Research Article
BibTex RIS Cite

Production of recombinant expansin and detection by SDS page analysis in Escherichia coli

Year 2023, Volume: 7 Issue: 1, 117 - 121, 27.03.2023
https://doi.org/10.31015/jaefs.2023.1.13

Abstract

The study aims to produce Expansin protein isolated from a young tomato plant by using Escherichia coli which is used in recombinant protein production. Continuous culture is the most common method used to grow cells for recombinant protein production. In the study, the K12 strain of E. coli was used as a culture for the production of Expansin protein. The used LeExp1 gene was isolated from a young tomato plant. Since the related gene is found in very small amounts in plants, it has been reproduced using the PCR method and has been made workable with this method. T17 vector (T7 RNA polymerase system), which is frequently used in the production of recombinant protein, was used as the bacterial expression vector. The T7 RNA polymerase system is a commonly used vector in E. coli. With the transfer, the E. coli bacterium was given the ability to produce recombinant protein. Whether the obtained recombinant protein expressed the appropriate protein was determined by SDS Page analysis.

Supporting Institution

TÜBİTAK

Project Number

113O392

Thanks

Researchers would like to thank TÜBİTAK for its support.

References

  • Andersson, P., Edenståhl, S., Eriksson, E., Nielsen, J., Pihlblad, A. (2018). The Future's Expression Systems for Complex Proteins: Evaluation of Twelve Expression Systems, Uppsala.
  • Anon. (2010). Champion™ pET Directional TOPO® Expression Kits. Five-minute, directional TOPO® Cloning of blunt-end PCR products into vectors for high-level, inducible expression in E. coli. Catalog no. K100-01, K101 01, K102-01, K151- 01, K200-01.
  • Cosgrove. D.J. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry 38:1-1.
  • García-Fruitós, E. (2014). Insoluble Proteins: Methods and Protocols, Insoluble Proteins Methods Protoc Vol. 1258, pp. 1–422, https://doi.org/10.1007/978-1-4939-2205-5
  • Gräslund, S., Nordlund, P., Weigelt, J., Hallberg, B.M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., Dhe-Paganon, S., Park, H., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S.H., Rao, Z., Shi, Y., Terwilliger, T.C., Kim, C.Y., Hung, L.W., Waldo, G.S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J.L., Stevens, R.C., Lesley, S.A., Wilson, I.A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M.I., Eschenfeldt, W.H., Kim, Y., Stols, L., R.Wu., Zhou, M., Burley, S.K., Emtage, J.S., Sauder, J.M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S.C., Bonanno, J.B., Fiser, A., Swaminathan, S., Studier, F.W., Chance, M.R., Sali, A., Acton, T.B., Xiao, R., Zhao, L., Ma, L.C., Hunt, J.F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C.K., Wang, D., Wang, H., Jiang, M., Montelione, G.T., Stuart, D.I., Owens, R.J., Daenke, S., Schütz, A., Heinemann, U., Yokoyama, S., Büssow, K., Gunsalus, K.C. (2008). Protein production and purification, Nat. Methods, 5, s. 135–146. https://doi.org/10.1038/nmeth.f.202
  • Hartley, J.L. (2006). Cloning technologies for protein expression and purification, Current Opinion in Biotechnology, 17:359-366.
  • Hughes, S.S. (2001). Making dollars out of DNA. The First Major Patent in biotechnology and the commercialization of molecular biology, 1974-1980. Isis., 92(3): 541-75.
  • Jackson, D., Symons, R., Berg, P., (1972). Biochemical method for inserting new genetic information into DNA of simian virus 40: circular sv40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci, 69(10): 2904-2909.
  • Katartaş, Z. (2011). Drug production with recombinant DNA technology. Graduation Paper, Erciyes University, Faculty of Pharmacy, Pharmaceutical Biotechnology, Kayseri.
  • Ladisch, M.R., Kohlmann, K.L. (1992). Recombinant human insulin. Biotechnol. Prog., 8:469-478.
  • Mullis, K.B. (1990). Recombinant DNA technology and molecular cloning, Scientific American, 262(36): 181-231.
  • Rabert, C., Weinacker, D., Pessoa, A., Farías, J.G. (2013). Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system, Braz. J. Microbiol. 44, 351–356, https://doi.org/10.1590/S1517-83822013005000041
  • Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrer-Miralles, N., Vázquez, E., Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: a 2015 update, Microb. Cell Fact., 15, pp. 1-. https://doi.org/10.1186/s12934-016-0437-3
  • Walsh, G. (2014). Biopharmaceutical benchmarks, Nat. Biotechnol. 32 (2014) 992–1000, https://doi.org/10.1038/nbt.3040
Year 2023, Volume: 7 Issue: 1, 117 - 121, 27.03.2023
https://doi.org/10.31015/jaefs.2023.1.13

Abstract

Project Number

113O392

References

  • Andersson, P., Edenståhl, S., Eriksson, E., Nielsen, J., Pihlblad, A. (2018). The Future's Expression Systems for Complex Proteins: Evaluation of Twelve Expression Systems, Uppsala.
  • Anon. (2010). Champion™ pET Directional TOPO® Expression Kits. Five-minute, directional TOPO® Cloning of blunt-end PCR products into vectors for high-level, inducible expression in E. coli. Catalog no. K100-01, K101 01, K102-01, K151- 01, K200-01.
  • Cosgrove. D.J. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry 38:1-1.
  • García-Fruitós, E. (2014). Insoluble Proteins: Methods and Protocols, Insoluble Proteins Methods Protoc Vol. 1258, pp. 1–422, https://doi.org/10.1007/978-1-4939-2205-5
  • Gräslund, S., Nordlund, P., Weigelt, J., Hallberg, B.M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., Dhe-Paganon, S., Park, H., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S.H., Rao, Z., Shi, Y., Terwilliger, T.C., Kim, C.Y., Hung, L.W., Waldo, G.S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J.L., Stevens, R.C., Lesley, S.A., Wilson, I.A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M.I., Eschenfeldt, W.H., Kim, Y., Stols, L., R.Wu., Zhou, M., Burley, S.K., Emtage, J.S., Sauder, J.M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S.C., Bonanno, J.B., Fiser, A., Swaminathan, S., Studier, F.W., Chance, M.R., Sali, A., Acton, T.B., Xiao, R., Zhao, L., Ma, L.C., Hunt, J.F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C.K., Wang, D., Wang, H., Jiang, M., Montelione, G.T., Stuart, D.I., Owens, R.J., Daenke, S., Schütz, A., Heinemann, U., Yokoyama, S., Büssow, K., Gunsalus, K.C. (2008). Protein production and purification, Nat. Methods, 5, s. 135–146. https://doi.org/10.1038/nmeth.f.202
  • Hartley, J.L. (2006). Cloning technologies for protein expression and purification, Current Opinion in Biotechnology, 17:359-366.
  • Hughes, S.S. (2001). Making dollars out of DNA. The First Major Patent in biotechnology and the commercialization of molecular biology, 1974-1980. Isis., 92(3): 541-75.
  • Jackson, D., Symons, R., Berg, P., (1972). Biochemical method for inserting new genetic information into DNA of simian virus 40: circular sv40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci, 69(10): 2904-2909.
  • Katartaş, Z. (2011). Drug production with recombinant DNA technology. Graduation Paper, Erciyes University, Faculty of Pharmacy, Pharmaceutical Biotechnology, Kayseri.
  • Ladisch, M.R., Kohlmann, K.L. (1992). Recombinant human insulin. Biotechnol. Prog., 8:469-478.
  • Mullis, K.B. (1990). Recombinant DNA technology and molecular cloning, Scientific American, 262(36): 181-231.
  • Rabert, C., Weinacker, D., Pessoa, A., Farías, J.G. (2013). Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system, Braz. J. Microbiol. 44, 351–356, https://doi.org/10.1590/S1517-83822013005000041
  • Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrer-Miralles, N., Vázquez, E., Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: a 2015 update, Microb. Cell Fact., 15, pp. 1-. https://doi.org/10.1186/s12934-016-0437-3
  • Walsh, G. (2014). Biopharmaceutical benchmarks, Nat. Biotechnol. 32 (2014) 992–1000, https://doi.org/10.1038/nbt.3040
There are 14 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Serap Güneş 0000-0002-3612-9055

Demet Ektiren 0000-0002-3969-2900

Mehmet Karaaslan 0000-0001-8097-9535

Hasan Vardin 0000-0001-6552-2713

Project Number 113O392
Publication Date March 27, 2023
Submission Date October 17, 2022
Acceptance Date December 14, 2022
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Güneş, S., Ektiren, D., Karaaslan, M., Vardin, H. (2023). Production of recombinant expansin and detection by SDS page analysis in Escherichia coli. International Journal of Agriculture Environment and Food Sciences, 7(1), 117-121. https://doi.org/10.31015/jaefs.2023.1.13
AMA Güneş S, Ektiren D, Karaaslan M, Vardin H. Production of recombinant expansin and detection by SDS page analysis in Escherichia coli. int. j. agric. environ. food sci. March 2023;7(1):117-121. doi:10.31015/jaefs.2023.1.13
Chicago Güneş, Serap, Demet Ektiren, Mehmet Karaaslan, and Hasan Vardin. “Production of Recombinant Expansin and Detection by SDS Page Analysis in Escherichia Coli”. International Journal of Agriculture Environment and Food Sciences 7, no. 1 (March 2023): 117-21. https://doi.org/10.31015/jaefs.2023.1.13.
EndNote Güneş S, Ektiren D, Karaaslan M, Vardin H (March 1, 2023) Production of recombinant expansin and detection by SDS page analysis in Escherichia coli. International Journal of Agriculture Environment and Food Sciences 7 1 117–121.
IEEE S. Güneş, D. Ektiren, M. Karaaslan, and H. Vardin, “Production of recombinant expansin and detection by SDS page analysis in Escherichia coli”, int. j. agric. environ. food sci., vol. 7, no. 1, pp. 117–121, 2023, doi: 10.31015/jaefs.2023.1.13.
ISNAD Güneş, Serap et al. “Production of Recombinant Expansin and Detection by SDS Page Analysis in Escherichia Coli”. International Journal of Agriculture Environment and Food Sciences 7/1 (March 2023), 117-121. https://doi.org/10.31015/jaefs.2023.1.13.
JAMA Güneş S, Ektiren D, Karaaslan M, Vardin H. Production of recombinant expansin and detection by SDS page analysis in Escherichia coli. int. j. agric. environ. food sci. 2023;7:117–121.
MLA Güneş, Serap et al. “Production of Recombinant Expansin and Detection by SDS Page Analysis in Escherichia Coli”. International Journal of Agriculture Environment and Food Sciences, vol. 7, no. 1, 2023, pp. 117-21, doi:10.31015/jaefs.2023.1.13.
Vancouver Güneş S, Ektiren D, Karaaslan M, Vardin H. Production of recombinant expansin and detection by SDS page analysis in Escherichia coli. int. j. agric. environ. food sci. 2023;7(1):117-21.


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27