Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 874 - 886, 29.12.2023
https://doi.org/10.31015/jaefs.2023.4.18

Abstract

Project Number

TAGEM/TSKAD/15/A13/P08/10

References

  • Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper No.56, 17–27.
  • Araya, A., Habtu. S., Hadgu, K.M., Kebede, A. & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management. 97(11), 1838-1846. https://doi.org/10.1016/j.agwat.2010.06.021
  • Aouade, G., Ezzahar, J., Amenzou, N., Er-Raki, S., Benkaddour, A., Khabba, S. & Jarlan, L. (2016). Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid region. Agricultural Water Management, 177, 181–192. https://doi.org/10.1016/j.agwat.2016.07.021
  • Aydoğan S. & Soylu S. (2017). Determination of yield, yield components and some quality properties of bread wheat varieties. Journal of Field Crops Central Research Institute, 2017, 26 (1), 24-30. https://doi.org/10.21566/tarbitderg.323568
  • Davarpanah, R. & Ahmadi, S.H. (2021). Modeling the effects of irrigation management scenarios on winter wheat yield and water use indicators in response to climate variations and water delivery systems, J. Hydrology (598),126-269. https://doi.org/10.1016/j.jhydrol.2021.126269
  • Debaeke, P. & Aboudrare, A. (2004). Adaptation of Crop Management to Water-Limited Environments. European Journal of Agronomy, (21), 433-446. https://doi.org/10.1016/j.eja.2004.07.006
  • Delju, A.H., Ceylan, A., Piguet, E.& Rebetez M. (2013). Observed climate variability and change in Urmia Lake Basin Iran, Theor. Appl. Climatology, (111), 285-296. https://doi.org/10.1007/s00704-012-0651-9
  • Farahani, H.J., Izzi, G. & Oweis, T.Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J. 101, 469–476. https://doi.org/10.2134/agronj2008.0182s
  • Gokalp, Z. & Cakmak, B. (2016). Agricultural water management in Turkey: past-present-future. Current Trends in Natural Sciences, 5, 133–138. http://www.natsci.upit.ro
  • Heng, L.K., Hsiao, T., Evett,S., Howell, T. & Steduto, P. (2009).Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron.J.101, 488–498. https://doi.org/10.2134/agronj2008.0029xs
  • Hsiao, T.C., Heng, L., Steduto, P., Roja-Lara, B., Raes, D. & Fereres, E. (2009). AquaCrop- The FAO model to simulate yield response to water: Parametrization and testing for maize. Agron. J. 101, 448–459. https://doi.org/10.2134/agronj2008.0218s
  • Hussein, F, Janat, M. &Yakoub, A. (2011). Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Span J Agr Res 9:1319-1330. https://doi.org /10.5424/sjar/20110904-358-10
  • Iqbal, M, A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A. & Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management 135:61-72. https://doi.org/10.1016/j.agwat.2013.12.012
  • Janssen, P.H.M. & Heuberger, P.S.C. (1995). Calibration of process- oriented models. Ecol Model 83.55-66. https://doi.org/10.1016/0304-3800(95)00084-9
  • Jin, X.H., Feng, H., Zhu, X., Li, Z., Song, S., Song, X., Yang, G., Xu, X. & Guo, W. (2014). Assessment of the AquaCrop Model for Use in Simulation of Irrigated Winter Wheat Canopy Cover, Biomass, and Grain Yield in the North China Plain. Volume 9; Issue 1, pp:1-11. https://doi.org/10.1371/journal.pone.0086938
  • Kale, S. & Tari, A.F. (2012). Evaluation of FAO-AQUACROP Model Performance for Winter Wheat under Irrigated and Rainfed Conditions. Journal of Soil Water .119-131.
  • Kale Celik, S., Madenoglu, S. & Sonmez B. (2018). Evaluating AquaCrop Model for Winter Wheat under Various Irrigation Conditions in Turkey. Journal of Agricultural Sciences. 24:205-217. https://doi.org/10.15832/ankutbd.446438
  • Liu, J. G. & Pattey, E. (2010). Retrieval of Leaf Area Index from Top-Of-Canopy Digital Photography over Agricultural Crops, Agricultural and Forest Meteorology, 150, 1485-1490. https://doi.org/10.1016/j.agrformet.2010.08.002
  • Liu, J., Pattey, E., & Admiral, S. (2013). Assessment of in situ crop LAI measurement using unidirectional view digital photography. Agricultural and Forest Meteorology, 169, 25- 34. https://doi.org/10.1016/j.agrformet.2012.10.009
  • Lyman, O.R. (1993). An introduction to statistical methods and data analysis. Duxbury Press. Belmont. CA. USA. pp. 247-250.
  • Mkhabela, M.S. & Bullock, P.R. (2012). Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agric. Water Manage. 110, 16–24. https://doi.org/10.1016/j.agwat.2012.03.009
  • Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.2315
  • Nash, J.E. & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models: Part I-A discussion of principles. J. Hydrology 10. 282-290. http://dx.doi.org/10.1016/0022-1694(70)90255-6
  • Raes, D., Steduto, P., Hsiao, T. C. & Fereres. E. (2009a). Chapter One: AquaCrop-The FAO crop model to simulate yield response to water. FAO. 1-10. https://doi.org/10.2134/agronj2008.0139s
  • Raes, D., Steduto, P., Hsiao, T.C. & Fereres. E. (2009b). AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. 438-447. https://doi.org/10.2134/agronj2008.0140s
  • Raes, D. (2015). AquaCrop Training Handbooks. Book I. Understanding AquaCrop (Version 5.0. July 2015). Food and Agriculture Organization of the United Nations. Land and Water Division. Rome. Italy.
  • Raes, D., Steduto, P., Hsiao, T.C.& Fereres E. (2016). AquaCrop Version 5.0 Reference Manual Book. Food and Agriculture Organization of the United Nations, Rome, Italy
  • Shahbandeh, M. (2022). Wheat - statistics facts. World of wheat. https://www.statista.com/statistics/1094065/total-global-wheat-consumption-by-country
  • Salemi, H.M., Amin, S.M., Amind, M.S. & Mohd, S. (2011). Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region, African Journal of Agricultural Research 610 (10):2204-2215. https://doi.org/10.5897/AJAR10.1009
  • Steduto, P., Hsiao, T.C., Raes, D. &Fereres E. (2009). AquaCrop-The FAO crop model to simulate yield response to water. I. Concepts and underlying principles. Agronomy Journal. 101: 426-437. https://doi.org/10.2134/agronj2008.0139s
  • Steduto, P., Hsiao, T.C., Fereres, E. & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper, No: 66 Rome, Italy, pp. 516. ISBN 978-92-5-107274-5
  • Tan, Q., Zhang, S. & Li, R. (2017). Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water, 9(7), 488. https://doi.org/10.3390/w9070488
  • Tavakoli, A.R., Moghadam, M.M. & Sepaskhah, A.R. (2015). Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agricultural Water Management 16: 136-146. https://doi.org/10.1016/j.agwat.2015.07.020
  • Todd, S.W., Hoffer, R.M. & Milchunas, D.G. (1998). Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. Journal of Remote Sensing, vol. 19, no. 3, pp.427- 438. https://doi.org/10.1080/014311698216071
  • Toumi, J, Er-Raki, S., Ezzahar, J, Khabba, S., Jarlan, L. & Chehbouni, A. (2016). Performance assessment of AquaCrop model for estimating evapotranspiration soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management, 163:219-235. https://doi.org/10.1016/j.agwat.2015.09.007
  • TSMS. (2018). Meteorological Report. Turkish State Meteorological Services. Retrieved in August, 05, 2018 from https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • TUIK. (2021). Crop production statistics. Turkish Statistical Institute. Retrieved in October, 18, 2022 from https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249
  • USDA. (2021). Grain and Feed Annual Report. United States Department of Agricultural. Retrieved in June 10, 2021 from https://apps.fas.usda.gov/newgainapi/api/Report
  • Zeleke, K.T., Luckett, D. & Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103: 1610-1618. https://doi.org/10.2134/agronj2011.0150
  • Zhang, W., Liu, W., Xue, Q., Chen, J. & Han. X. (2013). Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science & Technology, 68:4-8. https://doi.org/10.2166/wst.2013.305
  • Zhuo, L. & Hoekstra, A.Y. (2017). The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Frontiers in Agricultural Science and Engineering, 4(2), 185–194. https://doi.org/10.15302/J-FASE-2017149

Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model

Year 2023, Volume: 7 Issue: 4, 874 - 886, 29.12.2023
https://doi.org/10.31015/jaefs.2023.4.18

Abstract

Water efficiency models are playing an increasingly important role in helping agricultural activities adapt to climate change. AquaCrop is one of the models that can accurately correlate water-plant-climate parameters. In this study, the effects of irrigation strategies (I1; rainfed, I2; irrigation at Germination (G)+Tillering (T)+Heading (H) stages, I3; irrigation at G+H stages, I4; irrigation at G+T stages) and sowing dates (SD1; normal sowing date, SD2; late sowing date) on winter wheat yield and soil water conditions were investigated in semi-arid climate conditions. Biomass, grain yield, soil water content and crop canopy cover values observed in field conditions and simulated by AquaCrop. According to results SD1 did not have a negative effect on grain yield and biomass however SD2 would significantly reduce grain yield and biomass amount. Considering the biomass and grain yields in terms of irrigation, the highest yield was obtained in the irrigation water applied during the I2SD1 treatment. The yield reduction was 39% in rainfed treatments, 22% when irrigated in G+T periods, and 5% when irrigated in G+H stages. The model predicted 2-year grain yield and biomass values more accurately in SD1 than in SD2. The model predicted yield, biomass, soil moisture content and canopy cover values with an acceptable accuracy.

Supporting Institution

General Directorate of Agricultural Research and Policies of The Republic of Türkiye Ministry of Agriculture and Forestry

Project Number

TAGEM/TSKAD/15/A13/P08/10

References

  • Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper No.56, 17–27.
  • Araya, A., Habtu. S., Hadgu, K.M., Kebede, A. & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management. 97(11), 1838-1846. https://doi.org/10.1016/j.agwat.2010.06.021
  • Aouade, G., Ezzahar, J., Amenzou, N., Er-Raki, S., Benkaddour, A., Khabba, S. & Jarlan, L. (2016). Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid region. Agricultural Water Management, 177, 181–192. https://doi.org/10.1016/j.agwat.2016.07.021
  • Aydoğan S. & Soylu S. (2017). Determination of yield, yield components and some quality properties of bread wheat varieties. Journal of Field Crops Central Research Institute, 2017, 26 (1), 24-30. https://doi.org/10.21566/tarbitderg.323568
  • Davarpanah, R. & Ahmadi, S.H. (2021). Modeling the effects of irrigation management scenarios on winter wheat yield and water use indicators in response to climate variations and water delivery systems, J. Hydrology (598),126-269. https://doi.org/10.1016/j.jhydrol.2021.126269
  • Debaeke, P. & Aboudrare, A. (2004). Adaptation of Crop Management to Water-Limited Environments. European Journal of Agronomy, (21), 433-446. https://doi.org/10.1016/j.eja.2004.07.006
  • Delju, A.H., Ceylan, A., Piguet, E.& Rebetez M. (2013). Observed climate variability and change in Urmia Lake Basin Iran, Theor. Appl. Climatology, (111), 285-296. https://doi.org/10.1007/s00704-012-0651-9
  • Farahani, H.J., Izzi, G. & Oweis, T.Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J. 101, 469–476. https://doi.org/10.2134/agronj2008.0182s
  • Gokalp, Z. & Cakmak, B. (2016). Agricultural water management in Turkey: past-present-future. Current Trends in Natural Sciences, 5, 133–138. http://www.natsci.upit.ro
  • Heng, L.K., Hsiao, T., Evett,S., Howell, T. & Steduto, P. (2009).Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron.J.101, 488–498. https://doi.org/10.2134/agronj2008.0029xs
  • Hsiao, T.C., Heng, L., Steduto, P., Roja-Lara, B., Raes, D. & Fereres, E. (2009). AquaCrop- The FAO model to simulate yield response to water: Parametrization and testing for maize. Agron. J. 101, 448–459. https://doi.org/10.2134/agronj2008.0218s
  • Hussein, F, Janat, M. &Yakoub, A. (2011). Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Span J Agr Res 9:1319-1330. https://doi.org /10.5424/sjar/20110904-358-10
  • Iqbal, M, A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A. & Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management 135:61-72. https://doi.org/10.1016/j.agwat.2013.12.012
  • Janssen, P.H.M. & Heuberger, P.S.C. (1995). Calibration of process- oriented models. Ecol Model 83.55-66. https://doi.org/10.1016/0304-3800(95)00084-9
  • Jin, X.H., Feng, H., Zhu, X., Li, Z., Song, S., Song, X., Yang, G., Xu, X. & Guo, W. (2014). Assessment of the AquaCrop Model for Use in Simulation of Irrigated Winter Wheat Canopy Cover, Biomass, and Grain Yield in the North China Plain. Volume 9; Issue 1, pp:1-11. https://doi.org/10.1371/journal.pone.0086938
  • Kale, S. & Tari, A.F. (2012). Evaluation of FAO-AQUACROP Model Performance for Winter Wheat under Irrigated and Rainfed Conditions. Journal of Soil Water .119-131.
  • Kale Celik, S., Madenoglu, S. & Sonmez B. (2018). Evaluating AquaCrop Model for Winter Wheat under Various Irrigation Conditions in Turkey. Journal of Agricultural Sciences. 24:205-217. https://doi.org/10.15832/ankutbd.446438
  • Liu, J. G. & Pattey, E. (2010). Retrieval of Leaf Area Index from Top-Of-Canopy Digital Photography over Agricultural Crops, Agricultural and Forest Meteorology, 150, 1485-1490. https://doi.org/10.1016/j.agrformet.2010.08.002
  • Liu, J., Pattey, E., & Admiral, S. (2013). Assessment of in situ crop LAI measurement using unidirectional view digital photography. Agricultural and Forest Meteorology, 169, 25- 34. https://doi.org/10.1016/j.agrformet.2012.10.009
  • Lyman, O.R. (1993). An introduction to statistical methods and data analysis. Duxbury Press. Belmont. CA. USA. pp. 247-250.
  • Mkhabela, M.S. & Bullock, P.R. (2012). Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agric. Water Manage. 110, 16–24. https://doi.org/10.1016/j.agwat.2012.03.009
  • Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.2315
  • Nash, J.E. & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models: Part I-A discussion of principles. J. Hydrology 10. 282-290. http://dx.doi.org/10.1016/0022-1694(70)90255-6
  • Raes, D., Steduto, P., Hsiao, T. C. & Fereres. E. (2009a). Chapter One: AquaCrop-The FAO crop model to simulate yield response to water. FAO. 1-10. https://doi.org/10.2134/agronj2008.0139s
  • Raes, D., Steduto, P., Hsiao, T.C. & Fereres. E. (2009b). AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. 438-447. https://doi.org/10.2134/agronj2008.0140s
  • Raes, D. (2015). AquaCrop Training Handbooks. Book I. Understanding AquaCrop (Version 5.0. July 2015). Food and Agriculture Organization of the United Nations. Land and Water Division. Rome. Italy.
  • Raes, D., Steduto, P., Hsiao, T.C.& Fereres E. (2016). AquaCrop Version 5.0 Reference Manual Book. Food and Agriculture Organization of the United Nations, Rome, Italy
  • Shahbandeh, M. (2022). Wheat - statistics facts. World of wheat. https://www.statista.com/statistics/1094065/total-global-wheat-consumption-by-country
  • Salemi, H.M., Amin, S.M., Amind, M.S. & Mohd, S. (2011). Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region, African Journal of Agricultural Research 610 (10):2204-2215. https://doi.org/10.5897/AJAR10.1009
  • Steduto, P., Hsiao, T.C., Raes, D. &Fereres E. (2009). AquaCrop-The FAO crop model to simulate yield response to water. I. Concepts and underlying principles. Agronomy Journal. 101: 426-437. https://doi.org/10.2134/agronj2008.0139s
  • Steduto, P., Hsiao, T.C., Fereres, E. & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper, No: 66 Rome, Italy, pp. 516. ISBN 978-92-5-107274-5
  • Tan, Q., Zhang, S. & Li, R. (2017). Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water, 9(7), 488. https://doi.org/10.3390/w9070488
  • Tavakoli, A.R., Moghadam, M.M. & Sepaskhah, A.R. (2015). Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agricultural Water Management 16: 136-146. https://doi.org/10.1016/j.agwat.2015.07.020
  • Todd, S.W., Hoffer, R.M. & Milchunas, D.G. (1998). Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. Journal of Remote Sensing, vol. 19, no. 3, pp.427- 438. https://doi.org/10.1080/014311698216071
  • Toumi, J, Er-Raki, S., Ezzahar, J, Khabba, S., Jarlan, L. & Chehbouni, A. (2016). Performance assessment of AquaCrop model for estimating evapotranspiration soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management, 163:219-235. https://doi.org/10.1016/j.agwat.2015.09.007
  • TSMS. (2018). Meteorological Report. Turkish State Meteorological Services. Retrieved in August, 05, 2018 from https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • TUIK. (2021). Crop production statistics. Turkish Statistical Institute. Retrieved in October, 18, 2022 from https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249
  • USDA. (2021). Grain and Feed Annual Report. United States Department of Agricultural. Retrieved in June 10, 2021 from https://apps.fas.usda.gov/newgainapi/api/Report
  • Zeleke, K.T., Luckett, D. & Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103: 1610-1618. https://doi.org/10.2134/agronj2011.0150
  • Zhang, W., Liu, W., Xue, Q., Chen, J. & Han. X. (2013). Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science & Technology, 68:4-8. https://doi.org/10.2166/wst.2013.305
  • Zhuo, L. & Hoekstra, A.Y. (2017). The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Frontiers in Agricultural Science and Engineering, 4(2), 185–194. https://doi.org/10.15302/J-FASE-2017149
There are 41 citations in total.

Details

Primary Language English
Subjects Irrigation Systems , Agricultural Water Management
Journal Section Research Articles
Authors

Belgin Alsancak Sırlı 0000-0002-7779-6778

Sema Kale Çelik 0000-0001-8161-276X

Hakan Yıldız 0000-0002-7627-7503

Metin Aydoğdu 0000-0001-6920-1976

Project Number TAGEM/TSKAD/15/A13/P08/10
Publication Date December 29, 2023
Submission Date September 22, 2023
Acceptance Date December 6, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Alsancak Sırlı, B., Kale Çelik, S., Yıldız, H., Aydoğdu, M. (2023). Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. International Journal of Agriculture Environment and Food Sciences, 7(4), 874-886. https://doi.org/10.31015/jaefs.2023.4.18
AMA Alsancak Sırlı B, Kale Çelik S, Yıldız H, Aydoğdu M. Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. int. j. agric. environ. food sci. December 2023;7(4):874-886. doi:10.31015/jaefs.2023.4.18
Chicago Alsancak Sırlı, Belgin, Sema Kale Çelik, Hakan Yıldız, and Metin Aydoğdu. “Yield Prediction of Wheat at Different Sowing Dates and Irrigation Regimes Using the AquaCrop Model”. International Journal of Agriculture Environment and Food Sciences 7, no. 4 (December 2023): 874-86. https://doi.org/10.31015/jaefs.2023.4.18.
EndNote Alsancak Sırlı B, Kale Çelik S, Yıldız H, Aydoğdu M (December 1, 2023) Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. International Journal of Agriculture Environment and Food Sciences 7 4 874–886.
IEEE B. Alsancak Sırlı, S. Kale Çelik, H. Yıldız, and M. Aydoğdu, “Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model”, int. j. agric. environ. food sci., vol. 7, no. 4, pp. 874–886, 2023, doi: 10.31015/jaefs.2023.4.18.
ISNAD Alsancak Sırlı, Belgin et al. “Yield Prediction of Wheat at Different Sowing Dates and Irrigation Regimes Using the AquaCrop Model”. International Journal of Agriculture Environment and Food Sciences 7/4 (December 2023), 874-886. https://doi.org/10.31015/jaefs.2023.4.18.
JAMA Alsancak Sırlı B, Kale Çelik S, Yıldız H, Aydoğdu M. Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. int. j. agric. environ. food sci. 2023;7:874–886.
MLA Alsancak Sırlı, Belgin et al. “Yield Prediction of Wheat at Different Sowing Dates and Irrigation Regimes Using the AquaCrop Model”. International Journal of Agriculture Environment and Food Sciences, vol. 7, no. 4, 2023, pp. 874-86, doi:10.31015/jaefs.2023.4.18.
Vancouver Alsancak Sırlı B, Kale Çelik S, Yıldız H, Aydoğdu M. Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. int. j. agric. environ. food sci. 2023;7(4):874-86.


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27