333-338.
  • Flores, A.C., Luna, A.A.E. and Portugal, V.O. 2007. Yield and quality enhancement of marigold flowers by inoculation with Bacillus subtilis and Glomus fasciculatum. Journal of Sustainable Agriculture, 31(1), 21-31.
  • Garmendia, I., Goicoechea, N. and Aguirreolea, J. 2004a. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biological Control, 31(3), 296-305.
  • Garmendia, I., Goicoechea, N. and Aguirreolea, J. 2004b. Antioxidant Metabolism in Asymptomatic Leaves of Verticillium‐infected Pepper Associated with an Arbuscular Mycorrhizal Fungus. Journal of phytopathology, 152(11‐12), 593-599.
  • Garmendia, I. and Mangas, V.J. 2012. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish Journal of Agricultural Research, (1), 166-174.
  • Gaur, A. and Adholeya, A. 2005. Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. Journal of plant Nutrition, 28(4), 707-723.
  • Gaur, A., Gaur, A. and Adholeya, A. 2000. Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Scientia Horticulturae, 84(1-2), 151-162.
  • Giri, B., Kapoor, R. and Mukerji, K.G. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial ecology, 54(4), 753-760.
  • Goicoechea, N., Antolin, M.C. and Sánchez-Díaz, M. 1997. Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant and soil, 192(2), 261-268.
  • Grover, M., Ali, S.Z., Sandhya, V., Rasul, A. and Venkateswarlu, B. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27(5), 1231-1240.
  • Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Wirth, S. and Egamberdieva, D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in microbiology, 7, 1089.
  • Heijden van der, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken A. and Sanders, I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature., 396: 69-72.
  • Jamshidi, M., Hadavi, E. and Naderi, R. 2012. Effects of salicylic acid and malic acid on vase life and bacterial and yeast populations of preservative solution in cut gerbera flowers. International Journal of AgriScience, 2(8), 671-674.
  • Janowska, B. and Andrzejak, R. 2017. Effect of mycorrhizal inoculation on development and flowering of Tagetes patula L.‘Yellow Boy’and Salvia splendens Buc’hoz ex Etl.‘Saluti Red’. Acta agrobotanica, 70(2), 1703.
  • Kuldeep Yadav, K., Tanwar, A. and Aggarwal, A. 2015. Impact of arbuscular mycorrhizal fungi and Pseudomonas fluorescens with various levels of superphosphate on growth enhancement and flowering response of Gerbera. Journal of Ornamental Plants, 3(3), 161-170.
  • Kumar, S. and Gupta, A. K. 2013. Influence of arbuscular mycorrhiza, gibberellic acid and kinetin on growth, quality parameters and petal senescence in gladiolus cv. Jessica. Indian Journal of Horticulture, 70(1), 82-89.
  • Lin, X., George, E. and Marschner, H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil., 136: 41-48.
  • Long, L.K., Yao, Q., Huang, Y.H., Yang, R.H., Guo, J. and Zhu, H.H. 2010. Effects of arbuscular mycorrhizal fungi on zinnia and the different colonization between Gigaspora and Glomus. World Journal of Microbiology and Biotechnology, 26(8), 1527-1531.
  • Lu, X.,and Koide, R.T. 1994. The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytologist, 128(2), 211-218.
  • Malloch, D.W., Pirozynski, K.A. and Raven, P.H. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proceedings of the National Academy of Sciences, 77(4), 2113-2118.
  • Matsubara, Y., Ishioka, C., Maya, M. A., Liu, J. and Takami, Y. 2013. Bioregulation potential of arbuscular mycorrhizal fungi on heat stress and anthracnose tolerance in cyclamen. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037(pp. 813-818).
  • Maya, M.A. and Matsubara, Y.I. 2013. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza, 23(5), 381-390.
  • Maya, M.A., Ito, M. and Matsubara, Y. 2012. Tolerance to heat stress and anthracnose in mycorrhizal cyclamen. In International Symposium on Orchids and Ornamental Plants 1025(pp. 143-148).
  • Mohammadi, K. 2011. Soil, plant and microbe interactions. Lambert Academic Publishing., 113 pp.
  • Navarro, A., Elia, A., Conversa, G., Campi, P. and Mastrorilli, M. 2012. Potted mycorrhizal carnation plants and saline stress: growth, quality and nutritional plant responses. Scientia Horticulturae, 140, 131-139.
  • Nazari Deljou, M. J., Marouf, A. and Jaberian Hamedan, H. 2013. Effect of inoculation with arbuscular mycorrhizal fungi (AMF) on Gerbera cut flower (Gerbera jamesonii) production in soilless cultivation. In International Symposium on Growing Media and Soilless Cultivation 1034(pp. 417-422).
  • Nowak, J. 2004. Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilization on Growth, Flowering, Nutrient Uptake, Photosynthesis and Transpiration of Geranium (Pelargonium hortorum LH Bailey ‘Tango Orange’. Symbiosis.
  • Perner, H., Schwarz, D., Bruns, C., Mäder, P. and George, E. 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17(5), 469-474.
  • Philip, L. J., Posluszny, U. and Klironomos, J. N. 2001. The influence of mycorrhizal colonization on the vegetative growth and sexual reproductive potential of Lythrum salicaria L. Canadian Journal of Botany, 79(4), 381-388.
  • Prasad, K., Aggarwal, A., Yadav, K. and Tanwar, A. 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. Journal of soil science and plant nutrition, 12(3), 451-462.
  • Rakbar, S., Jabbarzadeh, Z. and Barin, M. 2022. Effect of Putrescine and Mycorrhiza on Growth, Photosynthesis and Vase Life of Gerbera (Gerbera jamesonii) ‘Dune’ Flowers in Hydroponic Conditions. Journal Of Horticultural Science, 35(1), 117-133.
  • Rao, G. V., Manoharachary, C. and Rao, B. R. 2002. Beneficial influence of arbuscular mycorrhizal fungal association on growth, yield and nutrient uptake of rose-scented geranium (Pelargonium species). Philippine Journal of Science, 131(1), 49-58.
  • Read, D.J. 1999. Mycorrhiza—the state of the art. In Mycorrhiza (pp. 3-34). Springer, Berlin, Heidelberg.
  • Rondina, A.B.L., Lescano, L.E.A.M., de Almeida Alves, R., Matsuura, E.M., Nogueira, M.A. and Zangaro, W. 2014. Arbuscular mycorrhizas increase survival, precocity and flowering of herbaceous and shrubby species of early stages of tropical succession in pot cultivation. Journal of Tropical Ecology, 599-614.
  • Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M. and Colla, G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae,196, 91-108.
  • Saini, I., Aggarwal, A. and Kaushik, P. 2019a. Inoculation with mycorrhizal fungi and other microbes to improve the morpho-physiological and floral traits of Gazania rigens (L.) Gaertn. Agriculture, 9(3), 51.
  • Saini, I., Yadav, K. and Aggarwal, A. 2019b. Response of arbuscular mycorrhizal fungi along with Trichoderma viride and Pseudomonas fluorescens on the growth, biochemical attributes and vase life of Chrysanthemum indicum. Journal of Environmental Biology, 40(2), 183-191.
  • Sánchez-Díaz, M., Pardo, M., Antolin, M., Peña, J. and Aguirreolea, J. 1990. Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science, 71(2), 215-221.
  • Scagel, C.F. 2003. Inoculation with arbuscular mycorrhizal fungi alters nutrient allocation and flowering of Freesia x hybrida.
  • Scagel, C.F. 2004a. Inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobacteria alters nutrient allocation and flowering of harlequin flower. HortTechnology, 14(1), 39-48.
  • Scagel, C.F. 2004b. Soil Pasteurization and Mycorrhizal Inoculation Alter Flower Production and Corm Composition of Brodiaea laxa 'Queen Fabiola'. HortScience, 39(6), 1432-1437.
  • Scagel, C.F.,and Schreiner, R.P. 2006. Phosphorus supply alters tuber composition, flower production, and mycorrhizal responsiveness of container-grown hybrid Zantedeschia. Plant and Soil, 283(1), 323-337.
  • Sezen, I. ve Akpınar Külekçi, E. 2020. Süs Bitkilerinin Gelişim Parametreleri Üzerine Bitki Gelişimini Teşvik Eden Bakterilerin Etkisi. Bursa Uludag Üniv. Ziraat Fak. Derg., 34(Özel Sayı), s. 9-20.
  • Shen, H., Christie, P. and Li, X. 2006. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 28(1-2), 111.
  • Sirisha, B., Naik, M. R., Sudhakar, P. and Gopal, K. 2017. Influence of plant growth promoters and arbuscular mycorrhizal fungi (AMF) on growth, flowering and biochemical attributes of gladiolus cv Arka Amar. International Journal of Farm Sciences, 7(2), 83-87.
  • Smith, S.E. and D. Read, 2008. Mycorrhizal symbiosis. Elsevier Academic Press., 815 pp.
  • Sohn, B.K., Kim, K.Y., Chung, S.J., Kim, W.S., Park, S.M., Kang, J.G., Rim, Y.S., Cho, J.S., Kim, T.H., and Lee, J.H. 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Scientia Horticulturae, 98(2), 173-183.
  • Srivastava, R. and Govil, M. 2005. Influence of biofertilizers on growth and flowering in gladiolus cv. American Beauty. In International Conference and Exhibition on Soilless Culture: ICESC 2005 742, (pp. 183-188).
  • Tognon, G.B., Sanmartín, C., Alcolea, V., Cuquel, F.L. and Goicoechea, N. 2016. Mycorrhizal inoculation and/or selenium application affect post-harvest performance of snapdragon flowers. Plant growth regulation, 78(3), 389-400.
  • Vaingankar, J.D. and Rodrigues, B.F. 2015. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. Journal of Plant Nutrition, 38(10), 1478-1488.
  • Vaingankar, J.D. and Rodrigues, B.F. 2012. Screening for efficient AM (arbuscular mycorrhizal) fungal bioinoculants for two commercially important ornamental flowering plant species of Asteraceae. Biological Agriculture and Horticulture, 28(3), 167-176.
  • Venkateswarlu, B. and Shanker, A.K. 2009. Climate change and agriculture: adaptation and mitigation stategies. Indian Journal of Agronomy, 54(2), 226.
  • Xie, M. and Wu, Q. 2017. Mycorrhiza modulates morphology, color and duration of flowers in hyacinth. Biotechnology, 16(3): 116-122.
  • Xie, M.M. and Wu, Q.S. 2018. Arbuscular mycorrhizal fungi regulate flowering of hyacinths orientalis I. Anna marie. Emirates Journal of Food and Agriculture, 144-149.
  • Younis, A., Riaz, A., Ikram, S., Nawaz, T., Hameed, M., Fatima, S. and Ahmad, F. 2013. Salinity-induced structural and functional changes in 3 cultivars of Alternanthera bettzickiana (Regel) G. Nicholson. Turkish Journal of Agriculture and Forestry, 37(6), 674-687.
  • Zaidi, A., Khan, M.S., Ahmad, E., Saif, S., Rizvi, A. and Shahid, M. 2016. Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective. Acta Physiologiae Plantarum, 38(5), 1-21.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production
Journal Section Review
Authors

Yağmur Olgaç 0000-0001-6987-7052

Rezzan Kasım 0000-0002-2279-4767

Mehmet Ufuk Kasım 0000-0003-2976-7320

Publication Date December 1, 2022
Submission Date December 22, 2021
Published in Issue Year 2022 Volume: 36 Issue: 2

Cite

APA Olgaç, Y., Kasım, R., & Kasım, M. U. (2022). Süs Bitkilerinde Arbüskülar Mikoriza Kullanımı. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 479-497. https://doi.org/10.20479/bursauludagziraat.1036947

TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.

Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.



Makale başvurusunda;

(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)

(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),

(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)

(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,

(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.

Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür. 


25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.