Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 2, 14 - 20, 30.12.2022
https://doi.org/10.46876/ja.1182517

Abstract

References

  • AOAC., (1990). Official method of analysis. 15th ed., Association of Official Analytical Chemists, Washington, DC, USA. pp.66-88.
  • Auffret, M.D., Stewart, R., Dewhurst, R.J., Duthie, C.A., Rooke, J.A., Wallace, R.J., Freeman, T.C., Snelling, T.J., Watson, M., Roehe, R. (2018). Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse Bos Taurus breeds and basal diets. Front. Microb, 8(2), 36-42.
  • Benchaar, C., Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166-167: 338-355.
  • Boadi, D., Benchaar, C., Chiquette, J., Masse, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: update review, Canadian Journal of Animal Science, 84, 319-335.
  • Busquet, M., Calsamiglia, S., Ferret, A., Kamel, C. (2006). Plant extracts affect in vitro rumen microbial fermentation. Journal of dairy science, 89(2), 761-771.
  • Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation, J. Dairy Sci. 90: 2580–2595 pp.
  • Canbolat, Ö., Kalkan, H., Karaman, Ş., Filya, İ. (2011). Esansiyel yağların sindirim, rumen fermantesyonu ve mikrobiyal protein üretimi üzerine etkileri, Kafkas Üniv Vet Fak Derg. 17 (4), 557–565.
  • Canbolat, Ö., Karaman, Ş., Filya, İ. (2010), Farklı kekik yağı dozlarının mısır silajının sindirimi ve rumen fermentasyonu üzerine etkileri, Kafkas Univ Vet Fak Derg., 16 (6): 933-939.
  • Cardoza, P.W., Calsamiglia, S., Ferret, A., Camel, C. (2004). Effect of natural plant extracts on ruminal protein degration and profiles in fermentation continuous culture. Journal of Animal Science. 82, 3230-3236.
  • Castillejos, L., Calsamiglia, S., Ferret, A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Journal of Dairy Science, 89: 2649-2658.
  • Chesson, A. (2006). Phasing out antibiotic feed additives in the EU: Worldwide relevance for animal food production. In: Barug D, de Jong J, Kies AK, Verstegen MWA, eds. Antimicrobial Growth Promoters: Where Do We Go from Here? The Netherlands: Wageningen Academic Publishers, pp. 69-81.
  • Dong, G.Z., Wang, X.J., Liu, Z.B., Wang, F. (2010). Effects of phytogenic products on in vitro rumen fermentation and methane emission in goats. J. Anim. Feed Sci. 19, 218-229.
  • Franlič, T., Voljč, M., Salobir, J., Rezar, V. (2009). Use of herbs and spices and their extracts in animal nutrition. Acta Argiculturae Slovenica, 2 (94): 95–102pp.
  • Geraci, J.I., Garciarena, A.D., Gagliostro, G.A., Beauchemin, K.A., Colombatto, D. (2012). Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: Ruminal environment, short term intake pattern and animal performance. Animal feed science and technology, 176(1-4), 123-130.
  • Gerber, P.J., Hristov, A.N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A.T., Yang, W.Z., Tricarico, M., Kebreab, E., Waghorn, G., Dijkstra, J., Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 7(s2), 220-234.
  • Goel, G., Makkar, H.P.S., Becker, K. (2008). Effect of sesbania sesban and carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • IPCC, Field, C.B. (Ed.). (2014). Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press.
  • Joch, M.V., Kudrnaa, V., Haklc, J., Bo žikd, M., Homolkaa, P., Illeka, J., Tyrolováa, T., Výbornáa, A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Animal Feed Science and Technology, 251, 176-186.
  • Jouany, J.P., Morgavi, D.P. (2007). Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal, 1(10), 1443-1466.
  • Kaya, A., Kaya, A. (2021). The effect of some vegetable oils added to dairy calf rations on in vitro feed value and enteric methane production. Journal of Agricultural Production, 2(1), 1-6.
  • Kim, E.T., Kim, C., Min, K., Lee, S.S. (2012). Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in vitro. Asian-Australasian Journal of Animal Sciences 25(6): 806-811.
  • Kutlu, H.R., Görgülü, M. (2001). Kanatlı yemlerinde yem katkı maddesi olarak kullanılan antibiyotik-büyütme faktörü için alternatifler. Yem Magazin Derg, 27, 45-62.
  • Martin, C., Morgavi, D., Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4(3), 351-365
  • Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 93, 217-222.
  • Menke, K.H., Steingass, H. (1988). Estimation of energetic feed value obtained from chemical analysis and in vitro gas production. Animal Research Development, 28, 7-55.
  • Nanon, A, Suksombat, W., Yang, W.Z. (2015). Use of essential oils for manipulation of rumen microbial fermentation using batch culture. Thai Journal of Veterinary Medicine 45(2): 167-180.
  • NRC. (2001). Nutrient requirements of dairy cattle, 7th revised edition. Washington (DC): National Academy Press.
  • Patra, A.K., Kamra, D.N., Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128(3-4), 276-291.
  • Rofiq, M.N., Görgülü, M., Boğa, M. (2012). Karanfil uçucu yağının (Clove Oil) ruminantlarda in vitro gerçek KM ve NDF sindirilebilirliği ve yemin enerji içeriğine etkileri, 8. Ulusal Zootekni Öğrenci Kongresi, 127-129s.
  • Ratika, K., Singh, R.K.J. (2018). Plant derived essential oil in ruminant nutrition - A Review. International Journal of Current Microbiology and Applied Sciences 7(5): 1747-1753.
  • Sarnataro, C., Spanghero, M., Lavrenčič, A. (2020). Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. Journal of Animal Physiology and Animal Nutrition, 104(5), 1310-1316.
  • Sembiring, M., Baba, A.S.H. (2022). In Vitro Gas Production Test: Towards rapid nutritional evaluation of roughages for ruminant feeding. Formosa Journal of Science and Technology (FJST) Vol. 1, No. 4, 2022: 247-258.
  • SPSS, (2011). IBM SPSS statistics for Windows, version 17.0. New York: IBM Corp 440.
  • Takahashi, J., Mwenya, B., Santoso, B., Sar, C., Umetsu, K., Kishimoto, T., Nishizaki, K., Kimura, K., Hamamoto, O. (2005). Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australasian Journal of Animal Science 18(8): 1199-1208.
  • Tuncer, Ş.D., Kocabatmaz, M., Coşkun, B., Şeker, E. (1989). Kimyasal maddelerle muamele edilen arpa samanının sindirilme derecesinin naylon kese (nylon bag) tekniği ile tespit edilmesi. Doğa Türk Vet. Ve Hay. Derg., 13 (1): 66-81.
  • Üretmen, S. (2013). Buğday samanının karanfil eterik yağı ile muamelesinin in vitro organik madde sindirilebilirliği ve metabolize olabilir enerji değeri üzerine etkisi. Ege Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. Bornova-İzmir ss: 61.
  • Wallace, R.J., McEwan, N.R., McIntosh, F.M., Teferedegne, B., Newbold, C.J. (2002). Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences 15, 1458-1468.
  • Van Soest, P.V., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583- 3597.

Assessing the Effects of Clove Oil on Gas and Methane Production of Some Roughages Using In Vitro Gas Production Technique

Year 2022, Volume: 5 Issue: 2, 14 - 20, 30.12.2022
https://doi.org/10.46876/ja.1182517

Abstract

This study aimed to examine the effects of fermentation parameters on adding clove oil to oat straw, alfalfa hay, and maize silage at a 3% dry matter basis. In vitro gas production, methane production (CH4), metabolic energy (ME), net energy lactation (NEL), and organic matter digestion (OMD) were all influenced by the addition of clove oil to oat straw, alfalfa hay, and maize silage (P<0.001). The in vitro gas production, CH4 (mL), CH4 (%), ME, NEL, and OMD of roughages were found to be between 29.48-48.31 mL, 4.95-8.37 mL, 15.11-19.96%, 6.53-9.68 MJ kg-1 DM, 3.59-5.79 MJ kg-1 DM, and 41.03-57.64%, respectively. When roughage samples with and without addition were compared, clove oil supplementation decreased net gas production values by 10 to 28% (P<0.001). The CH4 of roughages with and without clove oil was examined. A reduction of 1.31, 2.67, and 3.12 was observed on a mL basis, to 11.64, 12.17, and 15.23% on a % methane basis, respectively. At ME, NEL, and OMD values calculated with gas production values and chemical composition data, the lowest values were found in oat straw with clove oil added, and the highest in alfalfa hay without additions (P<0.001).
As a consequence, the gas production values of the roughages decreased significantly with the addition of clove oil. However, the decrease had no anti-methanogenic effect on CH4, one of the greenhouse gases released by ruminants. The use of clove oil in addition to roughage to decrease gas and methane production may be advised, although the effect on total mixed rations or animals should be examined further through in situ and in vivo investigations.

References

  • AOAC., (1990). Official method of analysis. 15th ed., Association of Official Analytical Chemists, Washington, DC, USA. pp.66-88.
  • Auffret, M.D., Stewart, R., Dewhurst, R.J., Duthie, C.A., Rooke, J.A., Wallace, R.J., Freeman, T.C., Snelling, T.J., Watson, M., Roehe, R. (2018). Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse Bos Taurus breeds and basal diets. Front. Microb, 8(2), 36-42.
  • Benchaar, C., Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166-167: 338-355.
  • Boadi, D., Benchaar, C., Chiquette, J., Masse, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: update review, Canadian Journal of Animal Science, 84, 319-335.
  • Busquet, M., Calsamiglia, S., Ferret, A., Kamel, C. (2006). Plant extracts affect in vitro rumen microbial fermentation. Journal of dairy science, 89(2), 761-771.
  • Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation, J. Dairy Sci. 90: 2580–2595 pp.
  • Canbolat, Ö., Kalkan, H., Karaman, Ş., Filya, İ. (2011). Esansiyel yağların sindirim, rumen fermantesyonu ve mikrobiyal protein üretimi üzerine etkileri, Kafkas Üniv Vet Fak Derg. 17 (4), 557–565.
  • Canbolat, Ö., Karaman, Ş., Filya, İ. (2010), Farklı kekik yağı dozlarının mısır silajının sindirimi ve rumen fermentasyonu üzerine etkileri, Kafkas Univ Vet Fak Derg., 16 (6): 933-939.
  • Cardoza, P.W., Calsamiglia, S., Ferret, A., Camel, C. (2004). Effect of natural plant extracts on ruminal protein degration and profiles in fermentation continuous culture. Journal of Animal Science. 82, 3230-3236.
  • Castillejos, L., Calsamiglia, S., Ferret, A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Journal of Dairy Science, 89: 2649-2658.
  • Chesson, A. (2006). Phasing out antibiotic feed additives in the EU: Worldwide relevance for animal food production. In: Barug D, de Jong J, Kies AK, Verstegen MWA, eds. Antimicrobial Growth Promoters: Where Do We Go from Here? The Netherlands: Wageningen Academic Publishers, pp. 69-81.
  • Dong, G.Z., Wang, X.J., Liu, Z.B., Wang, F. (2010). Effects of phytogenic products on in vitro rumen fermentation and methane emission in goats. J. Anim. Feed Sci. 19, 218-229.
  • Franlič, T., Voljč, M., Salobir, J., Rezar, V. (2009). Use of herbs and spices and their extracts in animal nutrition. Acta Argiculturae Slovenica, 2 (94): 95–102pp.
  • Geraci, J.I., Garciarena, A.D., Gagliostro, G.A., Beauchemin, K.A., Colombatto, D. (2012). Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: Ruminal environment, short term intake pattern and animal performance. Animal feed science and technology, 176(1-4), 123-130.
  • Gerber, P.J., Hristov, A.N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A.T., Yang, W.Z., Tricarico, M., Kebreab, E., Waghorn, G., Dijkstra, J., Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 7(s2), 220-234.
  • Goel, G., Makkar, H.P.S., Becker, K. (2008). Effect of sesbania sesban and carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • IPCC, Field, C.B. (Ed.). (2014). Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press.
  • Joch, M.V., Kudrnaa, V., Haklc, J., Bo žikd, M., Homolkaa, P., Illeka, J., Tyrolováa, T., Výbornáa, A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Animal Feed Science and Technology, 251, 176-186.
  • Jouany, J.P., Morgavi, D.P. (2007). Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal, 1(10), 1443-1466.
  • Kaya, A., Kaya, A. (2021). The effect of some vegetable oils added to dairy calf rations on in vitro feed value and enteric methane production. Journal of Agricultural Production, 2(1), 1-6.
  • Kim, E.T., Kim, C., Min, K., Lee, S.S. (2012). Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in vitro. Asian-Australasian Journal of Animal Sciences 25(6): 806-811.
  • Kutlu, H.R., Görgülü, M. (2001). Kanatlı yemlerinde yem katkı maddesi olarak kullanılan antibiyotik-büyütme faktörü için alternatifler. Yem Magazin Derg, 27, 45-62.
  • Martin, C., Morgavi, D., Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4(3), 351-365
  • Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 93, 217-222.
  • Menke, K.H., Steingass, H. (1988). Estimation of energetic feed value obtained from chemical analysis and in vitro gas production. Animal Research Development, 28, 7-55.
  • Nanon, A, Suksombat, W., Yang, W.Z. (2015). Use of essential oils for manipulation of rumen microbial fermentation using batch culture. Thai Journal of Veterinary Medicine 45(2): 167-180.
  • NRC. (2001). Nutrient requirements of dairy cattle, 7th revised edition. Washington (DC): National Academy Press.
  • Patra, A.K., Kamra, D.N., Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128(3-4), 276-291.
  • Rofiq, M.N., Görgülü, M., Boğa, M. (2012). Karanfil uçucu yağının (Clove Oil) ruminantlarda in vitro gerçek KM ve NDF sindirilebilirliği ve yemin enerji içeriğine etkileri, 8. Ulusal Zootekni Öğrenci Kongresi, 127-129s.
  • Ratika, K., Singh, R.K.J. (2018). Plant derived essential oil in ruminant nutrition - A Review. International Journal of Current Microbiology and Applied Sciences 7(5): 1747-1753.
  • Sarnataro, C., Spanghero, M., Lavrenčič, A. (2020). Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. Journal of Animal Physiology and Animal Nutrition, 104(5), 1310-1316.
  • Sembiring, M., Baba, A.S.H. (2022). In Vitro Gas Production Test: Towards rapid nutritional evaluation of roughages for ruminant feeding. Formosa Journal of Science and Technology (FJST) Vol. 1, No. 4, 2022: 247-258.
  • SPSS, (2011). IBM SPSS statistics for Windows, version 17.0. New York: IBM Corp 440.
  • Takahashi, J., Mwenya, B., Santoso, B., Sar, C., Umetsu, K., Kishimoto, T., Nishizaki, K., Kimura, K., Hamamoto, O. (2005). Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australasian Journal of Animal Science 18(8): 1199-1208.
  • Tuncer, Ş.D., Kocabatmaz, M., Coşkun, B., Şeker, E. (1989). Kimyasal maddelerle muamele edilen arpa samanının sindirilme derecesinin naylon kese (nylon bag) tekniği ile tespit edilmesi. Doğa Türk Vet. Ve Hay. Derg., 13 (1): 66-81.
  • Üretmen, S. (2013). Buğday samanının karanfil eterik yağı ile muamelesinin in vitro organik madde sindirilebilirliği ve metabolize olabilir enerji değeri üzerine etkisi. Ege Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. Bornova-İzmir ss: 61.
  • Wallace, R.J., McEwan, N.R., McIntosh, F.M., Teferedegne, B., Newbold, C.J. (2002). Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences 15, 1458-1468.
  • Van Soest, P.V., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583- 3597.
There are 38 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Emrah Kaya 0000-0001-7337-0406

Publication Date December 30, 2022
Submission Date September 30, 2022
Acceptance Date November 21, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Kaya, E. (2022). Assessing the Effects of Clove Oil on Gas and Methane Production of Some Roughages Using In Vitro Gas Production Technique. Journal of Agriculture, 5(2), 14-20. https://doi.org/10.46876/ja.1182517