BibTex RIS Cite

Predicting the effects of the inter-row sweep wide and speed on the draft force and soil throw by using discrete element modeling

Year 2018, Volume: 7 Issue: 1, 34 - 41, 01.03.2018

Abstract

Soil throws and draft force are important performance indicators of inter-row cultivators. These parameters of an inter-row cultivator were significantly affected by wide and speed of sweep. In this study, the Discrete Element Model DEM developed by using the parallel bond contact model PBCM of PFC3D was used to evaluate if the model could simulate the draft force and the soil throw distance of the inter-row sweeps at different width 150, 280, 330 mm and working speeds 0.75, 1.53, 2.22 m s-1 . The stiffness of soil particles used in DEM was calibrated as 3.0 x 103 N m-1 by comparing the simulated draft force of medium inter-row sweep at 1.53 m s-1 working speed with the experiment results in an indoor soil bin with a sandy loam soil. The calibrated model was then used to compare the simulated draft force and the soil throw distance of inter-row sweeps at different width and working speeds with experiment results under same condition. Results showed that the relative errors of the simulated draft force of sweeps at different working widths and speeds were less than 8%, which proved that DEM was an effective way to predict the draft force of sweeps. However, this developed model resulted in significantly lower soil throw distance than the measured value

References

  • [1] Home M. (2003). An Investigation into the Design of Cultivation Systems for Inter- and Intra-Row Weed Control, Ph.D. Thesis, Cranfield University, U.K.
  • [2] Hanna H.M., Marley S.J., Erbach D.C., Melvin S.W. (1993). Change in soil microtopography by tillage with a sweep. Transactions of the ASAE, 36(2), 301-307.
  • [3] Kankal U.S., Khmabalkar V.P., Karale D.S., Nage S.M. (2014). Effect of operating speed, moisture content of soil and approach angle of sweep on specific draft and weeding efficiency. International Journal of Engineering Science, 3(6), 1-9.
  • [4] Dowell F.E., Siemeans J.C., Bode L.E. (1988). Cultivator speed and sweep spacing effects on herbicide incorporation. Transactions of the ASAE, 31(5), 1315-1321.
  • [5] Pullen D.W.M., Cowell P.A. (1997). An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. Journal of Agricultural Engineering Research, 67, 27-34.
  • [6] Vilde A. (2003). Up-to-date trends in soil tillage engineering, Polish academy of sciences branch in Lublin. TEKA-Commission of Motorization and Power Industry in Agriculture, 3, 257–62.
  • [7] Gürsoy S., Turgut M.M., Sessiz A. (2015). Toprak-alet etkileşimini belirlemede kullanılan yöntemlerin değerlendirilmesi. 29. Ulusal Tarımsal Mekanizasyon ve Enerji Kongresi, Diyarbakir.
  • [8] Asaf Z., Rubinstein D., Shmulevich I. (2006). Evaluation of link-track performances using DEM, Journal of Terramechanics, 43, 141–161.
  • [9] Chen Y., Munkholm L.J., Nyord T. (2013). A discrete element model for soil–sweep interaction in three different soils, Soil and Tillage Research, 126, 34–41.
  • [10]Gao Q., Chen Y., Zhou H., Sadek M.A. (2015). Simulation of a seed opener using the discrete element method (DEM). Agricultural Engineering International: CIGR Journal., 17(3), 72-82.
  • [11]Cundall P.A., Strack O.D.L. (1979) A Discrete numerical model for granular assemblies, Geotechnique, 29(1), 47-65.
  • [12]Cundall P.A. (1971) A computer model for simulating progressive large scale movements in blocky rock systems, in Proceedings of the Symposium of the International Society of Rock Mechanics (Nancy, France, 1971), Vol. 1, Paper No. II-8.
  • [13]Momozu M., Oida A., Yamazaki M., Koolen A.J. (2003) Simulation of a soil loosening process by means of the modified distinct element method, Journal of Terramechanics, 39, 207–220.
  • [14]Shmulevich I. (2010). State of the art modeling of soil– tillage interaction using discrete element method. Soil and Tillage Research, 111, 41–53.
  • [15]Asaf Z., Rubinstein D., Shmulevich I. (2006). Evaluation of link-track performances using DEM, Journal of Terramechanics, 43, 141–161.
  • [16]Tamás K., Jóri I.J., Mouazen A.M. (2013). Modeling soilsweep interaction with discrete element method. Soil and Tillage Research, 134, 223-231.
  • [17]Gürsoy S., Chen Y., Li B. (2017). Measurement and modelling of soil displacement from sweeps with different cutting widths, Biosystems Engineering, 161, (1-13).
  • [18]Ucgul M., Fielke J.M, Saunders C. (2014). 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil, Soil and Tillage Research, 144, 220– 227.
  • [19]Fielke J.U., Ucgul M., Saunders C. (2013). Discrete element modeling of soil-implement interaction considering soil plasticity, cohesion, and adhesion, ASABE Paper No. 131618800. St. Joseph, Mich.: ASABE.
  • [20]Sadek M.A., Chen Y. (2015). Feasibility of using PFC3D to simulate soil flow resulting from a simple soil-engaging tool, Transactions of the ASABE, 58 (4), 987-996.
  • [21]Van der Linde J. (2007). Discrete element modeling of a vibratory subsoiler, M.Sc. Thesis, Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Matieland, South Africa.
  • [22]ITASCA ( 2015). Particle flow code in 3 dimensions (PFC3D) version 5.0. Itasca Consulting Group, Inc., Minneapolis, Minnesota, USA.
  • [23]Godwin R.J. (2007). A review of the effect of implement geometry on soil failure and implement forces. Soil and Tillage Research, 97, 331–340.
  • [24]Gürsoy S., Chen Y. (2017). Evaluation of inter-row sweeps with different working widths, Applied Engineering in Agriculture, 33(3), 307-312.
  • [25]Manuwa S.I. (2009). Performance evaluation of tillage tines operating under different depths in a sandy clay loam soil. Soil and Tillage Research, 103, 399–405.
  • [26] McKyes E. (1985). Soil Cutting and Tillage. New York, USA: Elsevier Science B.V.

Çapa kültivatöründe farklı uç demiri genişliği ve çalışma hızının çeki kuvveti gereksinimi ve toprağı atma mesafesine etkisinin ayrık elamanlar yöntemiyle tahmini

Year 2018, Volume: 7 Issue: 1, 34 - 41, 01.03.2018

Abstract

Toprağı atma mesafesi ve çeki kuvveti gereksinimi, sıra arası çapa makinalarının önemli performans göstergeleri arasında yer almaktadır. Kültivatör uç demiri genişliği ve çalışma hızı bu parametreleri önemli derecede etkilemektedir. Bu çalışmada, ayrık elemanlar yöntemiyle üç boyutlu modelleme yapan PFC3D Particle Flow Code in 3 Dimensions ’nin paralel bağlı kontak modelleme yöntemi kullanılarak geliştirilen modelin, farklı uç demiri genişliği 150, 280, 330 mm ve çalışma hızlarındaki sıra arası kültivatörlerinin toprağı atma mesafesi ve çeki kuvveti gereksinimlerini tahmin etmede kullanılabilirliği araştırılmıştır. Geliştirilen modelde kullanılan parçacıkların katılığı, 280 mm genişliğindeki üç demirinin 1.53 m s-1 çalışma hızında tahmin edilen çeki kuvveti değerlerinin, kumlu-tınlı bünyeli toprak kanalındaki deneme sonuçlarıyla karşılaştırılmasıyla 3.0 x 103 N m-1 olarak ayarlanmıştır. Ayarlanan model kullanılarak tahmin edilen farklı uç demiri genişliği ve çalışma hızlarındaki sıra arası çapa kültivatörlerinin çeki kuvveti gereksinimleri ve toprağı atma mesafeleri, toprak kanalındaki deneme sonuçlarıyla karşılaştırılarak modelin geçerliliği test edilmiştir. Karşılaştırmalar sonucunda, farklı uç demiri genişlikleri ve çalışma hızlarındaki çeki kuvveti gereksinimlerine ait tahmin ve deneme sonuçları arasındaki hata oranının %8’den daha az olduğu ve ayrık elemanlar modelleme yönteminin kültivatör uç demirlerinin çeki kuvveti gereksinimini tahmin etmede etkili bir şekilde kullanılabileceği görülmüştür. Fakat geliştirilen modelle tahmin edilen toprak atma mesafeleri, denemelerde ölçülen toprak atma mesafelerinden önemli derecede daha düşük olduğu gözlemlenmiştir

References

  • [1] Home M. (2003). An Investigation into the Design of Cultivation Systems for Inter- and Intra-Row Weed Control, Ph.D. Thesis, Cranfield University, U.K.
  • [2] Hanna H.M., Marley S.J., Erbach D.C., Melvin S.W. (1993). Change in soil microtopography by tillage with a sweep. Transactions of the ASAE, 36(2), 301-307.
  • [3] Kankal U.S., Khmabalkar V.P., Karale D.S., Nage S.M. (2014). Effect of operating speed, moisture content of soil and approach angle of sweep on specific draft and weeding efficiency. International Journal of Engineering Science, 3(6), 1-9.
  • [4] Dowell F.E., Siemeans J.C., Bode L.E. (1988). Cultivator speed and sweep spacing effects on herbicide incorporation. Transactions of the ASAE, 31(5), 1315-1321.
  • [5] Pullen D.W.M., Cowell P.A. (1997). An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. Journal of Agricultural Engineering Research, 67, 27-34.
  • [6] Vilde A. (2003). Up-to-date trends in soil tillage engineering, Polish academy of sciences branch in Lublin. TEKA-Commission of Motorization and Power Industry in Agriculture, 3, 257–62.
  • [7] Gürsoy S., Turgut M.M., Sessiz A. (2015). Toprak-alet etkileşimini belirlemede kullanılan yöntemlerin değerlendirilmesi. 29. Ulusal Tarımsal Mekanizasyon ve Enerji Kongresi, Diyarbakir.
  • [8] Asaf Z., Rubinstein D., Shmulevich I. (2006). Evaluation of link-track performances using DEM, Journal of Terramechanics, 43, 141–161.
  • [9] Chen Y., Munkholm L.J., Nyord T. (2013). A discrete element model for soil–sweep interaction in three different soils, Soil and Tillage Research, 126, 34–41.
  • [10]Gao Q., Chen Y., Zhou H., Sadek M.A. (2015). Simulation of a seed opener using the discrete element method (DEM). Agricultural Engineering International: CIGR Journal., 17(3), 72-82.
  • [11]Cundall P.A., Strack O.D.L. (1979) A Discrete numerical model for granular assemblies, Geotechnique, 29(1), 47-65.
  • [12]Cundall P.A. (1971) A computer model for simulating progressive large scale movements in blocky rock systems, in Proceedings of the Symposium of the International Society of Rock Mechanics (Nancy, France, 1971), Vol. 1, Paper No. II-8.
  • [13]Momozu M., Oida A., Yamazaki M., Koolen A.J. (2003) Simulation of a soil loosening process by means of the modified distinct element method, Journal of Terramechanics, 39, 207–220.
  • [14]Shmulevich I. (2010). State of the art modeling of soil– tillage interaction using discrete element method. Soil and Tillage Research, 111, 41–53.
  • [15]Asaf Z., Rubinstein D., Shmulevich I. (2006). Evaluation of link-track performances using DEM, Journal of Terramechanics, 43, 141–161.
  • [16]Tamás K., Jóri I.J., Mouazen A.M. (2013). Modeling soilsweep interaction with discrete element method. Soil and Tillage Research, 134, 223-231.
  • [17]Gürsoy S., Chen Y., Li B. (2017). Measurement and modelling of soil displacement from sweeps with different cutting widths, Biosystems Engineering, 161, (1-13).
  • [18]Ucgul M., Fielke J.M, Saunders C. (2014). 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil, Soil and Tillage Research, 144, 220– 227.
  • [19]Fielke J.U., Ucgul M., Saunders C. (2013). Discrete element modeling of soil-implement interaction considering soil plasticity, cohesion, and adhesion, ASABE Paper No. 131618800. St. Joseph, Mich.: ASABE.
  • [20]Sadek M.A., Chen Y. (2015). Feasibility of using PFC3D to simulate soil flow resulting from a simple soil-engaging tool, Transactions of the ASABE, 58 (4), 987-996.
  • [21]Van der Linde J. (2007). Discrete element modeling of a vibratory subsoiler, M.Sc. Thesis, Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Matieland, South Africa.
  • [22]ITASCA ( 2015). Particle flow code in 3 dimensions (PFC3D) version 5.0. Itasca Consulting Group, Inc., Minneapolis, Minnesota, USA.
  • [23]Godwin R.J. (2007). A review of the effect of implement geometry on soil failure and implement forces. Soil and Tillage Research, 97, 331–340.
  • [24]Gürsoy S., Chen Y. (2017). Evaluation of inter-row sweeps with different working widths, Applied Engineering in Agriculture, 33(3), 307-312.
  • [25]Manuwa S.I. (2009). Performance evaluation of tillage tines operating under different depths in a sandy clay loam soil. Soil and Tillage Research, 103, 399–405.
  • [26] McKyes E. (1985). Soil Cutting and Tillage. New York, USA: Elsevier Science B.V.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Songul Gürsoy

Publication Date March 1, 2018
Published in Issue Year 2018 Volume: 7 Issue: 1

Cite

IEEE S. Gürsoy, “Çapa kültivatöründe farklı uç demiri genişliği ve çalışma hızının çeki kuvveti gereksinimi ve toprağı atma mesafesine etkisinin ayrık elamanlar yöntemiyle tahmini”, DUFED, vol. 7, no. 1, pp. 34–41, 2018.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx