Research Article
BibTex RIS Cite

Lemna minor L. (Su mercimeği)'de Everzol Lacivert ED’ye Dirençte Salisilik Asitin Rolü

Year 2021, Volume: 7 Issue: 1, 185 - 195, 30.06.2021
https://doi.org/10.29132/ijpas.894056

Abstract

Tekstil endüstrisinin üretiminde kullanılan boyalar biyolojik uygulamalara dayanıklı toksik maddelerdir. Çoğunun oldukça karmaşık polimer yapıları vardır. Salisilik asit (SA), bitkiler tarafından üretilen, birçok biyotik ve abiyotik stres faktörüne tolerans sağlayan önemli bir hormondur. Su mercimekleri serbest yüzen bitkilerdir. Bu bitkiler, sucul ortamlara yüksek adaptasyonları, küçük biyokütleleri ve kirletici biriktirme kabiliyetleri gibi nedenlerle birçok araştırmacı tarafından laboratuarda toksikolojik çalışmalarda kullanılmıştır. Bu çalışmanın amacı 75 ppm, 150 ppm ve 300 ppm Everzol Lacivert ED (ELED) reaktif boyarmadde ile 0.5 mM SA ve ELED uygulamasının su mercimeğindeki (L. minor L.) bazı biyokimyasal değişiklikler değerlendirilmiştir. Toplam klorofil ve karotenoid içerikleri 7. günde 0.5 mM SA ve 300 ppm boya uygulanan gruplarda daha yüksek bulunmuştur. Peroksidaz (POD), askorbat peroksidaz (APX) ve Glutatyon S transferaz (GST) aktiviteleri ve toplam glutatyon (GSH) içeriği 0.5 mM SA ve ELED uygulanan gruplarda artmıştır. Süperoksit dismutaz (SOD) ve katalaz (CAT) aktivitesi her iki uygulama grubunda da 1., 4 ve 7. günlerde artış göstermiştir. GR aktivitesi hem boya uygulanan gruplarda hem de 0.5 mM SA ve boya uygulanan gruplarda 7. günde azalmıştır. MDA içeriği 7. günde 300 ppm boya uygulanan gruplarda ve 0.5 mM SA ve 300 ppm boya uygulanan gruplarda azalmıştır.

References

  • Akerboom T.P.M., Sies H.,1981. Assay of glutathione, glutathione disülfide and glutathione mixed disulfides in biological samples. Method Enzymol, 77:373–382.
  • Alkimin, G. D., Daniel, D., Dionísio, R., Soares, A. M. V. M., Barata, C., Nunes, B., 2019. Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? Environmental Research, 177:108609.
  • Al-Snai, A. E., 2019. Lemna minor: Traditional uses, chemical constituents and pharmacological effects-A review. IOSR Journal of Pharmacy, 9(8):6–11.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., Asghar, H. N., 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental safety, 174:714–727.
  • Aziz, A., Kapoor, D., 2018. Salicylic Acid: It’s Physiological Role and Interactions. Research Journal of Pharmacy and Technology, 11(7):3171–3177.
  • Bansal, N., Kanwar, S. S., 2013. Peroxidase (s) in environment protection. The Scientific World Journal.
  • Bozbuga, R., 2020. Expressions of pathogenesis related 1 (PR1) gene in Solanum lycopersicum and Influence of salicylic acid exposures on host-Meloidogyne incognita interactions. In Doklady. Biochemistry and Biophysics. Pleiades Publishing. 494(1):266–269.
  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248–254.
  • Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I., Wang, C., 2020. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9(7):809.
  • Carlberg, I., Mannervik, B., 1985. Glutathione reductase. Methods in Enzymology. 113:484–490.
  • Chavoushi, M., Najafi, F., Salimi, A., Angaji, S. A., 2020. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Scientia Horticulturae, 259:108823.
  • Cicerali, N. I., 2004. Effect of stress on antioxidant defense systems of sensitive and resistant cultivars of lentil (Lens culinaris M.), Yüksek Lisans Tezi, ODTÜ, Ankara.
  • Cohen, S. P., Leach, J. E., 2019. Abiotic and biotic stresses induce a core transcriptome response in rice. Scientific Reports, 9(1):1–11.
  • De Kok, L., Graham, M., 1989. Levels of pigments, soluble proteins, amino acids and sulhydryl compounds in foliar tissue of Arabidopsis thaliana during dark-induced and natural senescence. Plant Physiology and Biochemistry (Paris), 27(2): 203–209.
  • Demirci, T., Ascı, Ö. A., Baydar, N. G., 2021. Influence of salicylic acid and L-phenylalanine on the accumulation of anthraquinone and phenolic compounds in adventitious root cultures of madder (Rubia tinctorum L.). Plant Cell, Tissue and Organ Culture, 144(2):313–324.
  • Di, X., Gomila, J., Takken, F. L., 2017. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology, 18(7), 1024–1035.
  • Dorina, S., Judith, S., Björn, W., Julia, S., Andrea, S., Muffler, K., & Roland, U., 2020. A new strategy for a combined isolation of EPS and pigments from cyanobacteria. Journal of Applied Phycology, 1–12.
  • Duncan, D. B., 1955. Multiple range and multiple F tests. Biometrics, 11(1):1–42.
  • Feng, J., Zhang, M., Yang, K. N., Zheng, C. X., 2020. Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. BMC Plant Biology, 20:1–18.
  • Gong, H., Jiao, Y., Hu, W. W., Pua, E. C., 2005. Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1): 53–66.
  • Habig, W., Pabst, M., Jakoby, W., 1974. The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J Biol Chem, 249:7130–7139.
  • Hasanuzzaman, M., Nahar, K., Anee, T. I., Fujita, M., 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2): 249–268.
  • Havaux, M., 2014. Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4): 597–606.
  • Heath, R. L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1):189–198.
  • Hernández-Ruiz, J., Arnao, M. B., 2018. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4):33.
  • Hoagland, D. R., Arnon, D. I., 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Huang, L., Lu, Y., Gao, X., Du, G., Ma, X., Liu, M., Chen, Y., 2013. Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecological Engineering, 58:355–362.
  • Iatrou, E. I., Kora, E., Stasinakis, A. S., 2018. Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20).
  • Li, C., Ji, J., Wang, G., Li, Z., Wang, Y., Fan, Y., 2020. Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco. Frontiers in Plant Science, 11:119.
  • Lichtenthaler, H. K., Wellburn, A. R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd.
  • Lo, W. J., Chiou, Y. C., Hsu, Y. T., Lam, W. S., Chang, M. Y., Jao, S. C., Li, W. S., 2007. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione s-transferase ınhibitors, Bioconjugate Chem., 18:109–120.
  • Luck H., 1963, Catalase. Methods of enzymatic analysis, 885–888.
  • MacAdam, J. W., Nelson, C. J., Sharp, R. E., 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3): 872–878.
  • McCord J.M., Fridovich I., 1969. Superoxide dismutase: An enzymic function for erytreoeuprein (hemoeuprein), J. Biol. Chem, 244(22):6049–6055.
  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5): 867–880.
  • Parlak, K. U., Yilmaz, D. D., 2012. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety, 85:52–58.
  • Peters, J. L., Castillo, F. J., Heath, R. L., 1989. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiology, 89(1):159–164.
  • Sackey, L. N., Kočí, V., van Gestel, C. A., 2020. Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Science of the Total Environment, 698:134295.
  • Sarker, U., Oba, S., 2020. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11.
  • Sharma, G., Mathur, V., 2020. Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiology Ecology, 96(4):fiaa040.
  • Souza, L. R. R., Bernardes, L. E., Barbetta, M. F. S., da Veiga, M. A. M. S., 2019. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio, Environmental Science and Pollution Research, 26(23):24121–24131.
  • Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., Gnanaraj, C., 2020. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68:103917.
  • Strzałka, K., Kostecka-Gugała, A., Latowski, D., 2003. Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50(2):168–173.
  • Sun, S., Li, X., Sun, C., Cao, W., Hu, C., Zhao, Y., Yang, A., 2019. Effects of ZnO nanoparticles on the toxicity of cadmium to duckweed Lemna minor. Science of The Total Environment, 662:697–702.
  • Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damião, V., Junior, G. D. S. S., 2020. Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in Sorghum plants. Journal of Soil Science and Plant Nutrition, 1–10.
  • Wang, Y., Cui, X., Yang, B., Xu, S., Wei, X., Zhao, P., ..., Jiang, Y. Q., 2020. WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Arabidopsis. Development, 147(16).
  • Yu, J., Cang, J., Lu, Q., Fan, B., Xu, Q., Li, W., Wang, X., 2020. ABA enhanced cold tolerance of wheat ‘dn1’via increasing ROS scavenging system. Plant Signaling and Behavior, 15(8):1780403.

Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed)

Year 2021, Volume: 7 Issue: 1, 185 - 195, 30.06.2021
https://doi.org/10.29132/ijpas.894056

Abstract

The dyes used in the production of the textile industry are toxic substances that are resistant to biological treatment. Most of them have highly complex polymer structures. Salicylic acid (SA) is an important hormone produced by plants that provides tolerance to many biotic and abiotic stress factors. Duckweed (L. minor L.) are free floating plants. These plants have been used in laboratory toxicological studies by many researchers for reasons such as their high adaptability to aquatic environments, their small biomass and their high ability to accumulate contaminants. The aim of this study was to evaluate some biochemical changes in duckweed (L. minor L.) of 75 ppm, 150 ppm and 300 ppm Everzol Navy ED (ENED) reactive dyestuff and 0.5 mM SA and ENED application. Total chlorophyll and carotenoid contents were found higher at 0.5 mM SA and 300 ppm dye applied groups on day 7. Peroxidase (POD), ascorbate peroxidase (APX) and Glutathione S-transferase (GST) activities and total glutathione (GSH) content were increased at 0.5 mM SA with ENED application groups. (Superoxide dismutase) SOD and Catalase (CAT) activity increased on days 1, 4 and 7 in both treatment groups. GR activity decreased in dye applied groups and 0.5 mM SA with dye applied groups on day 7. MDA content decreased on day 7 with 300 ppm dye application and 0.5 mM SA and 300 ppm dye application.

References

  • Akerboom T.P.M., Sies H.,1981. Assay of glutathione, glutathione disülfide and glutathione mixed disulfides in biological samples. Method Enzymol, 77:373–382.
  • Alkimin, G. D., Daniel, D., Dionísio, R., Soares, A. M. V. M., Barata, C., Nunes, B., 2019. Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? Environmental Research, 177:108609.
  • Al-Snai, A. E., 2019. Lemna minor: Traditional uses, chemical constituents and pharmacological effects-A review. IOSR Journal of Pharmacy, 9(8):6–11.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., Asghar, H. N., 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental safety, 174:714–727.
  • Aziz, A., Kapoor, D., 2018. Salicylic Acid: It’s Physiological Role and Interactions. Research Journal of Pharmacy and Technology, 11(7):3171–3177.
  • Bansal, N., Kanwar, S. S., 2013. Peroxidase (s) in environment protection. The Scientific World Journal.
  • Bozbuga, R., 2020. Expressions of pathogenesis related 1 (PR1) gene in Solanum lycopersicum and Influence of salicylic acid exposures on host-Meloidogyne incognita interactions. In Doklady. Biochemistry and Biophysics. Pleiades Publishing. 494(1):266–269.
  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248–254.
  • Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I., Wang, C., 2020. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9(7):809.
  • Carlberg, I., Mannervik, B., 1985. Glutathione reductase. Methods in Enzymology. 113:484–490.
  • Chavoushi, M., Najafi, F., Salimi, A., Angaji, S. A., 2020. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Scientia Horticulturae, 259:108823.
  • Cicerali, N. I., 2004. Effect of stress on antioxidant defense systems of sensitive and resistant cultivars of lentil (Lens culinaris M.), Yüksek Lisans Tezi, ODTÜ, Ankara.
  • Cohen, S. P., Leach, J. E., 2019. Abiotic and biotic stresses induce a core transcriptome response in rice. Scientific Reports, 9(1):1–11.
  • De Kok, L., Graham, M., 1989. Levels of pigments, soluble proteins, amino acids and sulhydryl compounds in foliar tissue of Arabidopsis thaliana during dark-induced and natural senescence. Plant Physiology and Biochemistry (Paris), 27(2): 203–209.
  • Demirci, T., Ascı, Ö. A., Baydar, N. G., 2021. Influence of salicylic acid and L-phenylalanine on the accumulation of anthraquinone and phenolic compounds in adventitious root cultures of madder (Rubia tinctorum L.). Plant Cell, Tissue and Organ Culture, 144(2):313–324.
  • Di, X., Gomila, J., Takken, F. L., 2017. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology, 18(7), 1024–1035.
  • Dorina, S., Judith, S., Björn, W., Julia, S., Andrea, S., Muffler, K., & Roland, U., 2020. A new strategy for a combined isolation of EPS and pigments from cyanobacteria. Journal of Applied Phycology, 1–12.
  • Duncan, D. B., 1955. Multiple range and multiple F tests. Biometrics, 11(1):1–42.
  • Feng, J., Zhang, M., Yang, K. N., Zheng, C. X., 2020. Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. BMC Plant Biology, 20:1–18.
  • Gong, H., Jiao, Y., Hu, W. W., Pua, E. C., 2005. Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Molecular Biology, 57(1): 53–66.
  • Habig, W., Pabst, M., Jakoby, W., 1974. The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J Biol Chem, 249:7130–7139.
  • Hasanuzzaman, M., Nahar, K., Anee, T. I., Fujita, M., 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2): 249–268.
  • Havaux, M., 2014. Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4): 597–606.
  • Heath, R. L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1):189–198.
  • Hernández-Ruiz, J., Arnao, M. B., 2018. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4):33.
  • Hoagland, D. R., Arnon, D. I., 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Huang, L., Lu, Y., Gao, X., Du, G., Ma, X., Liu, M., Chen, Y., 2013. Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecological Engineering, 58:355–362.
  • Iatrou, E. I., Kora, E., Stasinakis, A. S., 2018. Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20).
  • Li, C., Ji, J., Wang, G., Li, Z., Wang, Y., Fan, Y., 2020. Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco. Frontiers in Plant Science, 11:119.
  • Lichtenthaler, H. K., Wellburn, A. R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd.
  • Lo, W. J., Chiou, Y. C., Hsu, Y. T., Lam, W. S., Chang, M. Y., Jao, S. C., Li, W. S., 2007. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione s-transferase ınhibitors, Bioconjugate Chem., 18:109–120.
  • Luck H., 1963, Catalase. Methods of enzymatic analysis, 885–888.
  • MacAdam, J. W., Nelson, C. J., Sharp, R. E., 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3): 872–878.
  • McCord J.M., Fridovich I., 1969. Superoxide dismutase: An enzymic function for erytreoeuprein (hemoeuprein), J. Biol. Chem, 244(22):6049–6055.
  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5): 867–880.
  • Parlak, K. U., Yilmaz, D. D., 2012. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicology and Environmental Safety, 85:52–58.
  • Peters, J. L., Castillo, F. J., Heath, R. L., 1989. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiology, 89(1):159–164.
  • Sackey, L. N., Kočí, V., van Gestel, C. A., 2020. Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Science of the Total Environment, 698:134295.
  • Sarker, U., Oba, S., 2020. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11.
  • Sharma, G., Mathur, V., 2020. Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiology Ecology, 96(4):fiaa040.
  • Souza, L. R. R., Bernardes, L. E., Barbetta, M. F. S., da Veiga, M. A. M. S., 2019. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio, Environmental Science and Pollution Research, 26(23):24121–24131.
  • Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., Gnanaraj, C., 2020. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. Journal of Functional Foods, 68:103917.
  • Strzałka, K., Kostecka-Gugała, A., Latowski, D., 2003. Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50(2):168–173.
  • Sun, S., Li, X., Sun, C., Cao, W., Hu, C., Zhao, Y., Yang, A., 2019. Effects of ZnO nanoparticles on the toxicity of cadmium to duckweed Lemna minor. Science of The Total Environment, 662:697–702.
  • Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damião, V., Junior, G. D. S. S., 2020. Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in Sorghum plants. Journal of Soil Science and Plant Nutrition, 1–10.
  • Wang, Y., Cui, X., Yang, B., Xu, S., Wei, X., Zhao, P., ..., Jiang, Y. Q., 2020. WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Arabidopsis. Development, 147(16).
  • Yu, J., Cang, J., Lu, Q., Fan, B., Xu, Q., Li, W., Wang, X., 2020. ABA enhanced cold tolerance of wheat ‘dn1’via increasing ROS scavenging system. Plant Signaling and Behavior, 15(8):1780403.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gülçin Beker Akbulut 0000-0002-4964-6780

Duygu Özhan Turhan This is me 0000-0002-7111-4289

Publication Date June 30, 2021
Submission Date March 9, 2021
Acceptance Date April 19, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Beker Akbulut, G., & Özhan Turhan, D. (2021). Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed). International Journal of Pure and Applied Sciences, 7(1), 185-195. https://doi.org/10.29132/ijpas.894056
AMA Beker Akbulut G, Özhan Turhan D. Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed). International Journal of Pure and Applied Sciences. June 2021;7(1):185-195. doi:10.29132/ijpas.894056
Chicago Beker Akbulut, Gülçin, and Duygu Özhan Turhan. “Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna Minor L. (Duckweed)”. International Journal of Pure and Applied Sciences 7, no. 1 (June 2021): 185-95. https://doi.org/10.29132/ijpas.894056.
EndNote Beker Akbulut G, Özhan Turhan D (June 1, 2021) Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed). International Journal of Pure and Applied Sciences 7 1 185–195.
IEEE G. Beker Akbulut and D. Özhan Turhan, “Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed)”, International Journal of Pure and Applied Sciences, vol. 7, no. 1, pp. 185–195, 2021, doi: 10.29132/ijpas.894056.
ISNAD Beker Akbulut, Gülçin - Özhan Turhan, Duygu. “Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna Minor L. (Duckweed)”. International Journal of Pure and Applied Sciences 7/1 (June 2021), 185-195. https://doi.org/10.29132/ijpas.894056.
JAMA Beker Akbulut G, Özhan Turhan D. Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed). International Journal of Pure and Applied Sciences. 2021;7:185–195.
MLA Beker Akbulut, Gülçin and Duygu Özhan Turhan. “Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna Minor L. (Duckweed)”. International Journal of Pure and Applied Sciences, vol. 7, no. 1, 2021, pp. 185-9, doi:10.29132/ijpas.894056.
Vancouver Beker Akbulut G, Özhan Turhan D. Role of Salicylic Acid in Resistance to Everzol Navy ED in Lemna minor L. (Duckweed). International Journal of Pure and Applied Sciences. 2021;7(1):185-9.

154501544915448154471544615445