Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 53 - 61
https://doi.org/10.32571/ijct.1365592

Abstract

References

  • 1. Tun. M. M.; Juchelkova. D.; Win. M. M.; Thu. A. M.; Puchor. T. Res. 2019. 8. 81.
  • 2. Jaroenkhasemmeesuk. C.; Tippayawong. N.; Shimpalee. S.; Ingham. D. B. Alex. Eng. J. 2023. 63. 199–209.
  • 3. Bridgwater. A. V. J. of Anal. App. Pyr. 1999. 51(1–2).
  • 4. Zhao. W.; Liu. S.; Yin. M.; He. Z.; Bi. D. J. Anal. App. Pyr. 2023. 169. 105795.
  • 5. Biswas. B.; Singh. R.; Kumar. J.; Singh. R.; Gupta. P.; Krishna. B. B. Ren. En. 2018. 129. 686–694.
  • 6. Yu. J.; Ramirez Reina. T.; Paterson. N.; Millan. M. Apl Ener. and Com. Sci. 2022. 9. 100046.
  • 7. Wang. W.; Wang. J.; Meng. J. For. Eco. and Man. 2023. 528. 120631.
  • 8. Jia. G.; Liu. Z.; Chen. L.; Yu. X. Ecol. and Evol. 2017. 7(24). 10640–10651.
  • 9. Naqvi. S. R.; Tariq. R.; Hameed. Z.; Ali. I.; Naqvi. M.; Chen. W. H. Ren. Ener.2019. 131. 854–860.
  • 10. Ghorbannezhad. P.; Kool. F.; Rudi. H.; Ceylan. S. Ren. En. 2020. 145. 663–670.
  • 11. Kwon. H.; Xuan. Y. Fuel 2021. 306. 121616.
  • 12. Mora. M.; Fàbregas. E.; Céspedes. F.; Bartrolí. J.; Puy. N. Fu. Proc.Techn.2022. 238. 107509.
  • 13. Abbas-Abadi. M. S.; Van Geem. K. M.; Fathi. M.; Bazgir. H.; Ghadiri. M. Ener. 2021. 232. 121085.
  • 14. Lopez. G.; Arregi. A.; Abbas-Abadi. M. S.; Santamaria. L.; Artetxe. M.; Bilbao. J.; et al. ACS Sus. Che. and Eng. 2020. 8(46). 17307–17321.
  • 15. Bhatnagar. A.; Barthen. R.; Tolvanen. H.; Konttinen. J. of Anal. and Appl. Pyr. 2021. 157. 105219.
  • 16. Murwanashyaka. J. N.; Pakdel. H.; Roy. C. J. of Anal. and App. Pyro. 2001. 60(2). 219–231.
  • 17. BenBelkacem. I.; Bouhafsoun. A.; Jamaladdeen. R.; Coudour. B.; Roudaut. C.; Garo. J. P.; et al. Bior. Tech. Rep. 2023. 21. 101353.
  • 18. Lee. H. W.; Jeong. H.; Ju. Y. M.; Lee. S. M. Kor. J. Chem. Eng. 2020. 37(7). 1174–1180.
  • 19. Mullen. C. A.; Boateng. A. A. En. and Ful. 2008. 22(3). 2104–2109.
  • 20. Zhang. X. S.; Yang. G. X.; Jiang. H.; Liu. W. J.; Ding. H. S. Sci. Rep. 2013. 3:1 2013. 3(1). 1–7.
  • 21. Li. Z.; Choi. J. S.; Wang. H.; Lepore. A. W.; Connatser. R. M.; Lewis. S. A.; et al. En. and Ful. 2017. 31(9). 9585–9594.
  • 22. Black. S.; Ferrell. J. R. RSC Adv. 2020. 10(17). 10046–10054.
  • 23. Drugkar. K.; Rathod. W.; Sharma. T.; Sharma. A.; Joshi. J.; Pareek. V. K.; et al. Sep. and Pur. Tech. 2022. 283. 120149.
  • 24. Lam. S. S.; Azwar. E.; Peng. W.; Tsang. Y. F.; Ma. N. L.; Liu. Z.; et al. J. Cle. Prod.2019. 236. 117692.
  • 25. Kim. J. S. Bior. Tech. 2015. 178. 90–98.
  • 26. Chen. N.; Ren. J.; Ye. Z.; Xu. Q.; Liu. J.; Sun. S. Bio. Tech. 2016. 221. 534–540.
  • 27. Sukiran. Am.J. .App. Sci. 2009. 6(5). 869–875.
  • 28. Ma. B.; Agblevor. F. A. Bio. and Bio. 2014. 64. 337–347.
  • 29. Wu. F.; Huang. S.; Jiang. Q.; Jiang. G. J. Ana.l and App.Pyr. 2023. 175. 106179.
  • 30. Grewal. A.; Abbey. Lord; Gunupuru. L. R. J.Anal. and App. Pyr.2018. 135. 152–159.
  • 31. Ma. H.; L.. H.; Zhao. W.; Li. W.; Long. W. Ener. Proc. 2019. 158. 370–375.
  • 32. Safavi. A.; Richter. C.; Unnthorsson. R. Ener. 2023. 280. 128123.

Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR)

Year 2024, Volume: 8 Issue: 1, 53 - 61
https://doi.org/10.32571/ijct.1365592

Abstract

In this study, slow pyrolysis of oak woods was carried out in a fixed bed tube reactor at four different temperatures ranging from 100 °C to 400 °C and at 5 °C/min speed time intervals. The compositions of the produced bio-tar and bio-oils were determined in detail using FT-IR, GC-MS, HPLC, and NMR devices. Several pyrolysis parameters were carried out to reveal the distribution of pyrolytic products under different pyrolysis temperatures (100–400 °C) and times (1–4 h). During the slow pyrolysis process, oak wood started to decompose to form organic volatile products at a set temperature of 100 °C and reached a maximum yield of volatile products at around 400 °C. GC-MS analyses revealed that different valuable components such as furans, phenolic compounds, carbonyls, linear, aromatic compounds, acids, and hydrocarbons have been formed. Based on the experimental results of the pyrolysis, it has been detected that the temperature and time interval are very effective parameters in the conversion of oak wood to the amount of liquid product.

References

  • 1. Tun. M. M.; Juchelkova. D.; Win. M. M.; Thu. A. M.; Puchor. T. Res. 2019. 8. 81.
  • 2. Jaroenkhasemmeesuk. C.; Tippayawong. N.; Shimpalee. S.; Ingham. D. B. Alex. Eng. J. 2023. 63. 199–209.
  • 3. Bridgwater. A. V. J. of Anal. App. Pyr. 1999. 51(1–2).
  • 4. Zhao. W.; Liu. S.; Yin. M.; He. Z.; Bi. D. J. Anal. App. Pyr. 2023. 169. 105795.
  • 5. Biswas. B.; Singh. R.; Kumar. J.; Singh. R.; Gupta. P.; Krishna. B. B. Ren. En. 2018. 129. 686–694.
  • 6. Yu. J.; Ramirez Reina. T.; Paterson. N.; Millan. M. Apl Ener. and Com. Sci. 2022. 9. 100046.
  • 7. Wang. W.; Wang. J.; Meng. J. For. Eco. and Man. 2023. 528. 120631.
  • 8. Jia. G.; Liu. Z.; Chen. L.; Yu. X. Ecol. and Evol. 2017. 7(24). 10640–10651.
  • 9. Naqvi. S. R.; Tariq. R.; Hameed. Z.; Ali. I.; Naqvi. M.; Chen. W. H. Ren. Ener.2019. 131. 854–860.
  • 10. Ghorbannezhad. P.; Kool. F.; Rudi. H.; Ceylan. S. Ren. En. 2020. 145. 663–670.
  • 11. Kwon. H.; Xuan. Y. Fuel 2021. 306. 121616.
  • 12. Mora. M.; Fàbregas. E.; Céspedes. F.; Bartrolí. J.; Puy. N. Fu. Proc.Techn.2022. 238. 107509.
  • 13. Abbas-Abadi. M. S.; Van Geem. K. M.; Fathi. M.; Bazgir. H.; Ghadiri. M. Ener. 2021. 232. 121085.
  • 14. Lopez. G.; Arregi. A.; Abbas-Abadi. M. S.; Santamaria. L.; Artetxe. M.; Bilbao. J.; et al. ACS Sus. Che. and Eng. 2020. 8(46). 17307–17321.
  • 15. Bhatnagar. A.; Barthen. R.; Tolvanen. H.; Konttinen. J. of Anal. and Appl. Pyr. 2021. 157. 105219.
  • 16. Murwanashyaka. J. N.; Pakdel. H.; Roy. C. J. of Anal. and App. Pyro. 2001. 60(2). 219–231.
  • 17. BenBelkacem. I.; Bouhafsoun. A.; Jamaladdeen. R.; Coudour. B.; Roudaut. C.; Garo. J. P.; et al. Bior. Tech. Rep. 2023. 21. 101353.
  • 18. Lee. H. W.; Jeong. H.; Ju. Y. M.; Lee. S. M. Kor. J. Chem. Eng. 2020. 37(7). 1174–1180.
  • 19. Mullen. C. A.; Boateng. A. A. En. and Ful. 2008. 22(3). 2104–2109.
  • 20. Zhang. X. S.; Yang. G. X.; Jiang. H.; Liu. W. J.; Ding. H. S. Sci. Rep. 2013. 3:1 2013. 3(1). 1–7.
  • 21. Li. Z.; Choi. J. S.; Wang. H.; Lepore. A. W.; Connatser. R. M.; Lewis. S. A.; et al. En. and Ful. 2017. 31(9). 9585–9594.
  • 22. Black. S.; Ferrell. J. R. RSC Adv. 2020. 10(17). 10046–10054.
  • 23. Drugkar. K.; Rathod. W.; Sharma. T.; Sharma. A.; Joshi. J.; Pareek. V. K.; et al. Sep. and Pur. Tech. 2022. 283. 120149.
  • 24. Lam. S. S.; Azwar. E.; Peng. W.; Tsang. Y. F.; Ma. N. L.; Liu. Z.; et al. J. Cle. Prod.2019. 236. 117692.
  • 25. Kim. J. S. Bior. Tech. 2015. 178. 90–98.
  • 26. Chen. N.; Ren. J.; Ye. Z.; Xu. Q.; Liu. J.; Sun. S. Bio. Tech. 2016. 221. 534–540.
  • 27. Sukiran. Am.J. .App. Sci. 2009. 6(5). 869–875.
  • 28. Ma. B.; Agblevor. F. A. Bio. and Bio. 2014. 64. 337–347.
  • 29. Wu. F.; Huang. S.; Jiang. Q.; Jiang. G. J. Ana.l and App.Pyr. 2023. 175. 106179.
  • 30. Grewal. A.; Abbey. Lord; Gunupuru. L. R. J.Anal. and App. Pyr.2018. 135. 152–159.
  • 31. Ma. H.; L.. H.; Zhao. W.; Li. W.; Long. W. Ener. Proc. 2019. 158. 370–375.
  • 32. Safavi. A.; Richter. C.; Unnthorsson. R. Ener. 2023. 280. 128123.
There are 32 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Yunus Başar 0000-0002-7785-3242

Fatih Gül 0000-0002-4297-786X

Mehmet Salih Nas 0000-0003-1092-5237

Mehmet Hakkı Alma 0000-0001-7011-3965

Mehmet Harbi Çalımlı 0000-0001-9756-191X

Early Pub Date April 6, 2024
Publication Date
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Başar, Y., Gül, F., Nas, M. S., Alma, M. H., et al. (2024). Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). International Journal of Chemistry and Technology, 8(1), 53-61. https://doi.org/10.32571/ijct.1365592
AMA Başar Y, Gül F, Nas MS, Alma MH, Çalımlı MH. Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). Int. J. Chem. Technol. April 2024;8(1):53-61. doi:10.32571/ijct.1365592
Chicago Başar, Yunus, Fatih Gül, Mehmet Salih Nas, Mehmet Hakkı Alma, and Mehmet Harbi Çalımlı. “Investigation of Value-Added Compounds Derived from Oak Wood Using Hydrothermal Processing Techniques and Comprehensive Analytical Approaches (HPLC, GC-MS, FT-IR, and NMR)”. International Journal of Chemistry and Technology 8, no. 1 (April 2024): 53-61. https://doi.org/10.32571/ijct.1365592.
EndNote Başar Y, Gül F, Nas MS, Alma MH, Çalımlı MH (April 1, 2024) Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). International Journal of Chemistry and Technology 8 1 53–61.
IEEE Y. Başar, F. Gül, M. S. Nas, M. H. Alma, and M. H. Çalımlı, “Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR)”, Int. J. Chem. Technol., vol. 8, no. 1, pp. 53–61, 2024, doi: 10.32571/ijct.1365592.
ISNAD Başar, Yunus et al. “Investigation of Value-Added Compounds Derived from Oak Wood Using Hydrothermal Processing Techniques and Comprehensive Analytical Approaches (HPLC, GC-MS, FT-IR, and NMR)”. International Journal of Chemistry and Technology 8/1 (April 2024), 53-61. https://doi.org/10.32571/ijct.1365592.
JAMA Başar Y, Gül F, Nas MS, Alma MH, Çalımlı MH. Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). Int. J. Chem. Technol. 2024;8:53–61.
MLA Başar, Yunus et al. “Investigation of Value-Added Compounds Derived from Oak Wood Using Hydrothermal Processing Techniques and Comprehensive Analytical Approaches (HPLC, GC-MS, FT-IR, and NMR)”. International Journal of Chemistry and Technology, vol. 8, no. 1, 2024, pp. 53-61, doi:10.32571/ijct.1365592.
Vancouver Başar Y, Gül F, Nas MS, Alma MH, Çalımlı MH. Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). Int. J. Chem. Technol. 2024;8(1):53-61.