Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: (Ek sayı 1), 144 - 150, 30.12.2022
https://doi.org/10.46239/ejbcs.1163946

Abstract

References

  • Abd-Elsalam, H. A. H., Gamal, M., Naguib, I. A., Al-Ghobashy, M. A., Zaazaa, H. E., & Abdelkawy, M. (2021). Development of green and efficient extraction methods of quercetin from red onion scales wastes using factorial design for method optimization: A comparative study. Separations, 8(9). Retrieved from https://doi.org/10.3390/separations8090137
  • Ayyachamy, M.; Khelawan, K.; Pillay, D.; Permaul, K.; Singh, S. (2007). Production of Inulinase by Xanthomonas campestris pv phaseoli Using Onion (Allium cepa) and Garlic (Allium sativum) Peels in Solid State Cultivation. Letters in Applied Microbiology, 45, 439–444.
  • Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y., López-Andréu, F. J., Cools, K., … Esteban, R. M. (2011). Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods for Human Nutrition, 66(1), 48–57. Retrieved from https://doi.org/10.1007/s11130-011-0212-x
  • Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375–387. Retrieved from https://doi.org/10.1016/j.plipres.2009.08.005
  • Bhatnagar, A., Sillanpää, M., W.-K., & A. (2015). Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 244–271.
  • Budžaki, S., Velić, N., Ostojčić, M., Stjepanović, M., Rajs, B. B., Šereš, Z., … Strelec, I. (2022). Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods, 11(3). Retrieved from https://doi.org/10.3390/foods11030409
  • Canli, O., Tasar, G. E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704–710. Retrieved from https://doi.org/10.1177/0748233712442737
  • Conversion of environmentally-unfriendly onion waste into food ingredients. (1999). Retrieved 18 February 2022, from https://cordis.europa.eu/project/id/FAIR961184/results
  • Cui, W., Wang, Q., Zhang, F., Zhang, S. C., Chi, Z. M., & Madzak, C. (2011). Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. Process Biochemistry, 46(7), 1442–1448. Retrieved from https://doi.org/10.1016/j.procbio.2011.03.017
  • Desnos-Ollivier, M., Letscher-Bru, V., Neuvéglise, C., & Dromer, F. (2020). Yarrowia lipolytica causes sporadic cases and local outbreaks of infections and colonisation. Mycoses, 63(7), 737–745. Retrieved from https://doi.org/10.1111/myc.13095
  • Erdal, S., Canli, O., & Algur, O. F. (2011). Inulinase production by Geotrichum candidum using Jerusalem artichoke. Romanian Biotechnological Letters, 16(4), 6375–6381.
  • Fraga, J. L., Souza, C. P. L., Pereira, A. da S., Aguieiras, E. C. G., de Silva, L. O., Torres, A. G., … Amaral, P. F. F. (2021). Palm oil wastes as feedstock for lipase production by Yarrowia lipolytica and biocatalyst application/reuse. 3 Biotech, 11(4), 1–9. Retrieved from https://doi.org/10.1007/s13205-021-02748-1
  • Ge, X.Y., Zhang, W. G. (2005). A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technology and Biotechnology, 43(3), 241–246.
  • Griffiths, G., Trueman, L., Crowther, T., Thomas, B., Smith, B. (2002). Onions a global benefit to health. Phtother Res, 16, 603–615.
  • Groenewald, M., Boekhout, T., Neuvéglise, C., Gaillardin, C., Van Dijck, P. W. M., & Wyss, M. (2014). Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 40(3), 187–206. Retrieved from https://doi.org/10.3109/1040841X.2013.770386
  • Hsieh, K.L., Tong, L.I., Chiu, H.P., et al. (2005). Optimization of a multi-response problem in Taguchi’s dynamic system. Computer Industrial Engineering, 49, 556–571.
  • Hughes, S. R., Qureshi, N., López-Núñez, J. C., Jones, M. A., Jarodsky, J. M., Galindo-Leva, L. Á., & Lindquist, M. R. (2017). Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World Journal of Microbiology and Biotechnology, 33(4), 1–15. Retrieved from https://doi.org/10.1007/s11274-017-2241-6
  • Jean, M. D., & Tzeng, Y. F. (2003). Use of Tacuchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surface Engineering, 19(2), 150–156. Retrieved from https://doi.org/10.1179/026708403225002496
  • Kandasamy, S., Muthusamy, G., Balakrishnan, S., Duraisamy, S., Thangasamy, S., Seralathan, K. K., & Chinnappan, S. (2016). Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech, 6(2), 1–11. Retrieved from https://doi.org/10.1007/s13205-016-0481-z
  • Kumar, M., Barbhai, M. D., Hasan, M., Punia, S., Dhumal, S., Radha, … Mekhemar, M. (2022). Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomedicine and Pharmacotherapy, 146. Retrieved from https://doi.org/10.1016/j.biopha.2021.112498
  • Li, X.; Row, K. H. (2019). Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim. Acta, (186), 1–10.
  • Libardi, N., Soccol, C. R., Góes-Neto, A., Oliveira, J. de, & Vandenberghe, L. P. de S. (2017). Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochemistry, 57, 190–199. Retrieved from https://doi.org/10.1016/j.procbio.2017.03.006
  • Lin, Z.L., Huang, X. L. (2000). Current Microbiology and Experimental Technology. Beijing:Science Press ISBN 7-03-008092-0.
  • Liu, X. Y., Chi, Z., Liu, G. L., Wang, F., Madzak, C., & Chi, Z. M. (2010). Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 12(5), 469–476. Retrieved from https://doi.org/10.1016/j.ymben.2010.04.004
  • Madzak, C. (2021). Yarrowia lipolytica strains and their biotechnological applications: How natural biodiversity and metabolic engineering could contribute to cell factories improvement. Journal of Fungi, 7(7). Retrieved from https://doi.org/10.3390/jof7070548
  • Mughal, M.S.; Ali, S.; Ashiq, M.; Talish, A. S. (2009). Kinetics of an Extracellular Exo-Inulinase Production From a 5-Flourocytosine Resistant Mutant of Geotrichum candidum Using Two-Factorial Design. Bioresource Technology, 100, 3657–3662.
  • Pathak, P.D., Mandavgane, S.A., K., & B.D. (2016). Characterizing fruit and vegetable peels as bioadsorbents. Current Science, 110(11), 2114–2123.
  • Pessoni, R. A. B., Figueiredo-Ribeiro, R. C. L., & Braga, M. R. (1999). Extracellular inulinases from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae). Journal of Applied Microbiology, 87(1), 141–147. Retrieved from https://doi.org/10.1046/j.1365-2672.1999.00805.x
  • Rawat, H. K., Soni, H., Suryawanshi, R. K., Choukade, R., Prajapati, B. P., & Kango, N. (2021). Exo-inulinase production from Aspergillus fumigatus NFCCI 2426: purification, characterization, and immobilization for continuous fructose production. Journal of Food Science, 86(5), 1778–1790. Retrieved from https://doi.org/10.1111/1750-3841.15681
  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Recent trends in the microbial production, analysis and application of Fructooligosaccharides. Trends in Food Science and Technology, 16(10), 442–457. Retrieved from https://doi.org/10.1016/j.tifs.2005.05.003
  • Selvakumar, P., Pandey, A. (1999). Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochemistry, 34(8), 851–855.
  • Selvam, K., Selvankumar, T., Rajiniganth, R., Srinivasan, P., Sudhakar, C., Senthilkumar, B., & Govarthanan, M. (2016). Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: Waste to wealth approach. Biocatalysis and Agricultural Biotechnology, 7, 250–256. Retrieved from https://doi.org/10.1016/j.bcab.2016.06.013
  • Sguarezi, C., Longo, C., Ceni, G., Boni, G., Silva, M. F., DiLuccio, M., … Treichel, H. (2009). Inulinase production by agro-industrial residues: Optimization of pretreatment of substrates and production medium. Food and Bioprocess Technology, 2(4), 409–414. Retrieved from https://doi.org/10.1007/s11947-007-0042-x
  • Sharma, A., Kuthiala, T., Thakur, K., Singh, K., Gursharan, T., & Pawan, S. (2022). Kitchen waste : sustainable bioconversion to value ‑ added product and economic challenges. Biomass Conversion and Biorefinery, (0123456789). Retrieved from https://doi.org/10.1007/s13399-022-02473-6
  • Sharma, P., Verma, A., Sidhu, R. K., & Pandey, O. P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168(1), 147–151. Retrieved from https://doi.org/10.1016/j.jmatprotec.2004.12.003
  • Shi, N., Mao, W., He, X., Chi, Z., Chi, Z., & Liu, G. (2018). Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin. Applied Biochemistry and Biotechnology, 185(1), 334–346. Retrieved from https://doi.org/10.1007/s12010-017-2659-1
  • Silva, M. F., Freire, D. M. G., De Castro, A. M. H., Di Luccio, M., Mazutti, M. A., Oliveira, J. V., … De Oliveira, D. (2011). Concentration, partial characterization, and immobilization of lipase extract from p. brevicompactum by solid-state fermentation of babassu cake and castor bean cake. Applied Biochemistry and Biotechnology, 164(6), 755–766. Retrieved from https://doi.org/10.1007/s12010-011-9171-9
  • Singhania, R.R., Sukumaran, R.K., Patel, A.K., et al. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46, 541–549.
  • Soccol, C. R., Costa, E. S. F. da, Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & Vandenberghe, L. P. de S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52–71. Retrieved from https://doi.org/10.1016/j.biori.2017.01.002
  • Srinivasan, P., Selvankumar, T., Kamala-Kannan, S., Mythili, R., Sengottaiyan, A., Govarthanan, M., … Selvam, K. (2019). Production and purification of laccase by Bacillus sp. using millet husks and its pesticide degradation application. 3 Biotech, 9(11), 1–10. Retrieved from https://doi.org/10.1007/s13205-019-1900-8
  • Tasar, O. C. (2022). Glucose oxidase production using a medicinal plant: Inula viscosa and optimization with Taguchi DOE . Journal of Food Processing and Preservation, 46:e16375. Retrieved from https://doi.org/10.1111/jfpp.16375
  • Tasar, Ö. C. (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology, 4, 67–73. Retrieved from https://doi.org/10.31594/commagene.747618
  • Tasar, O. C., Erdal, S., & Algur, O. F. (2015). Utilization of leek (Allium ampeloprasum var. porrum) for inulinase production. Preparative Biochemistry and Biotechnology, 45(6), 596–604. Retrieved from https://doi.org/10.1080/10826068.2014.940538
  • Van Loo, J., Coussement, P., De Leenheer, L., Hoebregs, H., & and Smits, G. (1995). On the presence of inulin and oligofructose as natural ingredients in the western diet. Critical Reviews in Food Science and Nutrition.
  • Wang, L. F., Wang, Z. P., Liu, X. Y., & Chi, Z. M. (2013). Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid. Bioprocess and Biosystems Engineering, 36(11), 1759–1766. Retrieved from https://doi.org/10.1007/s00449-013-0951-1
  • Yazici, S. O., Sahin, S., Biyik, H. H., Geroglu, Y., & Ozmen, I. (2020). Optimization of fermentation parameters for high-activity inulinase production and purification from Rhizopus oryzae by Plackett–Burman and Box–Behnken. Journal of Food Science and Technology. Retrieved from https://doi.org/10.1007/s13197-020-04591-3
  • Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containingmaterials. Metabolic Engineering, 12(6), 510–517. Retrieved from https://doi.org/10.1016/j.ymben.2010.09.001
  • Zhivkova, V. (2021). Determination of Nutritional and Mineral Composition of Wasted Peels From Garlic, Onion and Potato. Carpathian Journal of Food Science and Technology, 134–146. Retrieved from https://doi.org/10.34302/crpjfst/2021.13.3.11

Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation

Year 2022, Volume: 5 Issue: (Ek sayı 1), 144 - 150, 30.12.2022
https://doi.org/10.46239/ejbcs.1163946

Abstract

Onion (Allium cepa) is a valuable vegetable and a candidate for sustainable waste management in agri-food industry. The purpose of the current paper was to research the utilization of onion peels to an economical substrate for inulinase production by Yarrowia lipolytica ISF7 strain under solid state fermentation (SSF). SSF is preferred to obtain an effective and low-cost inulinase production. The medium designation was optimized using Taguchi design of experiment. For this purpose, Taguchi L9 orthogonal array layout was applied using the moisture content, initial pH and incubation time as the selected factors at three levels. The results showed that the minimum inulinase activity 22.7 U g-1 of dry substrate (ds) was determined using the 6th experimental setup while the highest inulinase activity 292.2 U gds-1 was measured from 5th experimental setup. The predicted value was determined as 311.6 U gds-1 which was closer to the obtained result (305.1 U gds-1). Consequently, an effective inulinase production can be achieved by Y. lipolytica ISF7 using onion peels as an economic substrate under SSF.

References

  • Abd-Elsalam, H. A. H., Gamal, M., Naguib, I. A., Al-Ghobashy, M. A., Zaazaa, H. E., & Abdelkawy, M. (2021). Development of green and efficient extraction methods of quercetin from red onion scales wastes using factorial design for method optimization: A comparative study. Separations, 8(9). Retrieved from https://doi.org/10.3390/separations8090137
  • Ayyachamy, M.; Khelawan, K.; Pillay, D.; Permaul, K.; Singh, S. (2007). Production of Inulinase by Xanthomonas campestris pv phaseoli Using Onion (Allium cepa) and Garlic (Allium sativum) Peels in Solid State Cultivation. Letters in Applied Microbiology, 45, 439–444.
  • Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y., López-Andréu, F. J., Cools, K., … Esteban, R. M. (2011). Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods for Human Nutrition, 66(1), 48–57. Retrieved from https://doi.org/10.1007/s11130-011-0212-x
  • Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375–387. Retrieved from https://doi.org/10.1016/j.plipres.2009.08.005
  • Bhatnagar, A., Sillanpää, M., W.-K., & A. (2015). Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 244–271.
  • Budžaki, S., Velić, N., Ostojčić, M., Stjepanović, M., Rajs, B. B., Šereš, Z., … Strelec, I. (2022). Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods, 11(3). Retrieved from https://doi.org/10.3390/foods11030409
  • Canli, O., Tasar, G. E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704–710. Retrieved from https://doi.org/10.1177/0748233712442737
  • Conversion of environmentally-unfriendly onion waste into food ingredients. (1999). Retrieved 18 February 2022, from https://cordis.europa.eu/project/id/FAIR961184/results
  • Cui, W., Wang, Q., Zhang, F., Zhang, S. C., Chi, Z. M., & Madzak, C. (2011). Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. Process Biochemistry, 46(7), 1442–1448. Retrieved from https://doi.org/10.1016/j.procbio.2011.03.017
  • Desnos-Ollivier, M., Letscher-Bru, V., Neuvéglise, C., & Dromer, F. (2020). Yarrowia lipolytica causes sporadic cases and local outbreaks of infections and colonisation. Mycoses, 63(7), 737–745. Retrieved from https://doi.org/10.1111/myc.13095
  • Erdal, S., Canli, O., & Algur, O. F. (2011). Inulinase production by Geotrichum candidum using Jerusalem artichoke. Romanian Biotechnological Letters, 16(4), 6375–6381.
  • Fraga, J. L., Souza, C. P. L., Pereira, A. da S., Aguieiras, E. C. G., de Silva, L. O., Torres, A. G., … Amaral, P. F. F. (2021). Palm oil wastes as feedstock for lipase production by Yarrowia lipolytica and biocatalyst application/reuse. 3 Biotech, 11(4), 1–9. Retrieved from https://doi.org/10.1007/s13205-021-02748-1
  • Ge, X.Y., Zhang, W. G. (2005). A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technology and Biotechnology, 43(3), 241–246.
  • Griffiths, G., Trueman, L., Crowther, T., Thomas, B., Smith, B. (2002). Onions a global benefit to health. Phtother Res, 16, 603–615.
  • Groenewald, M., Boekhout, T., Neuvéglise, C., Gaillardin, C., Van Dijck, P. W. M., & Wyss, M. (2014). Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 40(3), 187–206. Retrieved from https://doi.org/10.3109/1040841X.2013.770386
  • Hsieh, K.L., Tong, L.I., Chiu, H.P., et al. (2005). Optimization of a multi-response problem in Taguchi’s dynamic system. Computer Industrial Engineering, 49, 556–571.
  • Hughes, S. R., Qureshi, N., López-Núñez, J. C., Jones, M. A., Jarodsky, J. M., Galindo-Leva, L. Á., & Lindquist, M. R. (2017). Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World Journal of Microbiology and Biotechnology, 33(4), 1–15. Retrieved from https://doi.org/10.1007/s11274-017-2241-6
  • Jean, M. D., & Tzeng, Y. F. (2003). Use of Tacuchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surface Engineering, 19(2), 150–156. Retrieved from https://doi.org/10.1179/026708403225002496
  • Kandasamy, S., Muthusamy, G., Balakrishnan, S., Duraisamy, S., Thangasamy, S., Seralathan, K. K., & Chinnappan, S. (2016). Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech, 6(2), 1–11. Retrieved from https://doi.org/10.1007/s13205-016-0481-z
  • Kumar, M., Barbhai, M. D., Hasan, M., Punia, S., Dhumal, S., Radha, … Mekhemar, M. (2022). Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomedicine and Pharmacotherapy, 146. Retrieved from https://doi.org/10.1016/j.biopha.2021.112498
  • Li, X.; Row, K. H. (2019). Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim. Acta, (186), 1–10.
  • Libardi, N., Soccol, C. R., Góes-Neto, A., Oliveira, J. de, & Vandenberghe, L. P. de S. (2017). Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochemistry, 57, 190–199. Retrieved from https://doi.org/10.1016/j.procbio.2017.03.006
  • Lin, Z.L., Huang, X. L. (2000). Current Microbiology and Experimental Technology. Beijing:Science Press ISBN 7-03-008092-0.
  • Liu, X. Y., Chi, Z., Liu, G. L., Wang, F., Madzak, C., & Chi, Z. M. (2010). Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 12(5), 469–476. Retrieved from https://doi.org/10.1016/j.ymben.2010.04.004
  • Madzak, C. (2021). Yarrowia lipolytica strains and their biotechnological applications: How natural biodiversity and metabolic engineering could contribute to cell factories improvement. Journal of Fungi, 7(7). Retrieved from https://doi.org/10.3390/jof7070548
  • Mughal, M.S.; Ali, S.; Ashiq, M.; Talish, A. S. (2009). Kinetics of an Extracellular Exo-Inulinase Production From a 5-Flourocytosine Resistant Mutant of Geotrichum candidum Using Two-Factorial Design. Bioresource Technology, 100, 3657–3662.
  • Pathak, P.D., Mandavgane, S.A., K., & B.D. (2016). Characterizing fruit and vegetable peels as bioadsorbents. Current Science, 110(11), 2114–2123.
  • Pessoni, R. A. B., Figueiredo-Ribeiro, R. C. L., & Braga, M. R. (1999). Extracellular inulinases from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae). Journal of Applied Microbiology, 87(1), 141–147. Retrieved from https://doi.org/10.1046/j.1365-2672.1999.00805.x
  • Rawat, H. K., Soni, H., Suryawanshi, R. K., Choukade, R., Prajapati, B. P., & Kango, N. (2021). Exo-inulinase production from Aspergillus fumigatus NFCCI 2426: purification, characterization, and immobilization for continuous fructose production. Journal of Food Science, 86(5), 1778–1790. Retrieved from https://doi.org/10.1111/1750-3841.15681
  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Recent trends in the microbial production, analysis and application of Fructooligosaccharides. Trends in Food Science and Technology, 16(10), 442–457. Retrieved from https://doi.org/10.1016/j.tifs.2005.05.003
  • Selvakumar, P., Pandey, A. (1999). Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochemistry, 34(8), 851–855.
  • Selvam, K., Selvankumar, T., Rajiniganth, R., Srinivasan, P., Sudhakar, C., Senthilkumar, B., & Govarthanan, M. (2016). Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: Waste to wealth approach. Biocatalysis and Agricultural Biotechnology, 7, 250–256. Retrieved from https://doi.org/10.1016/j.bcab.2016.06.013
  • Sguarezi, C., Longo, C., Ceni, G., Boni, G., Silva, M. F., DiLuccio, M., … Treichel, H. (2009). Inulinase production by agro-industrial residues: Optimization of pretreatment of substrates and production medium. Food and Bioprocess Technology, 2(4), 409–414. Retrieved from https://doi.org/10.1007/s11947-007-0042-x
  • Sharma, A., Kuthiala, T., Thakur, K., Singh, K., Gursharan, T., & Pawan, S. (2022). Kitchen waste : sustainable bioconversion to value ‑ added product and economic challenges. Biomass Conversion and Biorefinery, (0123456789). Retrieved from https://doi.org/10.1007/s13399-022-02473-6
  • Sharma, P., Verma, A., Sidhu, R. K., & Pandey, O. P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168(1), 147–151. Retrieved from https://doi.org/10.1016/j.jmatprotec.2004.12.003
  • Shi, N., Mao, W., He, X., Chi, Z., Chi, Z., & Liu, G. (2018). Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin. Applied Biochemistry and Biotechnology, 185(1), 334–346. Retrieved from https://doi.org/10.1007/s12010-017-2659-1
  • Silva, M. F., Freire, D. M. G., De Castro, A. M. H., Di Luccio, M., Mazutti, M. A., Oliveira, J. V., … De Oliveira, D. (2011). Concentration, partial characterization, and immobilization of lipase extract from p. brevicompactum by solid-state fermentation of babassu cake and castor bean cake. Applied Biochemistry and Biotechnology, 164(6), 755–766. Retrieved from https://doi.org/10.1007/s12010-011-9171-9
  • Singhania, R.R., Sukumaran, R.K., Patel, A.K., et al. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46, 541–549.
  • Soccol, C. R., Costa, E. S. F. da, Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & Vandenberghe, L. P. de S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52–71. Retrieved from https://doi.org/10.1016/j.biori.2017.01.002
  • Srinivasan, P., Selvankumar, T., Kamala-Kannan, S., Mythili, R., Sengottaiyan, A., Govarthanan, M., … Selvam, K. (2019). Production and purification of laccase by Bacillus sp. using millet husks and its pesticide degradation application. 3 Biotech, 9(11), 1–10. Retrieved from https://doi.org/10.1007/s13205-019-1900-8
  • Tasar, O. C. (2022). Glucose oxidase production using a medicinal plant: Inula viscosa and optimization with Taguchi DOE . Journal of Food Processing and Preservation, 46:e16375. Retrieved from https://doi.org/10.1111/jfpp.16375
  • Tasar, Ö. C. (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology, 4, 67–73. Retrieved from https://doi.org/10.31594/commagene.747618
  • Tasar, O. C., Erdal, S., & Algur, O. F. (2015). Utilization of leek (Allium ampeloprasum var. porrum) for inulinase production. Preparative Biochemistry and Biotechnology, 45(6), 596–604. Retrieved from https://doi.org/10.1080/10826068.2014.940538
  • Van Loo, J., Coussement, P., De Leenheer, L., Hoebregs, H., & and Smits, G. (1995). On the presence of inulin and oligofructose as natural ingredients in the western diet. Critical Reviews in Food Science and Nutrition.
  • Wang, L. F., Wang, Z. P., Liu, X. Y., & Chi, Z. M. (2013). Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid. Bioprocess and Biosystems Engineering, 36(11), 1759–1766. Retrieved from https://doi.org/10.1007/s00449-013-0951-1
  • Yazici, S. O., Sahin, S., Biyik, H. H., Geroglu, Y., & Ozmen, I. (2020). Optimization of fermentation parameters for high-activity inulinase production and purification from Rhizopus oryzae by Plackett–Burman and Box–Behnken. Journal of Food Science and Technology. Retrieved from https://doi.org/10.1007/s13197-020-04591-3
  • Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containingmaterials. Metabolic Engineering, 12(6), 510–517. Retrieved from https://doi.org/10.1016/j.ymben.2010.09.001
  • Zhivkova, V. (2021). Determination of Nutritional and Mineral Composition of Wasted Peels From Garlic, Onion and Potato. Carpathian Journal of Food Science and Technology, 134–146. Retrieved from https://doi.org/10.34302/crpjfst/2021.13.3.11
There are 48 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Özden Canlı Taşar 0000-0002-4313-5373

Gani Erhan Taşar 0000-0002-9217-0706

Publication Date December 30, 2022
Acceptance Date October 9, 2022
Published in Issue Year 2022 Volume: 5 Issue: (Ek sayı 1)

Cite

APA Canlı Taşar, Ö., & Taşar, G. E. (2022). Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation. Eurasian Journal of Biological and Chemical Sciences, 5((Ek sayı 1), 144-150. https://doi.org/10.46239/ejbcs.1163946
AMA Canlı Taşar Ö, Taşar GE. Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation. Eurasian J. Bio. Chem. Sci. December 2022;5((Ek sayı 1):144-150. doi:10.46239/ejbcs.1163946
Chicago Canlı Taşar, Özden, and Gani Erhan Taşar. “Use of Onion Peels As an Economical Substrate for Microbial Inulinase Production under Solid State Fermentation”. Eurasian Journal of Biological and Chemical Sciences 5, no. (Ek sayı 1) (December 2022): 144-50. https://doi.org/10.46239/ejbcs.1163946.
EndNote Canlı Taşar Ö, Taşar GE (December 1, 2022) Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation. Eurasian Journal of Biological and Chemical Sciences 5 (Ek sayı 1) 144–150.
IEEE Ö. Canlı Taşar and G. E. Taşar, “Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation”, Eurasian J. Bio. Chem. Sci., vol. 5, no. (Ek sayı 1), pp. 144–150, 2022, doi: 10.46239/ejbcs.1163946.
ISNAD Canlı Taşar, Özden - Taşar, Gani Erhan. “Use of Onion Peels As an Economical Substrate for Microbial Inulinase Production under Solid State Fermentation”. Eurasian Journal of Biological and Chemical Sciences 5/(Ek sayı 1) (December 2022), 144-150. https://doi.org/10.46239/ejbcs.1163946.
JAMA Canlı Taşar Ö, Taşar GE. Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation. Eurasian J. Bio. Chem. Sci. 2022;5:144–150.
MLA Canlı Taşar, Özden and Gani Erhan Taşar. “Use of Onion Peels As an Economical Substrate for Microbial Inulinase Production under Solid State Fermentation”. Eurasian Journal of Biological and Chemical Sciences, vol. 5, no. (Ek sayı 1), 2022, pp. 144-50, doi:10.46239/ejbcs.1163946.
Vancouver Canlı Taşar Ö, Taşar GE. Use of onion peels as an economical substrate for microbial inulinase production under solid state fermentation. Eurasian J. Bio. Chem. Sci. 2022;5((Ek sayı 1):144-50.