Research Article
BibTex RIS Cite

AlSi10Mg Alaşımının SLM Yöntemiyle Üretilmesinde Proses Parametrelerinin Yüzey Kalitesi Üzerindeki Etkisi

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1437598

Abstract

Eklemeli imalat (Eİ) yöntemi, dijital bir 3D model kullanılarak nesnelerin katman katman biriktirilmesiyle nihai ürünleri ortaya çıkaran bir üretim yöntemidir. Eİ sayesinde geleneksel yöntemle üretilmesi neredeyse imkansız olan karmaşık geometrili ürünler üretilebilir. Dahası, yüksek malzeme israfı ve özel takımlara duyulan ihtiyaç gibi geleneksel üretimin diğer sınırlamaları da elimine edilebilir. Bununla beraber, Eİ yönteminin bazı dezavantajları vardır ve yüzey kalitesi bu dezavantajlardan biridir. Optimum yüzey kalitesinin elde edilmesi için ilk yapılması gereken de optimum üretim parametrelerinin belirlenmesidir. Bu çalışmada, bu amaca yönelik olarak bir dizi deney yapılmıştır ve farklı üretim parametreleri ve seviyeleri kullanılarak AlSi10Mg alaşımı üretilmiştir. Üretim esnasında Eİ yöntemlerinden birisi olan Seçici Lazer Ergitme (SLM) yöntemi tercih edilmiştir. Böylece bazı üretim parametreleri ve seviyelerinin ortalama yüzey pürüzlülüğü üzerindeki etkisinin araştırılması amaçlanmıştır. Üretim parametresi olarak lazer gücü, tarama mesafesi, tarama hızı, lazer çapı ve her bir parametreye ait dört seviye seçilmiştir. Üretim maliyetlerini ve deney sayısını azaltmak için Taguchi L16 dikey dizinine göre deney tasarımı yapılmıştır. Üretilen numunelere ait ortalama yüzey pürüzlülüğü (Ra) ölçülmüş ve daha detaylı bir yüzey analizi yapabilmek için yüzeylerin topoğrafya haritaları elde edilmiştir. Üretim parametrelerinin yüzey pürüzlülüğü üzerindeki etkisini göstermek için ANOVA analizi yapılmıştır. Deney sonuçlarının analiziyle birlikte, en iyi yüzey pürüzlülüğü değeri 360 W lazer gücü, 0.13 mm tarama mesafesi, 0.10 mm lazer çapı, 1200 mm/s tarama hızı kombinasyonu kullanılarak elde edildiği tespit edilmiştir.

Supporting Institution

Erciyes Üniversitesi

Project Number

FYL-2021- 10915

Thanks

Bu çalışma Erciyes Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje kodu: FYL-2021- 10915).

References

  • [1] Choi, J. W. Architecture of a knowledge based engineering system for weight and cost estimation for a composite airplane structures. Expert Systems with Applications. 2009;36(8), 10828-10836.
  • [2] Rambabu P, Eswara Prasad N, Kutumbarao V V., Wanhill RJH. Aluminium Alloys for Aerospace Applications. 2017:29–52.
  • [3] Abioye, T. E., Zuhailawati, H., Aizad, S., Anasyida AS. Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications. Trans Nonferrous Met Soc China. 2019;29:667–79.
  • [4] Gupta MK, Singla AK, Ji H, Song Q, Liu Z, Cai W, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol. 2020;9:9506–22.
  • [5] Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A. 2016;663:116–25.
  • [6] Liu X, Zhao C, Zhou X, Shen Z, Liu W. Microstructure of selective laser melted AlSi10Mg alloy. Mater Des. 2019;168:107677.
  • [7] Singamneni, S., Yifan, L. V., Hewitt, A., Chalk, R., Thomas, W., & Jordison D. Additive Manufacturing for the Aircraft Industry: A Review. 2019.
  • [8] ASTM52901-16 standard guide for additive manufacturing–general principles–requirements for purchased AM parts. ASTM International, West Conshohocken. 2016.
  • [9] Kandukuri S, Ze · Chen. Progress of Metal AM and Certification Pathway. Trans Indian Natl Acad Eng. 2021;6:909–15.
  • [10] Gebler M, Schoot Uiterkamp AJM, Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy. 2014;74:158–67.
  • [11] Wohlers, T. Wohlers report 2021: 3D printing and additive manufacturing global state of the industry.2021.
  • [12] Froes F. Combining additive manufacturing with conventional casting and reduced density materials to greatly reduce the weight of airplane components such as passenger seat frames. Addit Manuf Aerosp Ind. 2019:419–25.
  • [13] Aktimur B, Gökpinar ES. Katmanlı Üretimin Havacılıkdaki Uygulamaları. Gazi Univ J Sci Part C Des Technol. 2015;3:463–9.
  • [14] Tomlin M. Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part.2011.
  • [15] Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, et al. Metal additive manufacturing in aerospace: A review. Mater Des. 2021;209:110008.
  • [16] Boschetto A, Bottini L, Veniali F. Roughness modeling of AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 2017;241:154–63.
  • [17] Wang L zhi, Wang S, Wu J jiao. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol. 2017;96:88–96.
  • [18] Majeed A, Ahmed A, Salam A, Sheikh MZ. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int J Light Mater Manuf. 2019;2:288–95.
  • [19] Subbiah, R., Bensingh, J., Kader, A., & Nayak, S. Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting. The International Journal of Advanced Manufacturing Technology. 2020; 106, 5137-5147.
  • [20] Fiegl T, Franke M, Körner C. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg. Opt Laser Technol. 2019;111:51–7.
  • [21] Caiazzo F, Alfieri V, Casalino G. On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion. Mater. 2020, Vol 13, Page 538 2020;13:538.
  • [22] Wang P, Lei H, Zhu X, Chen H, Fang D. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J Alloys Compd. 2019;789:852–9.
  • [23] Trevisan F, Calignano F, Lorusso M, Materials JP-, 2017 U. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials (Basel) 2017;10:76.
  • [24] 4287: 1997: Geometrical product specifications (GPS)–Surface texture: profile method–Terms, definitions and surface texture parameters. 1998.
  • [25] Yıldırım ÇV, Kıvak · Turgay, Murat Sarıkaya, Fehmi Erzincanlı . Determination of MQL Parameters Contributing to Sustainable Machining in the Milling of Nickel-Base Superalloy Waspaloy. Arab J Sci Eng. 2017;42:4667–81.
  • [26] Kivak T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement 2014;50:19–28.
  • [27] Savaşkan M, Taptık Y, Ürgen M. Deney tasarımı yöntemi ile matkap uçlarında performans optimizasyonu. İTÜDERGİSİ/D. 2010;3.
  • [28] Yücel A, Yıldırım ÇV. AA2024 Alaşımının Tornalanmasında Nanoakışkan Konsantrasyon Oranı ve MMY Parametrelerinin Yüzey Pürüzlülüğü ve Kesme Sıcaklığı Üzerindeki Etkisi. Manuf Technol Appl. 2020;1:18–32.
  • [29] Bean GE, Witkin DB, McLouth TD, Patel DN, Zaldivar RJ. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit Manuf. 2018;22:207–15.
  • [30] Yang T, Liu T, Liao W, MacDonald E, Wei H, Chen X, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 2019;266:26–36.
  • [31] Bhaduri D, Penchev P, Dimov S, Essa K, Carter LN, Pruncu CI, et al. On the surface integrity of additive manufactured and post-processed AlSi10Mg parts. Procedia CIRP. 2020;87:339–44.
  • [32] Wang Z, Xiao Z, Tse Y, Huang C, Zhang W. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol. 2019;112:159–67.
  • [33] Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy. Mater. 2018, Vol 11, 2018;11:2343.
  • [34] Koutiri I, Pessard E, Peyre P, Amlou O, De Terris T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J Mater Process Technol. 2018;255:536–46.

Effect of Process Parameters on Surface Quality in the Production of AlSi10Mg Alloy by SLM Method

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1437598

Abstract

Additive manufacturing (AM) is a manufacturing method that creates final products by depositing objects layer by layer using a digital 3D model. Thanks to AM, products with complex geometries that are almost impossible to manufacture using traditional methods can be produced. Additionally, other limitations of traditional manufacturing, such as high material waste and the need for special tooling, can be eliminated. However, the AM method has some disadvantages, and surface quality is one of them. In order to obtain optimum surface quality, the first thing to do is to determine the optimum production parameters. In this study, a series of experiments were carried out for this purpose and AlSi10Mg alloy was manufactured using different production parameters and levels. Selective Laser Melting (SLM) method, one of the AM methods, was preferred during production. Thus, it was aimed to investigate the effect of some production parameters and levels on average surface roughness. As production parameters, laser power, scanning distance, scanning speed, laser diameter and four levels for each parameter were selected. Experimental design was made according to the Taguchi L16 vertical array to reduce production costs and the number of experiments. The average surface roughness (Ra) of the produced samples was measured and topographic maps of the surfaces were obtained in order to perform a more detailed surface analysis. ANOVA analysis was performed to show the effect of production parameters on surface roughness. From the analysis of results, it was determined that the best surface roughness value was obtained using the combination of 360 W laser power, 0.13 mm scanning distance, 0.10 mm laser diameter, 1200 mm/s scanning speed.

Project Number

FYL-2021- 10915

References

  • [1] Choi, J. W. Architecture of a knowledge based engineering system for weight and cost estimation for a composite airplane structures. Expert Systems with Applications. 2009;36(8), 10828-10836.
  • [2] Rambabu P, Eswara Prasad N, Kutumbarao V V., Wanhill RJH. Aluminium Alloys for Aerospace Applications. 2017:29–52.
  • [3] Abioye, T. E., Zuhailawati, H., Aizad, S., Anasyida AS. Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications. Trans Nonferrous Met Soc China. 2019;29:667–79.
  • [4] Gupta MK, Singla AK, Ji H, Song Q, Liu Z, Cai W, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol. 2020;9:9506–22.
  • [5] Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A. 2016;663:116–25.
  • [6] Liu X, Zhao C, Zhou X, Shen Z, Liu W. Microstructure of selective laser melted AlSi10Mg alloy. Mater Des. 2019;168:107677.
  • [7] Singamneni, S., Yifan, L. V., Hewitt, A., Chalk, R., Thomas, W., & Jordison D. Additive Manufacturing for the Aircraft Industry: A Review. 2019.
  • [8] ASTM52901-16 standard guide for additive manufacturing–general principles–requirements for purchased AM parts. ASTM International, West Conshohocken. 2016.
  • [9] Kandukuri S, Ze · Chen. Progress of Metal AM and Certification Pathway. Trans Indian Natl Acad Eng. 2021;6:909–15.
  • [10] Gebler M, Schoot Uiterkamp AJM, Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy. 2014;74:158–67.
  • [11] Wohlers, T. Wohlers report 2021: 3D printing and additive manufacturing global state of the industry.2021.
  • [12] Froes F. Combining additive manufacturing with conventional casting and reduced density materials to greatly reduce the weight of airplane components such as passenger seat frames. Addit Manuf Aerosp Ind. 2019:419–25.
  • [13] Aktimur B, Gökpinar ES. Katmanlı Üretimin Havacılıkdaki Uygulamaları. Gazi Univ J Sci Part C Des Technol. 2015;3:463–9.
  • [14] Tomlin M. Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part.2011.
  • [15] Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, et al. Metal additive manufacturing in aerospace: A review. Mater Des. 2021;209:110008.
  • [16] Boschetto A, Bottini L, Veniali F. Roughness modeling of AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 2017;241:154–63.
  • [17] Wang L zhi, Wang S, Wu J jiao. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol. 2017;96:88–96.
  • [18] Majeed A, Ahmed A, Salam A, Sheikh MZ. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int J Light Mater Manuf. 2019;2:288–95.
  • [19] Subbiah, R., Bensingh, J., Kader, A., & Nayak, S. Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting. The International Journal of Advanced Manufacturing Technology. 2020; 106, 5137-5147.
  • [20] Fiegl T, Franke M, Körner C. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg. Opt Laser Technol. 2019;111:51–7.
  • [21] Caiazzo F, Alfieri V, Casalino G. On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion. Mater. 2020, Vol 13, Page 538 2020;13:538.
  • [22] Wang P, Lei H, Zhu X, Chen H, Fang D. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J Alloys Compd. 2019;789:852–9.
  • [23] Trevisan F, Calignano F, Lorusso M, Materials JP-, 2017 U. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials (Basel) 2017;10:76.
  • [24] 4287: 1997: Geometrical product specifications (GPS)–Surface texture: profile method–Terms, definitions and surface texture parameters. 1998.
  • [25] Yıldırım ÇV, Kıvak · Turgay, Murat Sarıkaya, Fehmi Erzincanlı . Determination of MQL Parameters Contributing to Sustainable Machining in the Milling of Nickel-Base Superalloy Waspaloy. Arab J Sci Eng. 2017;42:4667–81.
  • [26] Kivak T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement 2014;50:19–28.
  • [27] Savaşkan M, Taptık Y, Ürgen M. Deney tasarımı yöntemi ile matkap uçlarında performans optimizasyonu. İTÜDERGİSİ/D. 2010;3.
  • [28] Yücel A, Yıldırım ÇV. AA2024 Alaşımının Tornalanmasında Nanoakışkan Konsantrasyon Oranı ve MMY Parametrelerinin Yüzey Pürüzlülüğü ve Kesme Sıcaklığı Üzerindeki Etkisi. Manuf Technol Appl. 2020;1:18–32.
  • [29] Bean GE, Witkin DB, McLouth TD, Patel DN, Zaldivar RJ. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit Manuf. 2018;22:207–15.
  • [30] Yang T, Liu T, Liao W, MacDonald E, Wei H, Chen X, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 2019;266:26–36.
  • [31] Bhaduri D, Penchev P, Dimov S, Essa K, Carter LN, Pruncu CI, et al. On the surface integrity of additive manufactured and post-processed AlSi10Mg parts. Procedia CIRP. 2020;87:339–44.
  • [32] Wang Z, Xiao Z, Tse Y, Huang C, Zhang W. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol. 2019;112:159–67.
  • [33] Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy. Mater. 2018, Vol 11, 2018;11:2343.
  • [34] Koutiri I, Pessard E, Peyre P, Amlou O, De Terris T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J Mater Process Technol. 2018;255:536–46.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies, Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Tasarım ve Teknoloji
Authors

Arif Lütfi Özsoy 0000-0001-6164-2398

Emine Şirin 0000-0001-9561-2453

Çağrı Vakkas Yıldırım 0000-0002-0763-807X

Murat Sarıkaya 0000-0001-6100-0731

Project Number FYL-2021- 10915
Early Pub Date May 4, 2024
Publication Date
Submission Date February 15, 2024
Acceptance Date March 14, 2024
Published in Issue Year 2024 Erken Görünüm

Cite

APA Özsoy, A. L., Şirin, E., Yıldırım, Ç. V., Sarıkaya, M. (2024). AlSi10Mg Alaşımının SLM Yöntemiyle Üretilmesinde Proses Parametrelerinin Yüzey Kalitesi Üzerindeki Etkisi. Gazi University Journal of Science Part C: Design and Technology1-1. https://doi.org/10.29109/gujsc.1437598

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526