Research Article
BibTex RIS Cite

Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects

Year 2023, Volume: 9 Issue: 1, 56 - 65, 30.06.2023
https://doi.org/10.29132/ijpas.1168200

Abstract

Phytochemicals found in extracts obtained from plants are very important bioactive constituents. In this study, phytochemicals in extract content obtained from Celtis tournefortii .Lam. tree (CT) leaves were determined by a LC-MS method. The constituents with the major concentrations was found rutin (2479.89 µg ml-1), coumarin (1241.68 µg ml-1), biochanin A (1026.42 µg ml-1), shikimic acid (477.32 µg ml-1), chlorogenic acid (300.76 µg ml-1). The suppressive effects of CT extract on the growth of pathogenic strains were studied by microdilution method. It was observed that it caused suppression on the strains in the concentration range of 2.00-8.00 µg ml-1. The inhibition effects of the extract on acetyl cholinesterase and glutathione-S transferase enzyme activities were investigated, and 50% inhibitory values of enzyme activity were found to be 13.58 and 13.86, respectively. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay method, the cell viability suppressive effects of CT leaf extract were studied in healthy skin fibroblast cells as well as ovarian, colon and brain cancer cells. It was observed that they created a 42%, 4.27%, and 14.29% suppression in cells, respectively.

Supporting Institution

MAÜ BAP

Project Number

MAÜ BAP 08-2022

Thanks

MAÜ BAP KORDİNASYONLUĞUNA

References

  • Abdel‐hamed, A. R., Mehanna, E. T., Hazem, R. M., Badr, J. M., Abo‐elmatty, D. M., Abdel‐kader, M. S., and Goda, M. S. (2021). Plicosepalus acacia extract and its major constituents, methyl gallate and quercetin, potentiate therapeutic angiogenesis in diabetic hind limb ischemia: Hptlc quantification and lc‐ms/ms metabolic profiling. Antioxidants, 10 (11), 1–24.
  • Ahmed, M., Rocha, J. B. T., Corrêa, M., Mazzanti, C. M., Zanin, R. F., Morsch, A. L. B., Morsch, V. M., and Schetinger, M. R. C. (2006). Inhibition of two different cholinesterases by tacrine. Chemico-Biological Interactions, 162 (2), 165–171.
  • Aissani, N., Albouchi, F., and Sebai, H. (2021). Anticancer Effect in Human Glioblastoma and Antioxidant Activity of Petroselinum crispum L. Methanol Extract. Nutrition and Cancer, 73 (11–12), 2605–2613.
  • Aras, A., Türkan, F., Yildiko, U., Atalar, M. N., Kılıç, Ö., Alma, M. H., and Bursal, E. (2021). Biochemical Constituent, Enzyme Inhibitory Activity, And Molecular Docking Analysis Of An Endemic Plant Species, Thymus migricus. Chemical Papers, 75 (3), 1133–1146.
  • Atalar, M. N., Baran, A., Baran, M. F., Keskin, C., Aktepe, N., Yavuz, Ö., and İrtegun Kandemir, S. (2021). Economic Fast Synthesis of Olive Leaf Extract And Silver Nanoparticles And Biomedical Applications. Particulate Science and Technology, 2021 1–9.
  • Awad, M., Eisa, N., Virk, P., Hendi, A., Ortashi, K., Mahgoub, A. A., and Elobeid, Mai, Eissa, F. (2019). Green Synthesis of Gold Nanoparticles: Preparation, Characterization, Cytotoxicity, And Anti-Bacterial Activities. Materials Letters, 256 126608.
  • Baran, MF., Keskin, C., Atalar, MN., Baran, A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 11 (1), 365–375.
  • Baran., M. F. (2018). Green Synthesıs Of Silver Nanopartıcles (Agnps) Usıng Pistacia terebinthus Leaf: Antimicrobial Effect And Characterization. EJONS International Journal on Mathematic, Engineering and Natural Sciences, 2 (2018), 67–75.
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., Khalilov, R., and Eftekhari, A. (2021). Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. Journal of Nanomaterials, 2021 1–10.
  • Baran, A., Keskin, C., Baran, M. F., Huseynova, I., Khalilov, R., Eftekhari, A., Irtegun-Kandemir, S., and Kavak, D. E. (2021). Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities. Bioinorganic Chemistry and Applications, 2021.
  • Behera, D. R., and Bhatnagar, S. (2018). Assessment of macrofilaricidal activity of leaf extracts of Terminalia sp. against bovine filarial parasite Setaria cervi. Journal of Infection and Public Health, 11 (5), 643–647.
  • Chen, C. C., Agrawal, D. C., Lee, M. R., Lee, R. J., Kuo, C. L., Wu, C. R., Tsay, H. S., and Chang, H. C. (2016). Influence of LED Light Spectra On in vitro Somatic Embryogenesis and LC-MS Analysis of Chlorogenic Acid and Rutin in Peucedanum Japonicum Thunb.: A Medicinal Herb. Botanical Studies, 57 (9), 1–8.
  • Clifford, M. N., Wu, W., Kirkpatrick, J., and Kuhnert, N. (2007). Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn. Journal of Agricultural and Food Chemistry, 55 (3), 929–936.
  • Çomaklı, Veysel, Mehmet, Çiftçi, Ömer İrfan, K. (2011). Purification of Glutathione S-Transferase Enzyme from Rainbow Trout Erythrocytes and Examination of the Effects of Certain Antibiotics on Enzyme Activity Gökkuşağı Alabalık Eritrositlerinden Glutatyon. Hacettepe Journal of Biology and Chemistry, 39 (4), 413–419.
  • D’angeli, F., Malfa, G. A., Garozzo, A., Volti, G. L., Genovese, C., Stivala, A., Nicolosi, D., Attanasio, F., Bellia, F., Ronsisvalle, S., and Acquaviva, R. (2021). Antimicrobial, Antioxidant, And Cytotoxic Activities of Juglans regia L. Pellicle extract. Antibiotics, 10 (2), 1–17.
  • Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. (1961). A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7 (2), 88–95.
  • Engström, M. T., Pälijärvi, M., and Salminen, J. P. (2015). Rapid Fingerprint Analysis of Plant Extracts For Ellagitannins, Gallic Acid, And Quinic Acid Derivatives and Quercetin-, Kaempferol- And Myricetin-Based Flavonol Glycosides By UPLC-QqQ-MS/MS. Journal of Agricultural and Food Chemistry, 63 (16), 4068–4079.
  • Erat, M., Guvercin, S., and Sakiroglu, H. (2008). Determination of Some Kinetic and Characteristic Properties of Glutathione S-transferase from Bovine Erythrocytes. Protein & Peptide Letters, 15 (1), 6–12.
  • Gaspar-pintiliescu, A., Mihai, E., Ciucan, T., Florina, A., Luntraru, C., Tomescu, J., Craciunescu, O., Mihai, E., Ciucan, T., Gaspar-pintiliescu, A., Mihai, E., Ciucan, T., Popescu, F., Luntraru, C., Mihai, E., and Popescu, A. F. (2022). Antioxidant And Acetylcholinesterase Inhibition Capacity of Hyrosols from Lamiaceae Plants For Biopesticide Use : Role of Phenolics. International Journal of Food Properties, 25 (1), 996–1008.
  • Gecibesler, I. H. (2019). Antioxidant Activity and Phenolic Profile of Turkish Celtis tournefortii. Chemistry of Natural Compounds, 55 (4), 738–742.
  • Gülçin, İ., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., Bingöl, Z., Huyut, Z., and Alwasel, S. H. (2016). Rosmarinic Acid Inhibits Some Metabolic Enzymes Including Glutathione S-Transferase, Lactoperoxidase, Acetylcholinesterase, Butyrylcholinesterase and Carbonic Anhydrase Isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (6), 1698–1702.
  • Hayes, J. D., Flanagan, J. U., and Jowsey, I. R. (2005). Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45 51–88.
  • Ishaque, S., Arshad, A., Haider, M., and Fatima, F. (2021). Biological and Clinical Sciences Research Journal. Biological and Clinical Sciences Research Journal, 1–9.
  • Jaramillo, D., Calva, J., Bec, N., Larroque, C., Vidari, G., and Armijos, C. (2022). Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador. Molecules, 27 (12), 3793.
  • Karran, E., and De Strooper, B. (2022). The Amyloid Hypothesis in Alzheimer Disease: New Insights From New Therapeutics. Nature Reviews Drug Discovery, 21 (4), 306–318.
  • Keser, S., Keser, F., Kaygili, O., Tekin, S., Turkoglu, I., Demir, E., Turkoglu, S., Karatepe, M., Sandal, S., and Kirbag, S. (2017). Phytochemical Compounds and Biological Activities of Celtis tournefortii Fruits . Analytical Chemistry Letters, 7 (3), 344–355.
  • Li, W., Zhou, H., Chu, Y., Wang, X., Luo, R., Yang, L., Polachi, N., Li, X., Chen, M., Huang, L., Yan, X., Guo, Z., and Sun, H. (2017). Simultaneous Determination And Pharmacokinetics Of Danshensu, Protocatechuic Aldehyde, 4-Hydroxy-3-Methyloxyphenyl Lactic Acid and Protocatechuic Acid in Human Plasma By LC–MS/MS After Oral Administration of Compound Danshen Dripping Pills. Journal of Pharmaceutical and Biomedical Analysis, 145 860–864.
  • Lineweaver, H., and Burk, D. (1934). The Determination of Enzyme Dissociation Constants. Journal of the American Chemical Society, 56 (3), 658–666.
  • Liu, J., Yang, X., and Zhang, Y. (2014). Characterization of A Lambda-Cyhalothrin Metabolizing Glutathione S-Transferase Cpgstd1 From Cydia pomonella (L.). Applied Microbiology and Biotechnology, 98 (21), 8947–8962.
  • Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M., and To, S. S. T. (2010). Gallic Acid Suppresses Cell Viability, Proliferation, Invasion and Angiogenesis in Human Glioma Cells. European Journal of Pharmacology, 641 (2–3), 102–107.
  • Mighri, H., Akrout, A., Bennour, N., Eljeni, H., Zammouri, T., and Neffati, M. (2019). LC/MS Method Development for The Determination of The Phenolic Compounds of Tunisian Ephedra alata Hydro-Methanolic Extract and its Fractions and Evaluation of Their Antioxidant Activities. South African Journal of Botany, 124 102–110.
  • Mohan Reddy, Y., Jeevan Kumar, S. P., Saritha, K. V., Gopal, P., Madhusudana Reddy, T., and Simal-Gandara, J. (2021). Phytochemical Profiling of Methanolic Fruit Extract Of Gardenia Latifolia Ait. By Lc-Ms/Ms Analysis And Evaluation of its Antioxidant And Antimicrobial Activity. Plants, 10 (3), 1–10.
  • Moldovan, R. I., Oprean, R., Benedec, D., Hanganu, D., Duma, M., Oniga, I., and Vlase, L. (2014). LC-MS Analysis, Antioxidant and Antimicrobial Activities For Five Species of Mentha Cultivated in Romania. Digest Journal of Nanomaterials and Biostructures, 9 (2), 559–566.
  • Muthukumaran, J., Srinivasan, S., Venkatesan, R. S., Ramachandran, V., and Muruganathan, U. (2013). Syringic Acid, A Novel Natural Phenolic Acid, Normalizes Hyperglycemia With Special Reference to Glycoprotein Components in Experimental Diabetic Rats. Journal Of Acute Disease, 2 (4), 304–309.
  • Nascimento, L. B. D. S., Gori, A., Raffaelli, A., Ferrini, F., and Brunetti, C. (2021). Phenolic Compounds from Leaves and Flowers Of Hibiscus Roseus: Potential Skin Cosmetic Applications Of An Under‐Investigated Species. Plants, 10 (3), 1–16.
  • Necmettin A., Baran, A., Atalar, M. N., Baran, M. F., Düz, M. Z., Yavuz, Ö., İrtegün Kandemir, S., Kavak, D.E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 8 (8), 685–700.
  • Omoruyi, S. I., Kangwa, T. S., Ibrakaw, A. S., Cupido, C. N., Marnewick, J. L., Ekpo, O. E., and Hussein, A. A. (2021). Cytotoxic Activities of Selected Plants Of The Family Amaryllidaceae On Brain Tumour Cell Lines. South African Journal of Botany, 136 118–125.
  • Płonka, J., Górny, A., Kokoszka, K., and Barchanska, H. (2020). Metabolic Profiles in The Course of The Shikimic Acid Pathway Of Raphanus sativus var. longipinnatus Exposed to Mesotrione and its Degradation Products. Chemosphere, 245 125616.
  • Qi, Z., Fang, X., Xie, Y., Wang, L., Zhang, Y., and Zhao, L. (2021). Bioassay-guided Isolation of Anti-inflammatory Constituents from Celtis sinensis Leaves. Journal of Food Biochemistry, 45 (1), 1–11.
  • Rauf, A., Imran, M., Abu-Izneid, T., Iahtisham-Ul-Haq, Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., and Rasul Suleria, H. A. (2019). Proanthocyanidins: A Comprehensive Review. Biomedicine and Pharmacotherapy, 116 108999.
  • Rempe, C. S., Burris, K. P., Lenaghan, S. C., and Stewart, C. N. (2017). The Potential of Systems Biology to Discover Antibacterial Mechanisms Of Plant Phenolics. Frontiers in Microbiology, 8 (MAR), 422.
  • Santas, J., Almajano, M. P., and Carbó, R. (2010). Antimicrobial And Antioxidant Activity Of Crude Onion (Allium cepa L.) Extracts. International Journal of Food Science and Technology, 45 (2), 403–409.
  • Silva, A., Silva, V., Igrejas, G., Gaivão, I., Aires, A., Klibi, N., Dapkevicius, M. de L. E., Valentão, P., Falco, V., and Poeta, P. (2021). Valorization of Winemaking By-Products As A Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules, 26 (8), 1–19.
  • Sinan, K. I., Dall’acqua, S., Ferrarese, I., Mollica, A., Stefanucci, A., Glamočlija, J., Sokovic, M., Nenadić, M., Aktumsek, A., and Zengin, G. (2021). LC-MS Based Analysis and Biological Properties of Pseudocedrela Kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, And Antibacterial Compounds. Antioxidants, 10 (10), 1–21.
  • Stefanowicz-Hajduk, J., Król-Kogus, B., Sparzak-Stefanowska, B., Kimel, K., Ochocka, J. R., and Krauze-Baranowska, M. (2021). Cytotoxic Activity of Standardized Extracts, A Fraction, And Individual Secondary Metabolites from Fenugreek Seeds Against SKOV-3, Hela and MOLT-4 Cell Lines. Pharmaceutical Biology, 59 (1), 424–437.
  • Strange, R. C., Spiteri, M. A., Ramachandran, S., and Fryer, A. A. (2001). Glutathione-S-Transferase Family of Enzymes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 482 (1–2), 21–26.
  • Sundaresan, A., Radhiga, T., and Deivasigamani, B. (2018). Biological Activity of Biochanin A: A Review. Asian Journal of Pharmacy and Pharmacology, 4 (1), 1–5.
  • Tiong, S. H., Looi, C. Y., Arya, A., Wong, W. F., Hazni, H., Mustafa, M. R., Awang, K., Strains, T., Cockerels, B., Centre, P., Ottawa, A. C., Wor, U. S., Gupta, V., Mittal, P., Education, T., Arao, T., Oleszek, W., Stochmal, A., Kiran, C., Rullkötter, J. (2016). LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. Journal of Agricultural and Food Chemistry, 6 (1), 1–10.
  • Wach, A., Pyrzyńska, K., and Biesaga, M. (2007). Quercetin Content in Some Food and Herbal Samples. Food Chemistry, 100 (2), 699–704.
  • Wang, X., Li, W., Ma, X., Chu, Y., Li, S., Guo, J., Jia, Y., Zhou, S., Zhu, Y., and Liu, C. (2015). Simultaneous Determination of Caffeic Acid and its Major Pharmacologically Active Metabolites in Rat Plasma by LC-MS/MS and its Application in Pharmacokinetic Study. Biomedical Chromatography, 29 (4), 552–559.
  • Yıldırım, I., Uğur, Y., and Kutlu, T. (2017). Investigation of Antioxidant Activity and Phytochemical Compositions of Celtis tournefortii. Free Radicals and Antioxidants, 7 (2), 160–165.

Celtis tournefortii Lam Yaprak Özütünün Bileşenlerinin LC-MS/MS Aracılığıyla Belirlenmesi, Enzim İnhibisyonunun, Antimikrobiyal ve Antikanser Etkilerinin Araştırılması

Year 2023, Volume: 9 Issue: 1, 56 - 65, 30.06.2023
https://doi.org/10.29132/ijpas.1168200

Abstract

Bitkilerden elde edilen özütlerde bulunan fitokimyasallar çok önemli biyoaktif bileşenlerdir. Bu çalışmada, Celtis tournefortii Lam. ağacı (CT) yapraklarından elde edilen özüt içeriğindeki fitokimyasallar LC-MS yöntemi ile belirlendi. Rutin (2479.89 µg ml-1), kumarin (1241.68 µg ml-1), biyokanin A (1026.42 µg ml-1), şikimik asit (477.32 µg ml-1) ve klorojenik asit (300.76 µg ml-1) bileşenlerinin yüksek konsantrasyonlara sahip olduğu belirlendi. CT ekstraktının patojen suşların büyümesi üzerinde baskılayıcı etkileri mikrodilüsyon yöntemi ile çalışıldı. 2.00-8.00 µg ml-1 konsantrasyon aralığında suşlar üzerinde baskılamaya neden olduğu gözlendi. Özütün asetil kolinesteraz ve glutatyon-S transferaz enzim aktiviteleri üzerindeki inhibisyon etkileri incelendi ve enzim aktivitesinin %50 inhibitör değerleri sırasıyla 13.58 ve 13.86 olarak bulundu. 3-(4,5-dimetiltiazol-2-il)-2,5-difenil tetrazol bromür tekniği uygulanarak CT yaprak özütünün hücre canlılığını baskılayıcı etkileri yumurtalık, kolon ve beyin kanseri hücrelerinin yanı sıra sağlıklı cilt fibroblast hücrelerinde çalışıldı. Kanser hücrelerinde sırasıyla %42, %4.27 ve %14.29 oranında baskılama oluşturduğu gözlendi.

Project Number

MAÜ BAP 08-2022

References

  • Abdel‐hamed, A. R., Mehanna, E. T., Hazem, R. M., Badr, J. M., Abo‐elmatty, D. M., Abdel‐kader, M. S., and Goda, M. S. (2021). Plicosepalus acacia extract and its major constituents, methyl gallate and quercetin, potentiate therapeutic angiogenesis in diabetic hind limb ischemia: Hptlc quantification and lc‐ms/ms metabolic profiling. Antioxidants, 10 (11), 1–24.
  • Ahmed, M., Rocha, J. B. T., Corrêa, M., Mazzanti, C. M., Zanin, R. F., Morsch, A. L. B., Morsch, V. M., and Schetinger, M. R. C. (2006). Inhibition of two different cholinesterases by tacrine. Chemico-Biological Interactions, 162 (2), 165–171.
  • Aissani, N., Albouchi, F., and Sebai, H. (2021). Anticancer Effect in Human Glioblastoma and Antioxidant Activity of Petroselinum crispum L. Methanol Extract. Nutrition and Cancer, 73 (11–12), 2605–2613.
  • Aras, A., Türkan, F., Yildiko, U., Atalar, M. N., Kılıç, Ö., Alma, M. H., and Bursal, E. (2021). Biochemical Constituent, Enzyme Inhibitory Activity, And Molecular Docking Analysis Of An Endemic Plant Species, Thymus migricus. Chemical Papers, 75 (3), 1133–1146.
  • Atalar, M. N., Baran, A., Baran, M. F., Keskin, C., Aktepe, N., Yavuz, Ö., and İrtegun Kandemir, S. (2021). Economic Fast Synthesis of Olive Leaf Extract And Silver Nanoparticles And Biomedical Applications. Particulate Science and Technology, 2021 1–9.
  • Awad, M., Eisa, N., Virk, P., Hendi, A., Ortashi, K., Mahgoub, A. A., and Elobeid, Mai, Eissa, F. (2019). Green Synthesis of Gold Nanoparticles: Preparation, Characterization, Cytotoxicity, And Anti-Bacterial Activities. Materials Letters, 256 126608.
  • Baran, MF., Keskin, C., Atalar, MN., Baran, A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 11 (1), 365–375.
  • Baran., M. F. (2018). Green Synthesıs Of Silver Nanopartıcles (Agnps) Usıng Pistacia terebinthus Leaf: Antimicrobial Effect And Characterization. EJONS International Journal on Mathematic, Engineering and Natural Sciences, 2 (2018), 67–75.
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., Khalilov, R., and Eftekhari, A. (2021). Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. Journal of Nanomaterials, 2021 1–10.
  • Baran, A., Keskin, C., Baran, M. F., Huseynova, I., Khalilov, R., Eftekhari, A., Irtegun-Kandemir, S., and Kavak, D. E. (2021). Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities. Bioinorganic Chemistry and Applications, 2021.
  • Behera, D. R., and Bhatnagar, S. (2018). Assessment of macrofilaricidal activity of leaf extracts of Terminalia sp. against bovine filarial parasite Setaria cervi. Journal of Infection and Public Health, 11 (5), 643–647.
  • Chen, C. C., Agrawal, D. C., Lee, M. R., Lee, R. J., Kuo, C. L., Wu, C. R., Tsay, H. S., and Chang, H. C. (2016). Influence of LED Light Spectra On in vitro Somatic Embryogenesis and LC-MS Analysis of Chlorogenic Acid and Rutin in Peucedanum Japonicum Thunb.: A Medicinal Herb. Botanical Studies, 57 (9), 1–8.
  • Clifford, M. N., Wu, W., Kirkpatrick, J., and Kuhnert, N. (2007). Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn. Journal of Agricultural and Food Chemistry, 55 (3), 929–936.
  • Çomaklı, Veysel, Mehmet, Çiftçi, Ömer İrfan, K. (2011). Purification of Glutathione S-Transferase Enzyme from Rainbow Trout Erythrocytes and Examination of the Effects of Certain Antibiotics on Enzyme Activity Gökkuşağı Alabalık Eritrositlerinden Glutatyon. Hacettepe Journal of Biology and Chemistry, 39 (4), 413–419.
  • D’angeli, F., Malfa, G. A., Garozzo, A., Volti, G. L., Genovese, C., Stivala, A., Nicolosi, D., Attanasio, F., Bellia, F., Ronsisvalle, S., and Acquaviva, R. (2021). Antimicrobial, Antioxidant, And Cytotoxic Activities of Juglans regia L. Pellicle extract. Antibiotics, 10 (2), 1–17.
  • Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. (1961). A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7 (2), 88–95.
  • Engström, M. T., Pälijärvi, M., and Salminen, J. P. (2015). Rapid Fingerprint Analysis of Plant Extracts For Ellagitannins, Gallic Acid, And Quinic Acid Derivatives and Quercetin-, Kaempferol- And Myricetin-Based Flavonol Glycosides By UPLC-QqQ-MS/MS. Journal of Agricultural and Food Chemistry, 63 (16), 4068–4079.
  • Erat, M., Guvercin, S., and Sakiroglu, H. (2008). Determination of Some Kinetic and Characteristic Properties of Glutathione S-transferase from Bovine Erythrocytes. Protein & Peptide Letters, 15 (1), 6–12.
  • Gaspar-pintiliescu, A., Mihai, E., Ciucan, T., Florina, A., Luntraru, C., Tomescu, J., Craciunescu, O., Mihai, E., Ciucan, T., Gaspar-pintiliescu, A., Mihai, E., Ciucan, T., Popescu, F., Luntraru, C., Mihai, E., and Popescu, A. F. (2022). Antioxidant And Acetylcholinesterase Inhibition Capacity of Hyrosols from Lamiaceae Plants For Biopesticide Use : Role of Phenolics. International Journal of Food Properties, 25 (1), 996–1008.
  • Gecibesler, I. H. (2019). Antioxidant Activity and Phenolic Profile of Turkish Celtis tournefortii. Chemistry of Natural Compounds, 55 (4), 738–742.
  • Gülçin, İ., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., Bingöl, Z., Huyut, Z., and Alwasel, S. H. (2016). Rosmarinic Acid Inhibits Some Metabolic Enzymes Including Glutathione S-Transferase, Lactoperoxidase, Acetylcholinesterase, Butyrylcholinesterase and Carbonic Anhydrase Isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (6), 1698–1702.
  • Hayes, J. D., Flanagan, J. U., and Jowsey, I. R. (2005). Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45 51–88.
  • Ishaque, S., Arshad, A., Haider, M., and Fatima, F. (2021). Biological and Clinical Sciences Research Journal. Biological and Clinical Sciences Research Journal, 1–9.
  • Jaramillo, D., Calva, J., Bec, N., Larroque, C., Vidari, G., and Armijos, C. (2022). Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador. Molecules, 27 (12), 3793.
  • Karran, E., and De Strooper, B. (2022). The Amyloid Hypothesis in Alzheimer Disease: New Insights From New Therapeutics. Nature Reviews Drug Discovery, 21 (4), 306–318.
  • Keser, S., Keser, F., Kaygili, O., Tekin, S., Turkoglu, I., Demir, E., Turkoglu, S., Karatepe, M., Sandal, S., and Kirbag, S. (2017). Phytochemical Compounds and Biological Activities of Celtis tournefortii Fruits . Analytical Chemistry Letters, 7 (3), 344–355.
  • Li, W., Zhou, H., Chu, Y., Wang, X., Luo, R., Yang, L., Polachi, N., Li, X., Chen, M., Huang, L., Yan, X., Guo, Z., and Sun, H. (2017). Simultaneous Determination And Pharmacokinetics Of Danshensu, Protocatechuic Aldehyde, 4-Hydroxy-3-Methyloxyphenyl Lactic Acid and Protocatechuic Acid in Human Plasma By LC–MS/MS After Oral Administration of Compound Danshen Dripping Pills. Journal of Pharmaceutical and Biomedical Analysis, 145 860–864.
  • Lineweaver, H., and Burk, D. (1934). The Determination of Enzyme Dissociation Constants. Journal of the American Chemical Society, 56 (3), 658–666.
  • Liu, J., Yang, X., and Zhang, Y. (2014). Characterization of A Lambda-Cyhalothrin Metabolizing Glutathione S-Transferase Cpgstd1 From Cydia pomonella (L.). Applied Microbiology and Biotechnology, 98 (21), 8947–8962.
  • Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M., and To, S. S. T. (2010). Gallic Acid Suppresses Cell Viability, Proliferation, Invasion and Angiogenesis in Human Glioma Cells. European Journal of Pharmacology, 641 (2–3), 102–107.
  • Mighri, H., Akrout, A., Bennour, N., Eljeni, H., Zammouri, T., and Neffati, M. (2019). LC/MS Method Development for The Determination of The Phenolic Compounds of Tunisian Ephedra alata Hydro-Methanolic Extract and its Fractions and Evaluation of Their Antioxidant Activities. South African Journal of Botany, 124 102–110.
  • Mohan Reddy, Y., Jeevan Kumar, S. P., Saritha, K. V., Gopal, P., Madhusudana Reddy, T., and Simal-Gandara, J. (2021). Phytochemical Profiling of Methanolic Fruit Extract Of Gardenia Latifolia Ait. By Lc-Ms/Ms Analysis And Evaluation of its Antioxidant And Antimicrobial Activity. Plants, 10 (3), 1–10.
  • Moldovan, R. I., Oprean, R., Benedec, D., Hanganu, D., Duma, M., Oniga, I., and Vlase, L. (2014). LC-MS Analysis, Antioxidant and Antimicrobial Activities For Five Species of Mentha Cultivated in Romania. Digest Journal of Nanomaterials and Biostructures, 9 (2), 559–566.
  • Muthukumaran, J., Srinivasan, S., Venkatesan, R. S., Ramachandran, V., and Muruganathan, U. (2013). Syringic Acid, A Novel Natural Phenolic Acid, Normalizes Hyperglycemia With Special Reference to Glycoprotein Components in Experimental Diabetic Rats. Journal Of Acute Disease, 2 (4), 304–309.
  • Nascimento, L. B. D. S., Gori, A., Raffaelli, A., Ferrini, F., and Brunetti, C. (2021). Phenolic Compounds from Leaves and Flowers Of Hibiscus Roseus: Potential Skin Cosmetic Applications Of An Under‐Investigated Species. Plants, 10 (3), 1–16.
  • Necmettin A., Baran, A., Atalar, M. N., Baran, M. F., Düz, M. Z., Yavuz, Ö., İrtegün Kandemir, S., Kavak, D.E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 8 (8), 685–700.
  • Omoruyi, S. I., Kangwa, T. S., Ibrakaw, A. S., Cupido, C. N., Marnewick, J. L., Ekpo, O. E., and Hussein, A. A. (2021). Cytotoxic Activities of Selected Plants Of The Family Amaryllidaceae On Brain Tumour Cell Lines. South African Journal of Botany, 136 118–125.
  • Płonka, J., Górny, A., Kokoszka, K., and Barchanska, H. (2020). Metabolic Profiles in The Course of The Shikimic Acid Pathway Of Raphanus sativus var. longipinnatus Exposed to Mesotrione and its Degradation Products. Chemosphere, 245 125616.
  • Qi, Z., Fang, X., Xie, Y., Wang, L., Zhang, Y., and Zhao, L. (2021). Bioassay-guided Isolation of Anti-inflammatory Constituents from Celtis sinensis Leaves. Journal of Food Biochemistry, 45 (1), 1–11.
  • Rauf, A., Imran, M., Abu-Izneid, T., Iahtisham-Ul-Haq, Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., and Rasul Suleria, H. A. (2019). Proanthocyanidins: A Comprehensive Review. Biomedicine and Pharmacotherapy, 116 108999.
  • Rempe, C. S., Burris, K. P., Lenaghan, S. C., and Stewart, C. N. (2017). The Potential of Systems Biology to Discover Antibacterial Mechanisms Of Plant Phenolics. Frontiers in Microbiology, 8 (MAR), 422.
  • Santas, J., Almajano, M. P., and Carbó, R. (2010). Antimicrobial And Antioxidant Activity Of Crude Onion (Allium cepa L.) Extracts. International Journal of Food Science and Technology, 45 (2), 403–409.
  • Silva, A., Silva, V., Igrejas, G., Gaivão, I., Aires, A., Klibi, N., Dapkevicius, M. de L. E., Valentão, P., Falco, V., and Poeta, P. (2021). Valorization of Winemaking By-Products As A Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules, 26 (8), 1–19.
  • Sinan, K. I., Dall’acqua, S., Ferrarese, I., Mollica, A., Stefanucci, A., Glamočlija, J., Sokovic, M., Nenadić, M., Aktumsek, A., and Zengin, G. (2021). LC-MS Based Analysis and Biological Properties of Pseudocedrela Kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, And Antibacterial Compounds. Antioxidants, 10 (10), 1–21.
  • Stefanowicz-Hajduk, J., Król-Kogus, B., Sparzak-Stefanowska, B., Kimel, K., Ochocka, J. R., and Krauze-Baranowska, M. (2021). Cytotoxic Activity of Standardized Extracts, A Fraction, And Individual Secondary Metabolites from Fenugreek Seeds Against SKOV-3, Hela and MOLT-4 Cell Lines. Pharmaceutical Biology, 59 (1), 424–437.
  • Strange, R. C., Spiteri, M. A., Ramachandran, S., and Fryer, A. A. (2001). Glutathione-S-Transferase Family of Enzymes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 482 (1–2), 21–26.
  • Sundaresan, A., Radhiga, T., and Deivasigamani, B. (2018). Biological Activity of Biochanin A: A Review. Asian Journal of Pharmacy and Pharmacology, 4 (1), 1–5.
  • Tiong, S. H., Looi, C. Y., Arya, A., Wong, W. F., Hazni, H., Mustafa, M. R., Awang, K., Strains, T., Cockerels, B., Centre, P., Ottawa, A. C., Wor, U. S., Gupta, V., Mittal, P., Education, T., Arao, T., Oleszek, W., Stochmal, A., Kiran, C., Rullkötter, J. (2016). LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. Journal of Agricultural and Food Chemistry, 6 (1), 1–10.
  • Wach, A., Pyrzyńska, K., and Biesaga, M. (2007). Quercetin Content in Some Food and Herbal Samples. Food Chemistry, 100 (2), 699–704.
  • Wang, X., Li, W., Ma, X., Chu, Y., Li, S., Guo, J., Jia, Y., Zhou, S., Zhu, Y., and Liu, C. (2015). Simultaneous Determination of Caffeic Acid and its Major Pharmacologically Active Metabolites in Rat Plasma by LC-MS/MS and its Application in Pharmacokinetic Study. Biomedical Chromatography, 29 (4), 552–559.
  • Yıldırım, I., Uğur, Y., and Kutlu, T. (2017). Investigation of Antioxidant Activity and Phytochemical Compositions of Celtis tournefortii. Free Radicals and Antioxidants, 7 (2), 160–165.
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ayşe Baran 0000-0002-2317-0489

Cumali Keskin 0000-0003-3758-0654

Project Number MAÜ BAP 08-2022
Early Pub Date June 23, 2023
Publication Date June 30, 2023
Submission Date August 29, 2022
Acceptance Date January 27, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Baran, A., & Keskin, C. (2023). Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects. International Journal of Pure and Applied Sciences, 9(1), 56-65. https://doi.org/10.29132/ijpas.1168200
AMA Baran A, Keskin C. Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects. International Journal of Pure and Applied Sciences. June 2023;9(1):56-65. doi:10.29132/ijpas.1168200
Chicago Baran, Ayşe, and Cumali Keskin. “Determination of Constituents of Extract of Celtis Tournefortii Lam. By LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects”. International Journal of Pure and Applied Sciences 9, no. 1 (June 2023): 56-65. https://doi.org/10.29132/ijpas.1168200.
EndNote Baran A, Keskin C (June 1, 2023) Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects. International Journal of Pure and Applied Sciences 9 1 56–65.
IEEE A. Baran and C. Keskin, “Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects”, International Journal of Pure and Applied Sciences, vol. 9, no. 1, pp. 56–65, 2023, doi: 10.29132/ijpas.1168200.
ISNAD Baran, Ayşe - Keskin, Cumali. “Determination of Constituents of Extract of Celtis Tournefortii Lam. By LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects”. International Journal of Pure and Applied Sciences 9/1 (June 2023), 56-65. https://doi.org/10.29132/ijpas.1168200.
JAMA Baran A, Keskin C. Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects. International Journal of Pure and Applied Sciences. 2023;9:56–65.
MLA Baran, Ayşe and Cumali Keskin. “Determination of Constituents of Extract of Celtis Tournefortii Lam. By LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects”. International Journal of Pure and Applied Sciences, vol. 9, no. 1, 2023, pp. 56-65, doi:10.29132/ijpas.1168200.
Vancouver Baran A, Keskin C. Determination of Constituents of Extract of Celtis tournefortii Lam. by LC-MS/MS, Investigation of Enzyme Inhibition, Antimicrobial and Anticancer Effects. International Journal of Pure and Applied Sciences. 2023;9(1):56-65.

154501544915448154471544615445