Research Article
BibTex RIS Cite

Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi

Year 2020, Volume: 3 Issue: 2, 83 - 92, 29.12.2020

Abstract

Bu çalışma; Polilaktik asit bazlı biyobozunur bir plastik materyalin toprak ortamında bozunum sürecine kentsel arıtma çamurunun etkisini belirlemek amacıyla yürütülmüştür. Çalışmada; Arıtma çamurunun katı atıkların kontrolü yönetmeliğince izin verilen miktarı, bu miktarın yarısı ve iki katı, 1:1oranı (%50 toprak:%50 arıtma çamuru) ile arıtma çamuru uygulanmayan (kontrol) dozu olmak üzere beş doz belirlenmiş ve biyobozunur plastik levhalarla birlikte toprağa uygulanmıştır. Dört aylık inkübasyonun 15’er günlük periyotlarında örneklemeler yapılarak biyobozunur plastik levhalardaki kütle kayıpları belirlenmiş, alınan toprak örneklerinde amonyum (NH4+) ve nitrat (NO3¯ ), mikroorganizma sayıları, üreaz ve katalaz enzimi analizleri yapılmıştır.
Elde edilen verilere göre biyobozunur plastik levhalardaki kütle kaybı örnekleme zamanına ve çamur dozlarına göre önemli miktarlarda değişmiştir (p≤0.01). Son örnekleme zamanındaki “1:1” arıtma çamuru uygulanan biyobozunur plastik levhalardaki kütle kaybı en fazla olmuştur. Topraktaki mikroorganizma sayıları üzerine örnekleme zamanı ile arıtma çamuru dozlarının birlikte etkisi istatistiksel olarak önemli bulunmazken, faktörlerin bağımsız etkileri önemli bulunmuştur (p≤0.05). Arıtma çamurunun miktarı arttıkça mikroorganizma sayılarında artışlar gözlemlenmiştir. Toprak örneklerinde incelenen NH4+ ve NO3¯ miktarları ile üreaz ve katalaz enzim aktivitelerine uygulanan arıtma çamuru ve inkübasyon zamanının birlikte etkisi önemli olmuştur (p<0.05). Uygulanan çamur dozları arttıkça NH4+, NO3¯, üreaz ve katalaz enzim aktivitelerinde artış görülürken, inkübasyon zamanı ilerledikçe incelenen özelliklerin tümünde azalma görülmüştür. Bu inkübasyon çalışmasından elde edilen sonuçlara göre evsel atıksu arıtma çamurları ile biyobozunur plastikler birlikte depolanabilir. Bu işlem biyoplastiklerin geri kazanım sorunlarının giderimine kadar kentlerde düzenli katı atık deponi alanlarında uygulanabilir. Bu tür araştırmalar çeşitli organik atıklarla arazi şartlarındaki düzenli deponi alanlarında yapılmalı ve yaygınlaştırılmalıdır.

Supporting Institution

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi, Bilimsel Araştırma Koordinasyon Birimi tarafından desteklenmiştir.

Project Number

FYL-2016-1052

Thanks

Bu araştırma; ÇOMÜ BAP Komisyonu Başkanlığı tarafından ÇÖMÜ FYL-2016-1052 No’lu Proje numarasıyla desteklenmiş olan ÇOMÜ Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Anabilim Dalı Öğrencisi Nurgül Uzunboy’un "Arıtma Çamurunun Toprakta Biyobozunur Plastiğin Mineralizasyonu Üzerine Etkisinin Araştırılması” isimli Yüksek Lisans tez çalışmasından türetilmiştir. Teşekkür ederiz.

References

  • Aguado J, Serrano DP 1999. Feedstock Recycling of Plastic Wastes. Royal Society of Chemistry, Cambridge, UK, pp. 1-23, 85, 86.
  • Alef A, Nannipieri P 1995. Catalase activity. In: Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, UK.
  • Allison LE, Moodie CD 1965. Carbonate. In: Methods of Soil Analysis, Part 2. Agronomy 9: 1379-1400, Am. Soc. of Agron., Inc., Madison, Wisconsin, USA.
  • Allmaras RR, Gardner CO 1956. Soil Sampling for Moisture Determination in Irrigation Experiments. Agron Jour., 48: 15-17.
  • Anonim 2010. Katı Atıkların Kontrolü Yönetmeliği (3 Ağustos 2010 tarih ve 27661 sayılı Resmi Gazete).
  • Anonim 2012. Good Practices in Sludge Management, PURE (Project on Urban Reduction of Eutrophication) Union of the Baltic Cities Environment Commission, Finland. https://www.ubc-sustainable.net/sites/www.ubc-environment.net/files/publications/pure actions for baltic sea protection. pdf (erişim tarihi: 10.02.2020).
  • Anonim 2019a. Plastics – the Facts 2019, An analysis of European plastics production, demand and waste data-2019, Belçika, https://www.plasticseurope.org (erişim tarihi: 19.02.2020).
  • Anonim, 2019b, Türkiye İstatistik Kurumu, Belediye Atıksu İstatistikleri, 2019, haber bülteni, Sayı: 30667.
  • Arcak S, Haktanır K, Karaca A, Türkmen C, Turgay OC, İşbilir F 2000. Ankara Atıksu Arıtma Tesisi Çamurlarının Tarımda Kullanılma Olanaklarının Araştırılması. TUBİTAK Proje No: TOGTAG-1712, 57s.
  • ASTM D 5988-03 2003. Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting. ASTM Int., West Conshohocken, PA USA.
  • Ataman Ş, Arcak S 2000. Effects of The Sewage Sludge of Ankara Waste Water Treatment Plant on Some Soil Biological Activities. International Symposium on Desertification-2000, Konya, Türkiye.
  • Aydın S 2004. Atıksu Arıtma Tesisi Çamurlarının Değişik Amaçlarla Kullanımının Araştırılması, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Balzer W, Ahrens E 1990. The effect of long-term sewage sludge application on the microbial activity in a silty loam. Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten, Reihe Kongress., 30: 479-484.
  • Barbarick K, Doxtader KG, Redente EF, Brobst RB 2004. Biosolids Effects on Microbial Activity in Scrubland and Grassland Soil. Soil Science, 169 (3): 176-187.
  • Beck TH 1971. Die Messung Katalasen Aktivitaet Boden Z. Pflanzenernaehai Sodek, 130: 68–81.
  • Berrow ML, Stein WM 1983. Extraction of metals from soils and sewage sludges by refluxing with aqua regia. Analyst, 108(1283), 277-285.
  • Beyatlı Y 1996. Mikrobiyal Termoplastik Üretimi, KÜKEM Dergisi, 19 (2): 23-32.
  • Bilgin N 1997. Arıtma çamuru ve Türkiye'de Katı Atıkların Kontrolü Yönetmeliği üzerine görüşler, Standard, Mayıs 1997, 113-117.
  • Bouyoucos GJ 1951. A Recalibration of Hydrometer Method for Making Mechanical Analysis of Agronomy Journal, 43: 434-438.
  • Bremner JM 1965. İnorganic forms of nitrogen In: C.A. Black et al (ed). Methods of Soil Analysis, Part 2. Agronomy 9: 1179-1237. Am. Soc. of Agron., Inc. Madison, Wisconsin, USA.
  • Bruce AM, Davis RD 1988. Sewage Sludge Disposal: Current and Future Options. Water Science Technology, 21 (10-11): 1113–1128.
  • Cheng-Cheng F 2011. Bio plastics development planning in Thailand, Invest in Taiwan. http://investtaiwan.nat.gov.tw/news/ind_news_eng_display.jsp?newsid=72 (erişim tarihi: 15.06.2015).
  • Çetin Ü, Gür K 2011. Çeşitli Organik Atıkların Toprağın Bazı Fiziksel, Kimyasal ve Biyolojik Özellikleri Üzerine Etkisi, Selçuk Tarım ve Gıda Bilimleri Dergisi, 25 (3): 9-16.
  • Dar GH 1996. Effects of Cadmium and Sewage Sludge on Soil Microbial Biomass and Enzyme Activities. Bioresearch Technology, 56 (2-3): 141-145.
  • Davis G, Song JH 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial crops and products, 23 (2): 147-161.
  • DIN EN ISO-1172 1998. Textilglasverstärkte Kunststoffe – Prepregs, Formmassen und Laminate – Bestimmung des Textilglas- und Mineralfüllstoffgehalts – alzinierungsverfahren. Normenausschuss Kunststoffe (FNK) im DIN Deutsches Institut für Normung e.V., Normenstelle Luftfahrt (NL) im DIN, Beuth-Verlag, Berlin, (1998).
  • El-Kadi S 2010. Bioplastic Production Form İnexpensive Sources Bacterial Biosynthesis, Cultivation System, Production and Biodegrability, VDM Publishing House, ABD, 145p.
  • Filibeli A 1996. Arıtma Çamurlarının İşlenmesi. Dokuz Eylül Ü., Mühehdislik Fakültesi Yayınları No: 255, İzmir.
  • Fisher KA, Yarwood SA, James BR 2017. Soil urease activity and bacterial ureC gene copy numbers: effect of pH. Geoderma, 285: 1-8.
  • Frankenberger Jr WT, Dick WA 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J., 47: 945-951.
  • Frankenberger Jr WT, Johanson JB, Nelson CO 1983. Urease activity in sewage sludge-amended soils. Soil Biology and Biochemistry, 15(5), 543-549.
  • Gaspard P, Wiart J, Schwartzbrod J 1997. Parasitological contamination of urban sludge used for agricultural purposes, Waste Management and Research, 15: 429-436.
  • Grewelling T, Peech M 1960. Chemical Soil Test. Cornel Univ. Agr. Exp. Sta. Bull. 960. Hand Book. 60. U.S. Dept. of Agriculture.
  • Haktanır K, Arcak S 1997. Toprak Biyolojisi (Toprak Ekosistemine Giriş). Ankara Üniversitesi Yayınları: (1486), Ziraat Fak. Yayınları: (447), Ankara.
  • Ho KLG, Pometto AL, Hinz PN 1999. Effects of temperature and relative humidity on polylactic acid plastic degradation. Journal of environmental polymer degradation, 7 (2): 83-92.
  • Hoffmann GG, Teicher K 1961. Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivität in Böden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 95 (1): 55-63.
  • ISO 17556 Plastics - Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. Organization for Standardization (2012) Available at: www.iso.org (Erişim tarihi; 1 Şubat 2019).
  • Jackson ML 1958. Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA.
  • Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP 2007a. Compostability of bioplastic packaging materials: an overview. Macromolecular bioscience, 7 (3): 255-277.
  • Kale G, Auras R, Singh SP 2007b. Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag. Techn. Sci., 20: 49–70.
  • Klute A 1986. Water Retention: Laboratory Methods. Methods of Soil Analysis Part1.2nd Ed. Agronomy 9. Am. Soc. Argon., 635-660, Madison, USA.
  • Köksal Ö, Er BA, Ardalı Y, Sağlam M 2019. Biyoplastiklerin Biyodegradasyonu. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 151-167.
  • Kravkaz-Kuscu IS, Cetin M, Yigit N, Savaci G, Sevik H 2018. Relationship between Enzyme Activity (Urease-Catalase) and Nutrient Element in Soil Use. Polish Journal of Environmental Studies, 27 (5).
  • Liu J, Xie J, Chu Y, Sun C, Chen C, Wang Q 2008. Combined effect of cypermethrin and copper on catalase activity in soil. J. Soils Sediments, 8: 327-332.
  • Lörcks J 1998. Properties and applications of compostable starch-basedplastic material. Polymer Degradation and Stability, 59 (1–3): 245–249.
  • Luengo JM, Garciá B, Sandoval A, Naharro G, Olivera ER 2003. Bioplastics from microorganisms. Current Opinion in Microbiology, 6: 251–260.
  • Ma X, Chang PR, Yu J, Stumborg M 2009. Properties of biodegradable citric acid modified granular starch/ thermoplastic pea starch composites, Carbohydrate Polymers, 75: 1–8.
  • Momani B 2009. Assessment of the Impacts of Bioplastics: Energy usage, fossil fuel usage, pollution, health effects, effects on the food supply, and economic effects compared to petroleum based plastics. An Interactive Qualifying Project Report, Submitted to the Faculty of the Worcester Polytechnic Institute, http://www.wpi.edu/Pubs/E-project/Available/E-project-031609-205515/unrestricted/bioplastics.pdf (erişim tarihi: 28.12.2017).
  • Page WJ 1992. Suitability of commercial beet molasses fractions as substrates for polyhydroxyalkanoate production by Azotoacter vinelandii UWD, Biotechnology Letters, 14 (5): 385-390.
  • Rajendran N, Puppala S, Sneha Raj M, Ruth Angeeleena B, Rajam C 2012. Seaweeds can be a new source for bioplastics. Journal of Pharmacy Research 5 (3): 1476-1479.
  • Reddy MM, Misra M, Mohanty AK 2012. Bio-based materails in the new bio-economy. American Institue of Chemical Engineering (AIChE), Chemical Engineering Proses (CEP), www.aiche.org/cep (erişim tarihi: 28.12.2017).
  • Richards LA 1954. Diagnosis and improvement of saline and alkali soils, 78 (2): 154, LWW.
  • Riozin MB, Egorov VI 1972. Bio1ogical Activity of Podzolic Soils of the Kola Peninsula. Pochvovedenie (3), 106-114.
  • Samaras V, Tsadilas CD, Stamatiadis S 2008. Effects of repeated application of municipal sewage sludge on soil fertility, Cotton Yield, and Nitrate Leaching. Agronony Journal, 100 (3): 477-483.
  • Sarasa J, Gracia JM, Javierre C 2008. Study of the biodisintegration of a bioplastic material waste, Bioresource Technology, 100: 3764-3768.
  • Stevens ES 2002. Green Plastics: An Introduction to the New Science of Biodegradable Plastics, Princeton Univesity Press, ABD, 238 s.
  • Stoven K, Al-Issa A, Rogasik J, Kratz S, Schung E 2005. Effect of Long Term Sewage Sludge Applications on Microorganisms in an Arable Soil. Landbauforschung Volkanrode, 55 (4): 219-226.
  • Topbaş MT, Brohi AR, Karaman MR 1998. Çevre Kirliliği, T.C. Çevre Bakanlığı Yayınları, Ankara.
  • Tresar-Cepeda C, Leiros MC, Seoane S, Gill-Sotres C 2008. Biochemical properties ofsoils under crop rotation. Applied Soil Ecology, (39): 133-143.
  • Türkmen C, Arcak S 2006. Kentsel Arıtma Çamuru ve Azot Uygulamalarının Kireçli Topraklarda Bazı Toprak Özelliklerine Etkileri, Selçuk Üniversitesi, Ziraat Fakültesi Dergisi 20 (40): 121-130.
  • Udom BE, Mbagwu JSC, Adesodun JK, Agbim NN 2004, Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge, Environment International, 30: 467-470.
  • Uzunboy N 2018. Arıtma Çamurunun Toprakta Biyobozunur Plastiğin Mineralizasyonu Üzerine Etkisinin Araştırılması. Yüksek Lisans Tezi, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Çanakkale, Türkiye (Yayınlanmamış).
  • Uzunboy N, Türkmen C 2018. Kentsel Arıtma Çamurunun Biyobozunur Plastiğin Kütle Kaybına Etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 6 (-); 275-280.
  • Wollum AG 1982. Cultural Methods for Soil Microorganisms. In: AL Page et al (Eds), Methods of soil analysis 2 nd edition, Part 2, Chemical and Microbiological Properties, SSSA Book Series (9), Madison WI, USA, pp.781-802.
  • Wu CS 2009. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polymer Degradation and Stability 94: 1076–1084.

The effect of sewage sludge of mineralization on biodegradable plastic

Year 2020, Volume: 3 Issue: 2, 83 - 92, 29.12.2020

Abstract

This study aimed to determine the effects of municipal sewage sludge (MSS) on degradation of a polylactic acid-based biodegradable plastic material in soil environment. Five different doses of MSS were used as of allowed quantity by Solid Waste Control Regulations, half of this quantity, double of this quantity and 1:1 MSS:Soil mixture. A control without MSS was also used. These doses were applied to soils together with biodegredable plastic plates. Samples were taken in 15-day intervals throughout 4 months of incubation. Samples were weighed with an ultra prceise scale to get weight loss in biodegradable plastic plates. Ammonium (NH4+) and nitrate (NO3¯ ) contents, number of microorganisms and urease and catalase enzyme activity of the soil samples were also determined. Present findings revealed that mass loss of biodegradable plastic plates varied significantly with sampling time and MSS doses (p≤0.01). In the last sampling time, the greatest mass loss of biodegradable plastic plates was observed in 1:1 MSS:Soil treatment. While the interaction effects of sampling time and MSS doses on number of microorganisms were not found to be significant, separate effects of these parameters were found to be significant (p≤0.05). Number of microorganisms increased with increasing MSS doses. The interactive effects of MSS and incubation time on NH4 and NO3, urease and catalase enzyme activities were found to be significant (p<0.05). NH4, NO3, urease and catalase activity increased with increasing MSS doses and decreased with increasing incubation times. Present findings revealed that MSS and biodegradable plastics could be stored together. Such a process can be applied in regular solid waste repositories until the recovery (recycle) problems of the bioplastics are resolved. Further research is recommended to be conducted in municipal waste repositories under different organic waste conditions.

Project Number

FYL-2016-1052

References

  • Aguado J, Serrano DP 1999. Feedstock Recycling of Plastic Wastes. Royal Society of Chemistry, Cambridge, UK, pp. 1-23, 85, 86.
  • Alef A, Nannipieri P 1995. Catalase activity. In: Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, UK.
  • Allison LE, Moodie CD 1965. Carbonate. In: Methods of Soil Analysis, Part 2. Agronomy 9: 1379-1400, Am. Soc. of Agron., Inc., Madison, Wisconsin, USA.
  • Allmaras RR, Gardner CO 1956. Soil Sampling for Moisture Determination in Irrigation Experiments. Agron Jour., 48: 15-17.
  • Anonim 2010. Katı Atıkların Kontrolü Yönetmeliği (3 Ağustos 2010 tarih ve 27661 sayılı Resmi Gazete).
  • Anonim 2012. Good Practices in Sludge Management, PURE (Project on Urban Reduction of Eutrophication) Union of the Baltic Cities Environment Commission, Finland. https://www.ubc-sustainable.net/sites/www.ubc-environment.net/files/publications/pure actions for baltic sea protection. pdf (erişim tarihi: 10.02.2020).
  • Anonim 2019a. Plastics – the Facts 2019, An analysis of European plastics production, demand and waste data-2019, Belçika, https://www.plasticseurope.org (erişim tarihi: 19.02.2020).
  • Anonim, 2019b, Türkiye İstatistik Kurumu, Belediye Atıksu İstatistikleri, 2019, haber bülteni, Sayı: 30667.
  • Arcak S, Haktanır K, Karaca A, Türkmen C, Turgay OC, İşbilir F 2000. Ankara Atıksu Arıtma Tesisi Çamurlarının Tarımda Kullanılma Olanaklarının Araştırılması. TUBİTAK Proje No: TOGTAG-1712, 57s.
  • ASTM D 5988-03 2003. Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting. ASTM Int., West Conshohocken, PA USA.
  • Ataman Ş, Arcak S 2000. Effects of The Sewage Sludge of Ankara Waste Water Treatment Plant on Some Soil Biological Activities. International Symposium on Desertification-2000, Konya, Türkiye.
  • Aydın S 2004. Atıksu Arıtma Tesisi Çamurlarının Değişik Amaçlarla Kullanımının Araştırılması, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Balzer W, Ahrens E 1990. The effect of long-term sewage sludge application on the microbial activity in a silty loam. Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten, Reihe Kongress., 30: 479-484.
  • Barbarick K, Doxtader KG, Redente EF, Brobst RB 2004. Biosolids Effects on Microbial Activity in Scrubland and Grassland Soil. Soil Science, 169 (3): 176-187.
  • Beck TH 1971. Die Messung Katalasen Aktivitaet Boden Z. Pflanzenernaehai Sodek, 130: 68–81.
  • Berrow ML, Stein WM 1983. Extraction of metals from soils and sewage sludges by refluxing with aqua regia. Analyst, 108(1283), 277-285.
  • Beyatlı Y 1996. Mikrobiyal Termoplastik Üretimi, KÜKEM Dergisi, 19 (2): 23-32.
  • Bilgin N 1997. Arıtma çamuru ve Türkiye'de Katı Atıkların Kontrolü Yönetmeliği üzerine görüşler, Standard, Mayıs 1997, 113-117.
  • Bouyoucos GJ 1951. A Recalibration of Hydrometer Method for Making Mechanical Analysis of Agronomy Journal, 43: 434-438.
  • Bremner JM 1965. İnorganic forms of nitrogen In: C.A. Black et al (ed). Methods of Soil Analysis, Part 2. Agronomy 9: 1179-1237. Am. Soc. of Agron., Inc. Madison, Wisconsin, USA.
  • Bruce AM, Davis RD 1988. Sewage Sludge Disposal: Current and Future Options. Water Science Technology, 21 (10-11): 1113–1128.
  • Cheng-Cheng F 2011. Bio plastics development planning in Thailand, Invest in Taiwan. http://investtaiwan.nat.gov.tw/news/ind_news_eng_display.jsp?newsid=72 (erişim tarihi: 15.06.2015).
  • Çetin Ü, Gür K 2011. Çeşitli Organik Atıkların Toprağın Bazı Fiziksel, Kimyasal ve Biyolojik Özellikleri Üzerine Etkisi, Selçuk Tarım ve Gıda Bilimleri Dergisi, 25 (3): 9-16.
  • Dar GH 1996. Effects of Cadmium and Sewage Sludge on Soil Microbial Biomass and Enzyme Activities. Bioresearch Technology, 56 (2-3): 141-145.
  • Davis G, Song JH 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial crops and products, 23 (2): 147-161.
  • DIN EN ISO-1172 1998. Textilglasverstärkte Kunststoffe – Prepregs, Formmassen und Laminate – Bestimmung des Textilglas- und Mineralfüllstoffgehalts – alzinierungsverfahren. Normenausschuss Kunststoffe (FNK) im DIN Deutsches Institut für Normung e.V., Normenstelle Luftfahrt (NL) im DIN, Beuth-Verlag, Berlin, (1998).
  • El-Kadi S 2010. Bioplastic Production Form İnexpensive Sources Bacterial Biosynthesis, Cultivation System, Production and Biodegrability, VDM Publishing House, ABD, 145p.
  • Filibeli A 1996. Arıtma Çamurlarının İşlenmesi. Dokuz Eylül Ü., Mühehdislik Fakültesi Yayınları No: 255, İzmir.
  • Fisher KA, Yarwood SA, James BR 2017. Soil urease activity and bacterial ureC gene copy numbers: effect of pH. Geoderma, 285: 1-8.
  • Frankenberger Jr WT, Dick WA 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J., 47: 945-951.
  • Frankenberger Jr WT, Johanson JB, Nelson CO 1983. Urease activity in sewage sludge-amended soils. Soil Biology and Biochemistry, 15(5), 543-549.
  • Gaspard P, Wiart J, Schwartzbrod J 1997. Parasitological contamination of urban sludge used for agricultural purposes, Waste Management and Research, 15: 429-436.
  • Grewelling T, Peech M 1960. Chemical Soil Test. Cornel Univ. Agr. Exp. Sta. Bull. 960. Hand Book. 60. U.S. Dept. of Agriculture.
  • Haktanır K, Arcak S 1997. Toprak Biyolojisi (Toprak Ekosistemine Giriş). Ankara Üniversitesi Yayınları: (1486), Ziraat Fak. Yayınları: (447), Ankara.
  • Ho KLG, Pometto AL, Hinz PN 1999. Effects of temperature and relative humidity on polylactic acid plastic degradation. Journal of environmental polymer degradation, 7 (2): 83-92.
  • Hoffmann GG, Teicher K 1961. Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivität in Böden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 95 (1): 55-63.
  • ISO 17556 Plastics - Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. Organization for Standardization (2012) Available at: www.iso.org (Erişim tarihi; 1 Şubat 2019).
  • Jackson ML 1958. Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA.
  • Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP 2007a. Compostability of bioplastic packaging materials: an overview. Macromolecular bioscience, 7 (3): 255-277.
  • Kale G, Auras R, Singh SP 2007b. Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag. Techn. Sci., 20: 49–70.
  • Klute A 1986. Water Retention: Laboratory Methods. Methods of Soil Analysis Part1.2nd Ed. Agronomy 9. Am. Soc. Argon., 635-660, Madison, USA.
  • Köksal Ö, Er BA, Ardalı Y, Sağlam M 2019. Biyoplastiklerin Biyodegradasyonu. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 151-167.
  • Kravkaz-Kuscu IS, Cetin M, Yigit N, Savaci G, Sevik H 2018. Relationship between Enzyme Activity (Urease-Catalase) and Nutrient Element in Soil Use. Polish Journal of Environmental Studies, 27 (5).
  • Liu J, Xie J, Chu Y, Sun C, Chen C, Wang Q 2008. Combined effect of cypermethrin and copper on catalase activity in soil. J. Soils Sediments, 8: 327-332.
  • Lörcks J 1998. Properties and applications of compostable starch-basedplastic material. Polymer Degradation and Stability, 59 (1–3): 245–249.
  • Luengo JM, Garciá B, Sandoval A, Naharro G, Olivera ER 2003. Bioplastics from microorganisms. Current Opinion in Microbiology, 6: 251–260.
  • Ma X, Chang PR, Yu J, Stumborg M 2009. Properties of biodegradable citric acid modified granular starch/ thermoplastic pea starch composites, Carbohydrate Polymers, 75: 1–8.
  • Momani B 2009. Assessment of the Impacts of Bioplastics: Energy usage, fossil fuel usage, pollution, health effects, effects on the food supply, and economic effects compared to petroleum based plastics. An Interactive Qualifying Project Report, Submitted to the Faculty of the Worcester Polytechnic Institute, http://www.wpi.edu/Pubs/E-project/Available/E-project-031609-205515/unrestricted/bioplastics.pdf (erişim tarihi: 28.12.2017).
  • Page WJ 1992. Suitability of commercial beet molasses fractions as substrates for polyhydroxyalkanoate production by Azotoacter vinelandii UWD, Biotechnology Letters, 14 (5): 385-390.
  • Rajendran N, Puppala S, Sneha Raj M, Ruth Angeeleena B, Rajam C 2012. Seaweeds can be a new source for bioplastics. Journal of Pharmacy Research 5 (3): 1476-1479.
  • Reddy MM, Misra M, Mohanty AK 2012. Bio-based materails in the new bio-economy. American Institue of Chemical Engineering (AIChE), Chemical Engineering Proses (CEP), www.aiche.org/cep (erişim tarihi: 28.12.2017).
  • Richards LA 1954. Diagnosis and improvement of saline and alkali soils, 78 (2): 154, LWW.
  • Riozin MB, Egorov VI 1972. Bio1ogical Activity of Podzolic Soils of the Kola Peninsula. Pochvovedenie (3), 106-114.
  • Samaras V, Tsadilas CD, Stamatiadis S 2008. Effects of repeated application of municipal sewage sludge on soil fertility, Cotton Yield, and Nitrate Leaching. Agronony Journal, 100 (3): 477-483.
  • Sarasa J, Gracia JM, Javierre C 2008. Study of the biodisintegration of a bioplastic material waste, Bioresource Technology, 100: 3764-3768.
  • Stevens ES 2002. Green Plastics: An Introduction to the New Science of Biodegradable Plastics, Princeton Univesity Press, ABD, 238 s.
  • Stoven K, Al-Issa A, Rogasik J, Kratz S, Schung E 2005. Effect of Long Term Sewage Sludge Applications on Microorganisms in an Arable Soil. Landbauforschung Volkanrode, 55 (4): 219-226.
  • Topbaş MT, Brohi AR, Karaman MR 1998. Çevre Kirliliği, T.C. Çevre Bakanlığı Yayınları, Ankara.
  • Tresar-Cepeda C, Leiros MC, Seoane S, Gill-Sotres C 2008. Biochemical properties ofsoils under crop rotation. Applied Soil Ecology, (39): 133-143.
  • Türkmen C, Arcak S 2006. Kentsel Arıtma Çamuru ve Azot Uygulamalarının Kireçli Topraklarda Bazı Toprak Özelliklerine Etkileri, Selçuk Üniversitesi, Ziraat Fakültesi Dergisi 20 (40): 121-130.
  • Udom BE, Mbagwu JSC, Adesodun JK, Agbim NN 2004, Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge, Environment International, 30: 467-470.
  • Uzunboy N 2018. Arıtma Çamurunun Toprakta Biyobozunur Plastiğin Mineralizasyonu Üzerine Etkisinin Araştırılması. Yüksek Lisans Tezi, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Çanakkale, Türkiye (Yayınlanmamış).
  • Uzunboy N, Türkmen C 2018. Kentsel Arıtma Çamurunun Biyobozunur Plastiğin Kütle Kaybına Etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 6 (-); 275-280.
  • Wollum AG 1982. Cultural Methods for Soil Microorganisms. In: AL Page et al (Eds), Methods of soil analysis 2 nd edition, Part 2, Chemical and Microbiological Properties, SSSA Book Series (9), Madison WI, USA, pp.781-802.
  • Wu CS 2009. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polymer Degradation and Stability 94: 1076–1084.
There are 65 citations in total.

Details

Primary Language Turkish
Subjects Environmental Sciences, Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Nurgül Uzunboy This is me 0000-0001-5595-1362

Cafer Türkmen 0000-0002-0707-5908

Project Number FYL-2016-1052
Publication Date December 29, 2020
Acceptance Date December 1, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Uzunboy, N., & Türkmen, C. (2020). Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi. Eurasian Journal of Biological and Chemical Sciences, 3(2), 83-92.
AMA Uzunboy N, Türkmen C. Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi. Eurasian J. Bio. Chem. Sci. December 2020;3(2):83-92.
Chicago Uzunboy, Nurgül, and Cafer Türkmen. “Biyobozunur plastiğin Mineralizasyonuna Evsel arıtma çamurunun Etkisi”. Eurasian Journal of Biological and Chemical Sciences 3, no. 2 (December 2020): 83-92.
EndNote Uzunboy N, Türkmen C (December 1, 2020) Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi. Eurasian Journal of Biological and Chemical Sciences 3 2 83–92.
IEEE N. Uzunboy and C. Türkmen, “Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi”, Eurasian J. Bio. Chem. Sci., vol. 3, no. 2, pp. 83–92, 2020.
ISNAD Uzunboy, Nurgül - Türkmen, Cafer. “Biyobozunur plastiğin Mineralizasyonuna Evsel arıtma çamurunun Etkisi”. Eurasian Journal of Biological and Chemical Sciences 3/2 (December 2020), 83-92.
JAMA Uzunboy N, Türkmen C. Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi. Eurasian J. Bio. Chem. Sci. 2020;3:83–92.
MLA Uzunboy, Nurgül and Cafer Türkmen. “Biyobozunur plastiğin Mineralizasyonuna Evsel arıtma çamurunun Etkisi”. Eurasian Journal of Biological and Chemical Sciences, vol. 3, no. 2, 2020, pp. 83-92.
Vancouver Uzunboy N, Türkmen C. Biyobozunur plastiğin mineralizasyonuna evsel arıtma çamurunun etkisi. Eurasian J. Bio. Chem. Sci. 2020;3(2):83-92.