Research Article
BibTex RIS Cite

Silisyumun Çilek Bitkisinde Tuz Stresine Etkileri

Year 2018, Volume: 22 Issue: 4, 478 - 483, 24.12.2018

Abstract

Çilek
bitkisi yetersiz drenaj ve aşırı gübrelemeden dolayı tuzluluktan
etkilenmektedir. Silisyum, tuz stresinin zararlı etkilerini azaltmada hem uygun
hem de ucuz bir uygulamadır. Çalışmamızda silisyumun; bitki gelişimi, nispi
klorofil içeriği ve stoma iletkenliği üzerine etkileri araştırılmıştır. Kabarla
çilek çeşidi çalışma için seçilmiş ve deneme tesadüf parselleri deneme desenine
göre 3 tekerrürlü ve her tekerrürde 3 bitki olacak şekilde kurulmuştur. Deneme
başlayana kadar tüm bitkiler musluk suyu ile sulanmıştır ve dikimden 1 ay sonra
bitkilere 3 farklı dozda CaSiO3 (0.5, 1 ve 2 mM) uygulanmış ve 35 mM
NaCl çözeltisi verilmiştir. Kontrol ve tuz bitkilerine CaSiO3
uygulanmamış olup tuz uygulanan bitkiler kontrol bitkileriyle kıyas edilmiştir.
Üç aylık tuz stresinden sonra (Mart ayında) kök hacmi, kök yoğunluğu, kök
ağırlık oranı, sürgün ağırlık oranı gibi birçok bitki büyüme özellikleri
değerlendirilmiştir. Çalışma sonucunda, tuz kök hacmini kontrol grubuna kıyasla
%37 azaltırken, 1 mM Si %26 azaltmıştır. Tuz stresine maruz bırakılan
bitkilerde kök yoğunluğu önemli derecede azalmıştır. Kontrol grubuna kıyasla,
tuz grubu bitkileri kök yoğunluğunu %34 azaltırken, 0.5 mM silisyum %2 azaltmıştır.
Sonuç olarak, silisyum çilek bitkilerinde tuz stresinin zararlı etkilerini
azaltmıştır.

References

  • Aras, S., Eşitken, A., 2018. Physiological Responses of Cherry Rootstocks to Short Term Salinity. Erwerbs-Obstbau, 60: 161-164.
  • Broadley, M., Brown, P., Cakmak, I., Ma, J.F., Rengel, Z., Zhao, F., 2002. Benifitical elements. In: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Third ed. Academic Press, San Diego, USA, pp: 249–269.
  • Cao, D., Li, Y., Liu, B., Kong, F., Tran, L.S.P., 2018. Adaptive mechanisms of soybean grown on salt‐affected soils. Land Degradation and Development, 29(4): 1054-1064.
  • Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Science, 45: 437–48.
  • de Lacerda, C.F., Cambraia, J., Oliva, M. A., Ruiz, H.A., 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54(1): 69-76.
  • Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., Bidabadi, S.S., 2016. Effects of potassium silicate and nanosilica on quantitative and qualitative characteristics of a commercial strawberry (Fragaria× ananassa cv.‘camarosa’). Journal of Plant Nutrition, 39(4): 502-507.
  • Garriga, M., Muñoz, C.A., Caligari, P.D., Retamales, J.B., 2015. Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Scientia Horticulturae: 195, 37-47.
  • Haghighi, M., Pessarakli, M., 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161: 111-117.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51 (1): 463-499.
  • Hu, W.H., Yan, X.H., Xiao, Y.A., Zeng, J.J., Qi, H.J., Ogweno, J.O., 2013. 24- Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150: 232-237.
  • Keutgen, A. J., Pawelzik, E., 2008. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 107(4): 1413-1420.
  • Liang, Y., Chen, Q. I.N., Liu, Q., Zhang, W., Ding, R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of plant physiology, 160(10): 1157-1164.
  • Liang, Y., Zhang, W., Chen, Q., Ding, R., 2005. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53(1): 29-37.
  • Lupini, A., Sorgonà, A., Princi, M.P., Sunseri, F., Abenavoli, M.R., 2016. Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regulation, 78: 263–273.
  • Mehta, P., Jajoo, A., Mathur, S., Bharti, S., 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48(1): 16-20.
  • Meloni, D.A., Gulotta, M.R., Martínez, C.A., Oliva, M. A., 2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology, 16(1): 39-46.
  • Moradi, F., Ismail, A.M., 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of botany, 99(6): 1161-1173.
  • Murillo‐Amador, B., Yamada, S., Yamaguchi, T., Rueda‐Puente, E., Ávila‐Serrano, N., García‐Hernández, J.L., Lopez-Aguilar, R., Troyo-Dieguez, E., Nieto‐Garibay, A., 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 193(6): 413-421.
  • Üzal, Ö., Yıldız, K., 2014. Bazı çilek (Fragaria x ananassa L.) çeşitlerinin tuz stresine tepkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 24(2): 159-167.
  • Pavlovic, J., Samardzic, J., Maksimović, V., Timotijevic, G., Stevic, N., Laursen, K.H., Hansen, T.H., Husted, S., Schjoerring, J.K., Liang, Y., Nikolic, M., 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198: 1096-1107.
  • Pessarakli, M., Szabolcs, I., 2010. Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress, thirded. CRC Press, Boca Raton, pp: 3–21.
  • Pirlak, L., Eşitken, A., 2004. Salinity effects on growth, proline and ion accumulation in strawberry plants. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 54(3): 189-192.
  • Shakar, M., Yaseen, M., Mahmood, R., Ahmad, I., 2016. Calcium carbide induced ethylene modulate biochemical profile of Cucumis sativus at seed germination stage to alleviate salt stress. Scientia Horticulturae, 213: 179-185.
  • Tanou, G., Molassiotis, A., Diamantidis, G., 2009. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and experimental botany, 65(2-3): 270-281.
  • Thornley, J., 1972. A balanced quantitative model for root: shoot ratios in vegetative plants, Annals of botany, 36 (2): 431-441.
  • Tuna, A.L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., Yagmur, B., 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59:173–178.
  • Turhan, E., Eris, A., 2005. Changes of micronutrients, dry weight, and chlorophyll contents in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis, 36(7-8): 1021-1028.
  • Turhan, E., Eriş, A., 2007. Growth and stomatal behaviour of two strawberry cultivars under long-term salinity stress. Turkish Journal of Agriculture and Forestry, 31(1): 55-61.
  • Turhan, E., Gulen, H., Eris, A., 2008. The activity of antioxidative enzymes in three strawberry cultivars related to salt-stress tolerance. Acta Physiologiae Plantarum, 30(2): 201-208.
  • Wang, Y., Stass, A., Horst, W., 2004. Apoplastic binding of aluminium is involved in silicon-induced amelioration of aluminium toxicity in maize. Plant Physiology, 136: 3762–70.
  • Zhu, J., Liang, Y., Ding, Y., Li, Z., 2006. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress. Zhongguo nongye kexue. 39: 1780-1788.

Effects of Silicon to Salt Stress on Strawberry Plant

Year 2018, Volume: 22 Issue: 4, 478 - 483, 24.12.2018

Abstract

Strawberry
is often affected by salinity due to poor drainage and excessive fertilization.
Silicon application is becoming a feasible and cheap treatment to relieve the
damages of salt stress. In the current study, the effects of silicon was
investigated on plant growth, relative chlorophyll content and stomatal
conductance of strawberry plant. A strawberry plant (Fragaria × ananassa
Duch.) cv Kabarla was chosen for the experiment with following a randomized
plot design involving three replications, with three plants per replication. Up
until the start of the experiment, all plants were irrigated with tap water and
1 month later plants were applied with three different CaSiO3 doses
(0.5, 1 and 2 mM) and were watered with 35 mM NaCl solution. Control and salt
plants were not applied with CaSiO3, salt plants were watered with
NaCl solution compared to control. Three months after the salinity (in March),
many plant growth properties such as root volume, root tissue density, root
mass ratio, shoot mass ratio, were evaluated. End of the study, salt decreased
root volume by 37% compared to the control, while 1 mM Si decreased 26%. Root
tissue density was significantly reduced when plants were subjected to salt
stress. Compared to the control group, salt decreased root tissue density by
34%, while 0.5 mM Si declined by 2%. As a result,
Si diminished the adverse effects of salt stress on
strawberry plant growth.

References

  • Aras, S., Eşitken, A., 2018. Physiological Responses of Cherry Rootstocks to Short Term Salinity. Erwerbs-Obstbau, 60: 161-164.
  • Broadley, M., Brown, P., Cakmak, I., Ma, J.F., Rengel, Z., Zhao, F., 2002. Benifitical elements. In: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Third ed. Academic Press, San Diego, USA, pp: 249–269.
  • Cao, D., Li, Y., Liu, B., Kong, F., Tran, L.S.P., 2018. Adaptive mechanisms of soybean grown on salt‐affected soils. Land Degradation and Development, 29(4): 1054-1064.
  • Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Science, 45: 437–48.
  • de Lacerda, C.F., Cambraia, J., Oliva, M. A., Ruiz, H.A., 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54(1): 69-76.
  • Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., Bidabadi, S.S., 2016. Effects of potassium silicate and nanosilica on quantitative and qualitative characteristics of a commercial strawberry (Fragaria× ananassa cv.‘camarosa’). Journal of Plant Nutrition, 39(4): 502-507.
  • Garriga, M., Muñoz, C.A., Caligari, P.D., Retamales, J.B., 2015. Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Scientia Horticulturae: 195, 37-47.
  • Haghighi, M., Pessarakli, M., 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161: 111-117.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51 (1): 463-499.
  • Hu, W.H., Yan, X.H., Xiao, Y.A., Zeng, J.J., Qi, H.J., Ogweno, J.O., 2013. 24- Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150: 232-237.
  • Keutgen, A. J., Pawelzik, E., 2008. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 107(4): 1413-1420.
  • Liang, Y., Chen, Q. I.N., Liu, Q., Zhang, W., Ding, R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of plant physiology, 160(10): 1157-1164.
  • Liang, Y., Zhang, W., Chen, Q., Ding, R., 2005. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53(1): 29-37.
  • Lupini, A., Sorgonà, A., Princi, M.P., Sunseri, F., Abenavoli, M.R., 2016. Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regulation, 78: 263–273.
  • Mehta, P., Jajoo, A., Mathur, S., Bharti, S., 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48(1): 16-20.
  • Meloni, D.A., Gulotta, M.R., Martínez, C.A., Oliva, M. A., 2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology, 16(1): 39-46.
  • Moradi, F., Ismail, A.M., 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of botany, 99(6): 1161-1173.
  • Murillo‐Amador, B., Yamada, S., Yamaguchi, T., Rueda‐Puente, E., Ávila‐Serrano, N., García‐Hernández, J.L., Lopez-Aguilar, R., Troyo-Dieguez, E., Nieto‐Garibay, A., 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 193(6): 413-421.
  • Üzal, Ö., Yıldız, K., 2014. Bazı çilek (Fragaria x ananassa L.) çeşitlerinin tuz stresine tepkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 24(2): 159-167.
  • Pavlovic, J., Samardzic, J., Maksimović, V., Timotijevic, G., Stevic, N., Laursen, K.H., Hansen, T.H., Husted, S., Schjoerring, J.K., Liang, Y., Nikolic, M., 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198: 1096-1107.
  • Pessarakli, M., Szabolcs, I., 2010. Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress, thirded. CRC Press, Boca Raton, pp: 3–21.
  • Pirlak, L., Eşitken, A., 2004. Salinity effects on growth, proline and ion accumulation in strawberry plants. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 54(3): 189-192.
  • Shakar, M., Yaseen, M., Mahmood, R., Ahmad, I., 2016. Calcium carbide induced ethylene modulate biochemical profile of Cucumis sativus at seed germination stage to alleviate salt stress. Scientia Horticulturae, 213: 179-185.
  • Tanou, G., Molassiotis, A., Diamantidis, G., 2009. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and experimental botany, 65(2-3): 270-281.
  • Thornley, J., 1972. A balanced quantitative model for root: shoot ratios in vegetative plants, Annals of botany, 36 (2): 431-441.
  • Tuna, A.L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., Yagmur, B., 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59:173–178.
  • Turhan, E., Eris, A., 2005. Changes of micronutrients, dry weight, and chlorophyll contents in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis, 36(7-8): 1021-1028.
  • Turhan, E., Eriş, A., 2007. Growth and stomatal behaviour of two strawberry cultivars under long-term salinity stress. Turkish Journal of Agriculture and Forestry, 31(1): 55-61.
  • Turhan, E., Gulen, H., Eris, A., 2008. The activity of antioxidative enzymes in three strawberry cultivars related to salt-stress tolerance. Acta Physiologiae Plantarum, 30(2): 201-208.
  • Wang, Y., Stass, A., Horst, W., 2004. Apoplastic binding of aluminium is involved in silicon-induced amelioration of aluminium toxicity in maize. Plant Physiology, 136: 3762–70.
  • Zhu, J., Liang, Y., Ding, Y., Li, Z., 2006. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress. Zhongguo nongye kexue. 39: 1780-1788.
There are 31 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Araştırma Makaleleri
Authors

Servet Aras 0000-0002-0347-6552

Ahmet Eşitken 0000-0002-6140-7782

Publication Date December 24, 2018
Submission Date June 25, 2018
Published in Issue Year 2018 Volume: 22 Issue: 4

Cite

APA Aras, S., & Eşitken, A. (2018). Effects of Silicon to Salt Stress on Strawberry Plant. Harran Tarım Ve Gıda Bilimleri Dergisi, 22(4), 478-483.

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.