Review
BibTex RIS Cite

Biyolojik Sistemli Nanopartiküller

Year 2021, Volume: 2 Issue: 1, 93 - 108, 01.05.2021
https://doi.org/10.5281/zenodo.4843592

Abstract

Nanopartiküller 100 nm ve daha küçük ölçülerde olan tozlar şeklinde tanımlanmaktadır ve nanoteknolojinin temellerini bu partiküller oluşturmaktadır. Nanoyapıların sahip olduğu olağandışı nitelikler uzun zaman önce öngörülmüştür. Nanopartiküllerin biyolojik sistemlerdeki davranışlarını anlamak başta medikal tedavi yöntemleri olmak üzere, güvenli nanoteknolojinin geliştirilmesi için gereklidir. Günümüzde dünya genelinde ülkeler nanoteknoloji sahasında önemli yatırımlar yapmaktadır. Bununla birlikte nanometre boyutundaki malzemelere ait üstün nitelikler onların farklı araştırmalarda (tekstil, biyoteknoloji, eczacılık, medikal, savunma sanayi, malzeme, imalat sektörü, tarım vb.) yaygınlaşarak kullanılabilmelerine imkan sunmaktadır. Bu durum nanoteknolojiden daha fazla alanda yararlanılmasının dışında nanoteknolojiye dayalı devrim niteliğinde farklı ve çeşitli ürünlerin tasarlanabilmesini sağlamaktadır. Son yıllarda nanoteknoloji ve klinik uygulamaları hakkında giderek artan oranda literatür olmasına rağmen, nanopartiküller ve hücreler arasındaki moleküler düzeydeki etkileşim mekanizmaları tam olarak anlaşılamamıştır. Nanopartiküllerin üretimi nanoteknolojide yapılması planlanan yeniliklerdeki ilk basamağı oluşturmakta; bu partiküller oldukça kapsamlı bir aralıkta fiziksel, kimyasal ve biyolojik yöntemlerle üretilebilmektedir. Bu çalışmada nanoteknoloji kavramı ve tarihçesine değinildikten sonra nanopartiküllerin biyolojik yönteme dayalı üretimleri ve etkileri detaylıca incelenmiştir.

References

  • [1] Kıyar, Şule. (2020). Gümüş Nanopartiküllerin Antibakteriyel Etkinliğinde Nanopartikül Boyut Etkisi. Yüksek Lisans Tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü. Konya. 33.
  • [2] Beykaya, Ç. ve Çağlar A. (2016). Bitkisel Özütler Kullanılarak Gümüş-Nanopartikül (AgNP) Sentezlenmesi ve Antimikrobiyal Etkinlikleri Üzerine Bir Araştırma. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 3, 631 – 641.
  • [3]Hammamchi, Hamideh. (2019) .Biyolojik Yollar ile Sentezlenen Organik / İnorganik Nanopartiküllerin Bioaktivitelerinin Belirlenmesi ve Tedavi Amaçlı Kullanımları. Doktora Tezi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara 166.
  • [4] Akgül, Hasan. (Ed.).(2020). Fen Bilimleri ve Matematik Alanında Akademik Çalışmalar. Ankara: Gece Kitaplığı, 3-10.
  • [5] Akçay, F.A. ve Avcı,A. (2018). Bakteriyel Yollarla Metal Nanopartiküllerin Sentezi, Türk Tarım - Gıda Bilim ve Teknoloji Dergisi, 6(4), 408-414.
  • [6] Yasin, S., Lui, L., & Yao, J.(2013). Biosynthesis of Silver Nanoparticles by Bamboo Leaves Extract and Their Antimicrobial Activity. Journal of Fiber Bioengineering and Informatics I(March), 77-84.
  • [7] Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Kim, S. K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pasific Journal of Tropical Medicine, 7(12), 968-976.
  • [8] Gopinath, K., Karthika, V., Gowri, S., Senthilkumar, V., Kumaresan, S., & Arumugam, A. (2014). Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. Leaf extract. Journal of Nanosteructure in Chemistry, 4(1), 83.
  • [9] Al-Bahrani, R., Raman, J., Lakshmanan, H., Hassan, A. A., & Sabaratnam, V. (2017). Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Materials Letters, 186, 21-25.
  • [10] Saravanan, M., & Nanda, A. (2010). Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces B: Biointerfaces, 77(2), 212-214.
  • [11] Baran, M.F.,Saydut, A.,Umaz,A., (2019). Gümüş Nanomalzeme Sentezi ve Antimikrobiyal Uygulamaları, Dicle Üniversitesi Mühendislik Dergisi. 10 (2), 689–695.
  • [12] Sinsinwar, S., Sarkar, M.K., Suriya, K.R., Nithyanand, P., & Vadivel, V. (2018). Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens. Microbial Pathogenesis, 124: 30-37.
  • [13] Gallucci, M.N., Fraire, J.C., Ferreyra Maillard, A. P. V, Pez, P. L., Aiassa Martnez, I. M., Pannunzio Miner, E. V., Dalmasso, P.R.(2017). Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. Var. Sativus): Biosynthesis, characterization and antibacterial activity. Materials Letters, 197, 98-101.
  • [14] Baran, M.F., Acay, H., Keskin, C. (2020). Determination of Antimicrobial and Toxic Metal Removal Acitivities of Plant-Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Global Challenges, 4(5): 1900104.
  • [15] Baran, M.F. (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi, DUMF Mühendislik Dergisi,10:1, 221-227.
  • [16] Singh, A.K., Garg, A., Pandit, S., Mokkapati, V.R.S.S., Mijakovic, I. (2018). Antimicrobial Effects of Biogenic Nanoparticles, Nanomaterials(Basel) 8(12):1009.
  • [17] Acay, H., Baran, M.F. (2019). Biosynthesis and Characterization of Silver Nanoparticles Using King Oyster (Pleurotus Eryngıı) Extract: Effect on Some Microorganısms, App Eco Environ Research 17(4), 9205-9214.
  • [18] He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. (2007). Biosynthesis of Gold Nanoparticles Using the Bacteria Rhodopseudomonas capsulata. Materials Letters, 61(18): 3984-3987.
  • [19] S, Majeed, Mohd Syafiq bin Abdullah 1, Gouri Kumar Dash 1, Mohammed Tahir Ansarş 1, A.N.2. (2016). Biochemical synthesis of silver nanoparticles using filamentous fungi Penicillium decumbens and its efficacy against A-549 lung cancer cell line. Chinese Journal of Natural Medicines, 14(8), 615-620.
  • [20] Baran, M.F., Acay, H., (2019) Kiraz Yaprak Özütü (Prunus avium )Kullanılarak Altın Nanopartikül Sentezi ve Karakterizasyonu. İnternational Journal of Mathematic, Engineering and Natural Sciences, 9,1-7.
  • [21] Umaz, A., Koç, A., Baran , M. F. Keskin, C., Atalar, M.N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karakterizasyonu ve Antimikrobiyal Etkinliğinin İncelenmesi, Journal of the Institute of Science and Technology, 9(3), 1467-1475.
  • [22] Baran, M.F., Saydut, A., (2019) Altın nanomalzeme sentezi ve karakterizasyonu. Dicle Üniversitesi Mühendislik Dergisi, 3,1033-1040.
  • [23] Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G. (2014). Delayed Formation of Zero-Valent Selenium Nanoparticles by Bacillus mycoides SelTE01 as a Consequence of Selenite Reduction Under Aerobic Conditions. Microbial Cell Factories, 13(1): 35.
  • [24] Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A, Shahverdi AR. (2013). Efficacy of Biogenic Selenium Nanoparticles Against Leishmania Major: In Vitro and In Vivo Studies. Journal of Trace Elements in Medicine and Biology, 27(3), 203-207.
  • [25] Dhanjal S, Cameotra SS. (2010). Aerobic Biogenesis of Selenium Nanospheres by Bacillus cereus Isolated from Coalmine Soil. Microbial Cell Factories, 9(1): 52.
  • [26] Harikrishnan H, Shine K, Ponmurugan K, Moorthy IG, Kumar RS (2014). In Vitro Eco-Friendly Synthesis of Cadmium Sulfide Nanoparticles Using Heterotrophic Bacillus cereus. Journal of Optoelectronic and Biomedical Materials, 6(1): 1-7.
  • [27] Tripathi RM, Bhadwal AS, Singh P, Shrivastav A, Singh MP, Shrivastav BR. (2014) Mechanistic Aspects of Biogenic Synthesis of CdS Nanoparticles Using Bacillus licheniformis. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(2): 025006.
  • [28] Nayak PS, Arakha M, Kumar A, Asthana S, Mallick BC, Jha S. (2016). An Approach Towards Continuous Production of Silver Nanoparticles Using Bacillus thuringiensis. RSC Advances, 6(10): 8232-8242.
  • [29] Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL. (2004).Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chemistry and Biology, 11(11): 1553- 1559.
  • [30] Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, Yang DC. (2016). Intracellular Synthesis of Gold Nanoparticles with Antioxidant Activity by Probiotic Lactobacillus Kimchicus DCY51 T Isolated from Korean Kimchi. Enzyme and Microbial Technology, 95: 85-93
  • [31] Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Bagavan A. (2011). Biosynthesis of Titanium Dioxide Nanoparticles Using Bacterium Bacillus subtilis. Materials Letters, 65(17): 2745- 2747.
  • [32]Tiwari M, Jain P, Hariharapura RC, Narayanan K, Bhat U, Udupa N, Rao JV. (2016) Biosynthesis of Copper Nanoparticles Using Copper-Resistant Bacillus cereus, A Soil Isolate. Process Biochemistry, 51(10): 1348-1356.
  • [33] Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagava A, Rao KB. (2012). Novel Microbial Route to Synthesize ZnO Nanoparticles Using Aeromonas hydrophila and Their Activity Against Pathogenic Bacteria and Fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90: 78-84.
  • [34] Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Beukes LS. (2016).Biomedical and Catalytic Applications of Gold and Silver-Gold Alloy Nanoparticles Biosynthesized Using Cell-Free Extract of Bacillus safensis LAU 13: Antifungal, Dye Degradation, Anti-Coagulant and Thrombolytic Activities. IEEE Transactions on Nanobioscience, 15(5): 433-442.
  • [35] Lateef A, Ojo SA, Oladejo SM. (2016). Anti-Candida, AntiCoagulant and Thrombolytic Activities of Biosynthesized Silver Nanoparticles Using Cell-Free Extract of Bacillus safensis LAU 13. Process Biochemistry, 51(10): 1406-1412.
  • [36] Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. (2016). Green Synthesis of Silver Nanoparticles by Bacillus methylotrophicus, and Their Antimicrobial Activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4): 1127-1132.
  • [37] Deljou A, Goudarzi S. (2016). Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria. Iranian Journal of Biotechnology, 14(2), 25-32.
  • [38] Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. (2014) Extracellular Synthesis of Silver Nanoparticles by the Bacillus Strain CS 11 Isolated from Industrialized Area. 3 Biotech, 4(2): 121-126.
  • [39] Du J, Yi TH. (2016). Biosynthesis of Silver Nanoparticles by Variovorax guangxiensis THG-SQL3 and Their Antimicrobial Potential. Materials Letters, 178: 75-78.
  • [40] Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Liu H. (2012). Synthesis of Silver Nanoparticles by Solar Irradiation of Cell-Free Bacillus amyloliquefaciens Extracts and AgNO3. Bioresource Technology, 103(1): 273-278.
  • [41] Sundaram PA, Augustine R, Kannan M. (2012). Extracellular Biosynthesis of Iron Oxide Nanoparticles by Bacillus subtilis Strains Isolated from Rhizosphere Soil. Biotechnology and Bioprocess Engineering, 17(4): 835-840.
  • [42] Baran A. (2021). Eco-friendly, rapid synthesis of silver nanomaterials and their use for biomedical applications. Dicle University Journal of Engineering, 12(2): 329-336.
  • [43] Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. (2021). Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules, 26, 844.
  • [44] Salem S, Fouda A. (2021). Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biological Trace Element Research, 199:344–370.
  • [45] Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7:483.
Year 2021, Volume: 2 Issue: 1, 93 - 108, 01.05.2021
https://doi.org/10.5281/zenodo.4843592

Abstract

References

  • [1] Kıyar, Şule. (2020). Gümüş Nanopartiküllerin Antibakteriyel Etkinliğinde Nanopartikül Boyut Etkisi. Yüksek Lisans Tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü. Konya. 33.
  • [2] Beykaya, Ç. ve Çağlar A. (2016). Bitkisel Özütler Kullanılarak Gümüş-Nanopartikül (AgNP) Sentezlenmesi ve Antimikrobiyal Etkinlikleri Üzerine Bir Araştırma. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 3, 631 – 641.
  • [3]Hammamchi, Hamideh. (2019) .Biyolojik Yollar ile Sentezlenen Organik / İnorganik Nanopartiküllerin Bioaktivitelerinin Belirlenmesi ve Tedavi Amaçlı Kullanımları. Doktora Tezi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara 166.
  • [4] Akgül, Hasan. (Ed.).(2020). Fen Bilimleri ve Matematik Alanında Akademik Çalışmalar. Ankara: Gece Kitaplığı, 3-10.
  • [5] Akçay, F.A. ve Avcı,A. (2018). Bakteriyel Yollarla Metal Nanopartiküllerin Sentezi, Türk Tarım - Gıda Bilim ve Teknoloji Dergisi, 6(4), 408-414.
  • [6] Yasin, S., Lui, L., & Yao, J.(2013). Biosynthesis of Silver Nanoparticles by Bamboo Leaves Extract and Their Antimicrobial Activity. Journal of Fiber Bioengineering and Informatics I(March), 77-84.
  • [7] Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Kim, S. K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pasific Journal of Tropical Medicine, 7(12), 968-976.
  • [8] Gopinath, K., Karthika, V., Gowri, S., Senthilkumar, V., Kumaresan, S., & Arumugam, A. (2014). Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. Leaf extract. Journal of Nanosteructure in Chemistry, 4(1), 83.
  • [9] Al-Bahrani, R., Raman, J., Lakshmanan, H., Hassan, A. A., & Sabaratnam, V. (2017). Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Materials Letters, 186, 21-25.
  • [10] Saravanan, M., & Nanda, A. (2010). Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces B: Biointerfaces, 77(2), 212-214.
  • [11] Baran, M.F.,Saydut, A.,Umaz,A., (2019). Gümüş Nanomalzeme Sentezi ve Antimikrobiyal Uygulamaları, Dicle Üniversitesi Mühendislik Dergisi. 10 (2), 689–695.
  • [12] Sinsinwar, S., Sarkar, M.K., Suriya, K.R., Nithyanand, P., & Vadivel, V. (2018). Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens. Microbial Pathogenesis, 124: 30-37.
  • [13] Gallucci, M.N., Fraire, J.C., Ferreyra Maillard, A. P. V, Pez, P. L., Aiassa Martnez, I. M., Pannunzio Miner, E. V., Dalmasso, P.R.(2017). Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. Var. Sativus): Biosynthesis, characterization and antibacterial activity. Materials Letters, 197, 98-101.
  • [14] Baran, M.F., Acay, H., Keskin, C. (2020). Determination of Antimicrobial and Toxic Metal Removal Acitivities of Plant-Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Global Challenges, 4(5): 1900104.
  • [15] Baran, M.F. (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi, DUMF Mühendislik Dergisi,10:1, 221-227.
  • [16] Singh, A.K., Garg, A., Pandit, S., Mokkapati, V.R.S.S., Mijakovic, I. (2018). Antimicrobial Effects of Biogenic Nanoparticles, Nanomaterials(Basel) 8(12):1009.
  • [17] Acay, H., Baran, M.F. (2019). Biosynthesis and Characterization of Silver Nanoparticles Using King Oyster (Pleurotus Eryngıı) Extract: Effect on Some Microorganısms, App Eco Environ Research 17(4), 9205-9214.
  • [18] He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. (2007). Biosynthesis of Gold Nanoparticles Using the Bacteria Rhodopseudomonas capsulata. Materials Letters, 61(18): 3984-3987.
  • [19] S, Majeed, Mohd Syafiq bin Abdullah 1, Gouri Kumar Dash 1, Mohammed Tahir Ansarş 1, A.N.2. (2016). Biochemical synthesis of silver nanoparticles using filamentous fungi Penicillium decumbens and its efficacy against A-549 lung cancer cell line. Chinese Journal of Natural Medicines, 14(8), 615-620.
  • [20] Baran, M.F., Acay, H., (2019) Kiraz Yaprak Özütü (Prunus avium )Kullanılarak Altın Nanopartikül Sentezi ve Karakterizasyonu. İnternational Journal of Mathematic, Engineering and Natural Sciences, 9,1-7.
  • [21] Umaz, A., Koç, A., Baran , M. F. Keskin, C., Atalar, M.N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karakterizasyonu ve Antimikrobiyal Etkinliğinin İncelenmesi, Journal of the Institute of Science and Technology, 9(3), 1467-1475.
  • [22] Baran, M.F., Saydut, A., (2019) Altın nanomalzeme sentezi ve karakterizasyonu. Dicle Üniversitesi Mühendislik Dergisi, 3,1033-1040.
  • [23] Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G. (2014). Delayed Formation of Zero-Valent Selenium Nanoparticles by Bacillus mycoides SelTE01 as a Consequence of Selenite Reduction Under Aerobic Conditions. Microbial Cell Factories, 13(1): 35.
  • [24] Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A, Shahverdi AR. (2013). Efficacy of Biogenic Selenium Nanoparticles Against Leishmania Major: In Vitro and In Vivo Studies. Journal of Trace Elements in Medicine and Biology, 27(3), 203-207.
  • [25] Dhanjal S, Cameotra SS. (2010). Aerobic Biogenesis of Selenium Nanospheres by Bacillus cereus Isolated from Coalmine Soil. Microbial Cell Factories, 9(1): 52.
  • [26] Harikrishnan H, Shine K, Ponmurugan K, Moorthy IG, Kumar RS (2014). In Vitro Eco-Friendly Synthesis of Cadmium Sulfide Nanoparticles Using Heterotrophic Bacillus cereus. Journal of Optoelectronic and Biomedical Materials, 6(1): 1-7.
  • [27] Tripathi RM, Bhadwal AS, Singh P, Shrivastav A, Singh MP, Shrivastav BR. (2014) Mechanistic Aspects of Biogenic Synthesis of CdS Nanoparticles Using Bacillus licheniformis. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(2): 025006.
  • [28] Nayak PS, Arakha M, Kumar A, Asthana S, Mallick BC, Jha S. (2016). An Approach Towards Continuous Production of Silver Nanoparticles Using Bacillus thuringiensis. RSC Advances, 6(10): 8232-8242.
  • [29] Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL. (2004).Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chemistry and Biology, 11(11): 1553- 1559.
  • [30] Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, Yang DC. (2016). Intracellular Synthesis of Gold Nanoparticles with Antioxidant Activity by Probiotic Lactobacillus Kimchicus DCY51 T Isolated from Korean Kimchi. Enzyme and Microbial Technology, 95: 85-93
  • [31] Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Bagavan A. (2011). Biosynthesis of Titanium Dioxide Nanoparticles Using Bacterium Bacillus subtilis. Materials Letters, 65(17): 2745- 2747.
  • [32]Tiwari M, Jain P, Hariharapura RC, Narayanan K, Bhat U, Udupa N, Rao JV. (2016) Biosynthesis of Copper Nanoparticles Using Copper-Resistant Bacillus cereus, A Soil Isolate. Process Biochemistry, 51(10): 1348-1356.
  • [33] Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagava A, Rao KB. (2012). Novel Microbial Route to Synthesize ZnO Nanoparticles Using Aeromonas hydrophila and Their Activity Against Pathogenic Bacteria and Fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90: 78-84.
  • [34] Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Beukes LS. (2016).Biomedical and Catalytic Applications of Gold and Silver-Gold Alloy Nanoparticles Biosynthesized Using Cell-Free Extract of Bacillus safensis LAU 13: Antifungal, Dye Degradation, Anti-Coagulant and Thrombolytic Activities. IEEE Transactions on Nanobioscience, 15(5): 433-442.
  • [35] Lateef A, Ojo SA, Oladejo SM. (2016). Anti-Candida, AntiCoagulant and Thrombolytic Activities of Biosynthesized Silver Nanoparticles Using Cell-Free Extract of Bacillus safensis LAU 13. Process Biochemistry, 51(10): 1406-1412.
  • [36] Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. (2016). Green Synthesis of Silver Nanoparticles by Bacillus methylotrophicus, and Their Antimicrobial Activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4): 1127-1132.
  • [37] Deljou A, Goudarzi S. (2016). Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria. Iranian Journal of Biotechnology, 14(2), 25-32.
  • [38] Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. (2014) Extracellular Synthesis of Silver Nanoparticles by the Bacillus Strain CS 11 Isolated from Industrialized Area. 3 Biotech, 4(2): 121-126.
  • [39] Du J, Yi TH. (2016). Biosynthesis of Silver Nanoparticles by Variovorax guangxiensis THG-SQL3 and Their Antimicrobial Potential. Materials Letters, 178: 75-78.
  • [40] Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Liu H. (2012). Synthesis of Silver Nanoparticles by Solar Irradiation of Cell-Free Bacillus amyloliquefaciens Extracts and AgNO3. Bioresource Technology, 103(1): 273-278.
  • [41] Sundaram PA, Augustine R, Kannan M. (2012). Extracellular Biosynthesis of Iron Oxide Nanoparticles by Bacillus subtilis Strains Isolated from Rhizosphere Soil. Biotechnology and Bioprocess Engineering, 17(4): 835-840.
  • [42] Baran A. (2021). Eco-friendly, rapid synthesis of silver nanomaterials and their use for biomedical applications. Dicle University Journal of Engineering, 12(2): 329-336.
  • [43] Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. (2021). Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules, 26, 844.
  • [44] Salem S, Fouda A. (2021). Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biological Trace Element Research, 199:344–370.
  • [45] Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7:483.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Derlemeler
Authors

İrem Yavuz This is me 0000-0002-4013-6223

Ebru Şebnem Yılmaz 0000-0001-6124-4832

Publication Date May 1, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 93-108. https://doi.org/10.5281/zenodo.4843592
AMA Yavuz İ, Yılmaz EŞ. Biyolojik Sistemli Nanopartiküller. GÜFFD. May 2021;2(1):93-108. doi:10.5281/zenodo.4843592
Chicago Yavuz, İrem, and Ebru Şebnem Yılmaz. “Biyolojik Sistemli Nanopartiküller”. Gazi Üniversitesi Fen Fakültesi Dergisi 2, no. 1 (May 2021): 93-108. https://doi.org/10.5281/zenodo.4843592.
EndNote Yavuz İ, Yılmaz EŞ (May 1, 2021) Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi 2 1 93–108.
IEEE İ. Yavuz and E. Ş. Yılmaz, “Biyolojik Sistemli Nanopartiküller”, GÜFFD, vol. 2, no. 1, pp. 93–108, 2021, doi: 10.5281/zenodo.4843592.
ISNAD Yavuz, İrem - Yılmaz, Ebru Şebnem. “Biyolojik Sistemli Nanopartiküller”. Gazi Üniversitesi Fen Fakültesi Dergisi 2/1 (May 2021), 93-108. https://doi.org/10.5281/zenodo.4843592.
JAMA Yavuz İ, Yılmaz EŞ. Biyolojik Sistemli Nanopartiküller. GÜFFD. 2021;2:93–108.
MLA Yavuz, İrem and Ebru Şebnem Yılmaz. “Biyolojik Sistemli Nanopartiküller”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 2, no. 1, 2021, pp. 93-108, doi:10.5281/zenodo.4843592.
Vancouver Yavuz İ, Yılmaz EŞ. Biyolojik Sistemli Nanopartiküller. GÜFFD. 2021;2(1):93-108.