Research Article
BibTex RIS Cite

Innovative approaches and modified criteria to improve a thermodynamic efficiency of trigeneration plants

Year 2024, Volume: 8 Issue: 1, 27 - 39, 31.03.2024
https://doi.org/10.30521/jes.1314441

Abstract

Trigeneration plants (TGP) desired for combined production of electricity, heat and refrigeration are highly flexible to follow current loading. But their highest efficiency might be possible only when heat production coincides with its consumption, which is generally impossible in traditional TGP with applying the absorption lithium-bromide chiller (ACh) converting the heat, released from combustion engine in the form of hot water, into refrigeration. Usually, the excessive heat of hot water, not consumed by ACh, is removed to the atmosphere through emergency radiator. However, the well-known methods of TGP efficiency assessment do not consider those heat losses and give the overestimated magnitudes of efficiency for conventional TGP with ACh. The application of booster ejector chiller (ECh), as an example, for utilization of the residual waste heat, remained from ACh and evaluated about 25%, has been proposed to produce supplementary refrigeration for cooling cyclic air of driving combustion engine to increase its electrical efficiency by 3-4 %. In the case of using the supplementary refrigeration for technological or other needs the heat efficiency of TGP will increase to about 0.43 against 0.37 for typical TGP with ACh as example. The new modified criteria to assess a real efficiency of conventional TGP, based on ACh, are proposed which enable to reveal the way of its improvement through minimizing the heat waste. Such combined two-stage waste heat recovery system of TGP can be considered as the alternative to the use of back-up gas boiler to pick up the waste heat potential for conversion by ACh to meet increased refrigeration needs.

References

  • [1] Kornienko, V, Radchenko, M, Radchenko, A, Koshlak, H, Radchenko, R. Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers. Energies 2023, 16, 6743, DOI: 10.3390/en16 186743.
  • [2] Kornienko V, Radchenko R, Stachel A, Andreev A, Pyrysunko M. Correlations for Pollution on Condensing Surfaces of Exhaust Gas Boilers with Water-fuel Emulsion Combustion. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 530–539, DOI: 10.1007/978-3-030-40724-7_54.
  • [3] Radchenko, M, Yang, Z, Pavlenko, A, Radchenko, A, Radchenko, R, Koshlak, H, Bao, G. Increasing the efficiency of turbine inlet air cooling in climatic conditions of China through rational designing—Part 1: A case study for subtropical climate: general approaches and criteria. Energies 2023; 16: 6105, DOI: 10.3390/en16176105.
  • [4] Serbin, S, Radchenko, M, Pavlenko, A, Burunsuz, K, Radchenko, A, Chen, D. Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures. Energies 2023; 16(9): 3618, DOI: 10.3390/en16093618.
  • [5] Zhu, P, Yao, J, Qian, C, Yang, F, Porpatham, E, Zhang, Z, Wu, Z. High-efficiency conversion of natural gas fuel to power by an integrated system of SOFC, HCCI engine, and waste heat recovery: Thermodynamic and thermo-economic analyses. Fuel 2020, DOI: 10.1016/j.fuel.2020.117883.
  • [6] Radchenko M, Radchenko R, Kornienko V, Pyrysunko M. Semi-Empirical Correlations of Pollution Processes on the Condensation Surfaces of Exhaust Gas Boilers with Water-Fuel Emulsion Combustion. In: Ivanov V, Pavlenko I, Liaposhchenko O, Machado J, Edl M. (eds) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (LNME). Cham, Switzerland: Springer, 2020, pp.853-862, DOI: 10.1007/978-3-030-22365-6_85.
  • [7] Radchenko A, Radchenko M, Konovalov A, Zubarev A. Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. HTRSE-2018, 6 p. E3S Web of Conferences 70, 03011 (2018), HTRSE-2018, DOI: 10.1051/e3sconf/20187003011.
  • [8] Radchenko M, Radchenko A, Mikielewicz D, Kosowski K, Kantor S, Kalinichenko I. Gas turbine intake air hybrid cooling systems and their rational designing. In: V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021). E3S Web of Conferences 2021; 323. 00030, DOI: 10.1051/e3sconf/202132300030.
  • [9] Radchenko, A, Scurtu, I-C, Radchenko, M, Forduy, S, Zubarev, A. Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Thermal Science, Part A 2022; 26(1): 185–194, DOI:10.2298/TSCI200711344R.
  • [10] Forduy S, Radchenko A, Kuczynski W, Zubarev A, Konovalov D. Enhancing the Fuel Efficiency of Gas Engines in Integrated Energy System by Chilling Cyclic Air. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 500–509, DOI: 10.1007/978-3-030-40724-7_51.
  • [11] Freschi, F, Giaccone, L, Lazzeroni, P, Repetto, M. Economic and environmental analysis of a trigeneration system for food-industry: A case study. Appl. Energy 2013; 107: 157–172, DOI: 10.1016/j.apenergy.2013.02.037.
  • [12] Marques, RP, Hacon, D, Tessarollo, A, Parise, JAR. Thermodynamic analysis of trigeneration systems taking into account refrigeration, heating and electricity load demands. Energy Build. 2010; 42, 2323–2330, DOI:10.1016/j.enbuild.2010.07.026.
  • [13] Konovalov D, Kobalava H, Radchenko M, Scurtu I-C, Sviridov V: Determination of the Evaporation Chamber Optimal Length of a Low-Flow Aerothermopressor for Gas Turbines. In: Tonkonogyi, V. et al. (eds.) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering, Cham, Switzerland: Springer, 2021, pp. 654-663.
  • [14] Konovalov, D, Tolstorebrov, I, Eikevik, TM, Kobalava, H, Radchenko, M, Hafner, A, Radchenko, A. Recent Developments in Cooling Systems and Cooling Management for Electric Motors. Energies 2023; 16: 7006, DOI: 10.3390/en16197006.
  • [15] Yang, Z, Radchenko, M. Radchenko, A, Mikielewicz, D, Radchenko, R. Gas turbine intake air hybrid cooling systems and a new approach to their rational designing. Energies 2022; 15: 1474, DOI:10.3390/en15041474.
  • [16] Kornienko, V, Radchenko, R, Radchenko, M, Radchenko, A, Pavlenko, A, Konovalov, D. Cooling cyclic air of marine engine with water-fuel emulsion combustion by exhaust heat recovery chiller. Energies 2022; 15: 248, DOI:10.3390/en15010248.
  • [17] Kornienko V, Radchenko R, Mikielewicz D, Pyrysunko M, Andreev A. Improvement of Characteristics of Water-fuel Rotary Cup Atomizer in a Boiler. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes II (InterPartner-2020), Odessa, Ukraine, 10–13 September 2020. Cham, Switzerland: Springer, 2021, pp. 664–674, DOI:10.1007/978-3-030-68014-5_64.
  • [18] Kruzel, M, Bohdal, T, Dutkowski, K, Radchenko, M. The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger. Energies 2022; 15: 5142, DOI: 10.3390/en15145142.
  • [19] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R. Research of exhaust gas boiler heat exchange surfaces with reduced corrosion when water-fuel emulsion combustion. Sustainability 2022: 14: 11927, DOI: 10.3390/su141911927.
  • [20] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R, Pavlenko, A. Capture of pollutants from exhaust gases by low-temperature heating surfaces. Energies 2022; 15(1): 120, DOI:10.3390/EN15010120.
  • [21] Yang, Z, Korobko, V, Radchenko, M, Radchenko, R. Improving thermoacoustic low temperature heat recovery systems. Sustainability 2022; 14: 12306, DOI: 10.3390/su141912306.
  • [22] Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Archives of Thermodynamics 2004; 25(4): 3–18.
  • [23] Yang, Z, Radchenko, R, Radchenko, M, Radchenko, A, Kornienko, V. Cooling potential of ship engine intake air cooling and its realization on the route line. Sustainability 2022; 14: 15058, DOI:10.3390/su142215058.
  • [24] Radchenko A, Radchenko M, Trushliakov E, Kantor S, Tkachenko V. Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, pp. 1294–1298, DOI:10.1109/ICSAI.2018.8599355.
  • [25] Yang, Z, Konovalov, D, Radchenko, M, Radchenko, R, Kobalava, H, Radchenko, A, Kornienko, V. Analysis of efficiency of thermopressor application for internal combustion engine. Energies 2022; 15: 2250, DOI:10.3390/en15062250.
  • [26] Radchenko N, Tsoy A, Mikielewicz D, Kantor S, Tkachenko V. Improving the efficiency of railway conditioners in actual climatic conditions of operation. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030072, DOI:10.1063/5.0026789.
  • [27] Kornienko V, Radchenko R, Bohdal T, Radchenko M, Andreev A. Thermal Characteristics of the Wet Pollution Layer on Condensing Heating Surfaces of Exhaust Gas Boilers. In: Ivanov V, Pavlenko I, Liaposhchenko O, Machado J, Edl M, editors. Lecture Notes in Mechanical Engineering, Advances in Design, Simulation and Manufacturing IV, Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2021, Lviv, Ukraine, 8–11 June 2021; Springer: Cham, Switzerland, 2021; Volume 2, pp. 339–348. DOI:10.1007/978-3-030-77823-1_34.
  • [28] Konovalov, D, Radchenko, M, Kobalava, H, Kornienko, V, Maksymov, V, Radchenko, A, Radchenko, R. Research of characteristics of the flow part of an aerothermopressor for gas turbine intercooling air. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2021; 236(4): 634-646, DOI: 10.1177/09576509211057952.
  • [29] Gluesenkamp, K, Hwang, Y, Radermacher, R. High efficiency micro trigeneration systems. Applied Thermal Engineering 2013; 50: 1480e1486.
  • [30] Radchenko A, Mikielewicz D, Radchenko M, Forduy S, Rizun O, Khaldobin V. Innovative combined in-cycle trigeneration technologies for food industries. V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021), E3S Web of Conferences 2021; 323: 00029, DOI: 10.1051/e3sconf/202132300029.
  • [31] Radchenko М, Radchenko R, Ostapenko O, Zubarev А, Hrych A. Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration. 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, pp. 240-244, DOI: 10.1109/ICSAI.2018.8599492.
  • [32] Elsenbruch Т. Jenbacher Gas Engines a Variety of Efficient Applications. Bucureşti, October 28, 2010, 73 p.
  • [33] Rocha, M, Andreos, R, Simões-Moreira, JR. Performance tests of two small trigeneration pilot plants. Appl. Therm. Eng. 2012; 41: 84–91, DOI: 10.1016/j.applthermaleng.2011.12.007.
  • [34] Radchenko, A, Radchenko, M, Koshlak, H, Radchenko, R, Forduy, S. Enhancing the efficiency of integrated energy system by redistribution of heat based of monitoring data. Energies 2022; 15: 8774, DOI: 10.3390/en15228774.
  • [35] Khliyeva, O, Shestopalov, K, Ierin, V, Zhelezny, V, Chen, G, Gao, N. Environmental and energy comparative analysis of expediency of heat-driven and electrically-driven refrigerators for air conditioning application. Applied Thermal Engineering Part B 2022; 219: 119533. DOI: 10.1016/j.applthermaleng.2022.119533.
  • [36] Radchenko R, Tsoy A, Forduy S, Anatoliy Z, Kalinichenko I. Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030084, DOI:10.1063/5.0026788.
  • [37] Radchenko, NI. On reducing the size of liquid separators for injector circulation plate freezers. International Journal of Refrigeration 1985; 8(5): 267–269.
  • [38] Yu, Z, Løvås, T, Konovalov, D, Trushliakov, E, Radchenko, M, Kobalava, H, Radchenko, R, Radchenko, A. Investigation of thermopressor with incomplete evaporation for gas turbine intercooling systems. Energies 2023; 16: 20, DOI: 10.3390/en16010020.
  • [39] Konovalov D, Trushliakov E, Radchenko M, Kobalava H, Maksymov V. Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation., In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 520–529, DOI: 10.1007/978-3-030-40724-7_53.
  • [40] Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Archives of Thermodynamics 2004, 25(4): 3−19.
  • [41] Radchenko N, Trushliakov E, Tsoy A, Shchesiuk O. Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030074, DOI: 10.1063/5.0026790.
  • [42] Radchenko A, Radchenko N, Tsoy A, Portnoi B, Kantor S. Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030071, DOI: 10.1063/5.0026787.
  • [43] Radchenko, A, Radchenko, M, Mikielewicz, D, Pavlenko, A, Radchenko, R, Forduy, S. Energy saving in trigeneration plant for food industries. Energies 2022; 15: 1163, DOI:10.3390/en15031163.
  • [44] Konovalov D, Kobalava H, Radchenko M, Scurtu IC, Radchenko R. Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. In: TE-RE-RD 2020, E3S Web of Conferences, vol. 180, p. 01012 (2020), DOI:10.1051/e3sconf/202018001012.
  • [45] Radchenko, M, Radchenko, A, Mikielewicz, D, Radchenko, R, Andreev, A. A novel degree-hour method for rational design loading. Proc. Inst. Mech. Eng. Part A: Journal of Power and Energy 2023; 237(3): 570-579, DOI: 10.1177/09576509221135659.
  • [46] Radchenko M, Mikielewicz D, Andreev A, Vanyeyev S, Savenkov O. Efficient Ship Engine Cyclic Air Cooling by Turboexpander Chiller for Tropical Climatic Conditions. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Lecture Notes in Networks and Systems, Proceedings of the Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering, ICTM 2020, Kharkiv, Ukraine, 28–29 October 2021; Cham, Switzerland: Springer, 2021; 188, pp. 498–507.
  • [47] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, AM, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation–Part 1: General approaches and criteria. Energies 2023; 16: 1381, DOI:10.3390/en16031381.
  • [48] Radchenko, M, Radchenko, A, Trushliakov, E, Koshlak, H, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation– Part 2: Phenomenological simulation to recuperate refrigeration energy. Energies 2023; 16: 1922, DOI: 10.3390/en16041922.
  • [49] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, A, Radchenko, R. Advanced method of variable refrigerant flow (VRF) system design to forecast on site operation–Part 3: Optimal solutions to minimize sizes. Energies 2023; 16: 2417, DOI: 10.3390/en16052417.
  • [50] Radchenko A, Mikielewicz D, Forduy S, Radchenko M, Zubarev A. Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Integrated Computer Technologies in Mechanical Engineering (ICTM 2019), Advances in Intelligent Systems and Computing (2020): Springer, Cham, 1113, pp. 361–370, DOI: 10.1007/978-3-030-37618-5_31.
  • [51] Yu, Z, Shevchenko, S, Radchenko, M, Shevchenko, O, Radchenko, A. Methodology of Designing Sealing Systems for Highly Loaded Rotary Machines. Sustainability 2022; 14(23): 15828, DOI:10.3390/su142315828.
  • [52] Trushliakov E, Radchenko M, Radchenko A, Kantor S, Zongming Y. Statistical Approach to Improve the Efficiency of Air Conditioning System Performance in Changeable Climatic Conditions. 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, pp. 256–260, DOI: 10.1109/ICSAI.2018.8599434.
  • [53] Radchenko, M, Yang, Z, Pavlenko, A, Radchenko, A, Radchenko, R, Koshlak, H, Bao, G. Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria. Energies 2023; 16: 6105, DOI: 10.3390/en16176105.
  • [54] Radchenko M, Portnoi B, Kantor S, Forduy S, Konovalov D. Rational Thermal Loading the Engine Inlet Air Chilling Complex with Cooling Towers. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes II (InterPartner 2020). Cham, Switzerland: Springer International Publishing, 2021, pp. 724–733.
  • [55] Cardona, E, Piacentino, A. A methodology for sizing a trigeneration plant in mediterranean areas. Applied Thermal Engineering 2003; 23(13): 1665-1680.
  • [56] Trushliakov E, Radchenko M, Bohdal T, Radchenko R, Kantor S. An innovative air conditioning system for changeable heat loads. In: Tonkonogyi V. et al. (eds.) Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering. Cham, Switzerland: Springer International Publishing, 2020, pp. 616–625, DOI: 10.1007/978-3-030-40724-7_63.
  • [57] Kurt, E, Demirci, M, Şahin, HM. Numerical analyses of the concentrated solar receiver pipes with superheated steam. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2022; 236(5):893-910, DOI:10.1177/09576509221074524.
  • [58] Radchenko A, Radchenko N, Tsoy A, Portnoi B, Kantor S. Increasing the Efficiency of Gas Turbine Inlet Air Cooling in Actual Climatic Conditions of Kazakhstan and Ukraine. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; 2285: 030071, DOI:10.1063/5.0026787.
  • [59] Tarasova, V, Kuznetsov, M, Kharlampidi, D, Kostikov, A. Development of a vacuum-evaporative thermotransformer for the cooling system at a nuclear power plant. East.-Eur. J. Enterp. Technol. 2019; 4: 45–56, DOI: 10.15587/1729-4061.2019.175679.
  • [60] Shubenko, A, Babak, M, Senetskyi, O, Tarasova, V, Goloshchapov, V, Senetska, D. Economic assessment of the modernization perspectives of a steam turbine power unit to the ultra-supercritical operation conditions. Int. J. Energy Res. 2022; 46, 23530–7, DOI:10.1002/er.8650.
  • [61] Ierin, V, Chen, G, Volovyk, O, Shestopalov, K. Hybrid two-stage CO2 transcritical mechanical compression – ejector cooling cycle: Thermodynamic analysis and optimization. Int. J. Refrig. 2021; 132: 45–55, DOI: 10.1016/j. ijrefrig.2021.09.012.
Year 2024, Volume: 8 Issue: 1, 27 - 39, 31.03.2024
https://doi.org/10.30521/jes.1314441

Abstract

References

  • [1] Kornienko, V, Radchenko, M, Radchenko, A, Koshlak, H, Radchenko, R. Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers. Energies 2023, 16, 6743, DOI: 10.3390/en16 186743.
  • [2] Kornienko V, Radchenko R, Stachel A, Andreev A, Pyrysunko M. Correlations for Pollution on Condensing Surfaces of Exhaust Gas Boilers with Water-fuel Emulsion Combustion. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 530–539, DOI: 10.1007/978-3-030-40724-7_54.
  • [3] Radchenko, M, Yang, Z, Pavlenko, A, Radchenko, A, Radchenko, R, Koshlak, H, Bao, G. Increasing the efficiency of turbine inlet air cooling in climatic conditions of China through rational designing—Part 1: A case study for subtropical climate: general approaches and criteria. Energies 2023; 16: 6105, DOI: 10.3390/en16176105.
  • [4] Serbin, S, Radchenko, M, Pavlenko, A, Burunsuz, K, Radchenko, A, Chen, D. Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures. Energies 2023; 16(9): 3618, DOI: 10.3390/en16093618.
  • [5] Zhu, P, Yao, J, Qian, C, Yang, F, Porpatham, E, Zhang, Z, Wu, Z. High-efficiency conversion of natural gas fuel to power by an integrated system of SOFC, HCCI engine, and waste heat recovery: Thermodynamic and thermo-economic analyses. Fuel 2020, DOI: 10.1016/j.fuel.2020.117883.
  • [6] Radchenko M, Radchenko R, Kornienko V, Pyrysunko M. Semi-Empirical Correlations of Pollution Processes on the Condensation Surfaces of Exhaust Gas Boilers with Water-Fuel Emulsion Combustion. In: Ivanov V, Pavlenko I, Liaposhchenko O, Machado J, Edl M. (eds) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (LNME). Cham, Switzerland: Springer, 2020, pp.853-862, DOI: 10.1007/978-3-030-22365-6_85.
  • [7] Radchenko A, Radchenko M, Konovalov A, Zubarev A. Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. HTRSE-2018, 6 p. E3S Web of Conferences 70, 03011 (2018), HTRSE-2018, DOI: 10.1051/e3sconf/20187003011.
  • [8] Radchenko M, Radchenko A, Mikielewicz D, Kosowski K, Kantor S, Kalinichenko I. Gas turbine intake air hybrid cooling systems and their rational designing. In: V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021). E3S Web of Conferences 2021; 323. 00030, DOI: 10.1051/e3sconf/202132300030.
  • [9] Radchenko, A, Scurtu, I-C, Radchenko, M, Forduy, S, Zubarev, A. Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Thermal Science, Part A 2022; 26(1): 185–194, DOI:10.2298/TSCI200711344R.
  • [10] Forduy S, Radchenko A, Kuczynski W, Zubarev A, Konovalov D. Enhancing the Fuel Efficiency of Gas Engines in Integrated Energy System by Chilling Cyclic Air. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 500–509, DOI: 10.1007/978-3-030-40724-7_51.
  • [11] Freschi, F, Giaccone, L, Lazzeroni, P, Repetto, M. Economic and environmental analysis of a trigeneration system for food-industry: A case study. Appl. Energy 2013; 107: 157–172, DOI: 10.1016/j.apenergy.2013.02.037.
  • [12] Marques, RP, Hacon, D, Tessarollo, A, Parise, JAR. Thermodynamic analysis of trigeneration systems taking into account refrigeration, heating and electricity load demands. Energy Build. 2010; 42, 2323–2330, DOI:10.1016/j.enbuild.2010.07.026.
  • [13] Konovalov D, Kobalava H, Radchenko M, Scurtu I-C, Sviridov V: Determination of the Evaporation Chamber Optimal Length of a Low-Flow Aerothermopressor for Gas Turbines. In: Tonkonogyi, V. et al. (eds.) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering, Cham, Switzerland: Springer, 2021, pp. 654-663.
  • [14] Konovalov, D, Tolstorebrov, I, Eikevik, TM, Kobalava, H, Radchenko, M, Hafner, A, Radchenko, A. Recent Developments in Cooling Systems and Cooling Management for Electric Motors. Energies 2023; 16: 7006, DOI: 10.3390/en16197006.
  • [15] Yang, Z, Radchenko, M. Radchenko, A, Mikielewicz, D, Radchenko, R. Gas turbine intake air hybrid cooling systems and a new approach to their rational designing. Energies 2022; 15: 1474, DOI:10.3390/en15041474.
  • [16] Kornienko, V, Radchenko, R, Radchenko, M, Radchenko, A, Pavlenko, A, Konovalov, D. Cooling cyclic air of marine engine with water-fuel emulsion combustion by exhaust heat recovery chiller. Energies 2022; 15: 248, DOI:10.3390/en15010248.
  • [17] Kornienko V, Radchenko R, Mikielewicz D, Pyrysunko M, Andreev A. Improvement of Characteristics of Water-fuel Rotary Cup Atomizer in a Boiler. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes II (InterPartner-2020), Odessa, Ukraine, 10–13 September 2020. Cham, Switzerland: Springer, 2021, pp. 664–674, DOI:10.1007/978-3-030-68014-5_64.
  • [18] Kruzel, M, Bohdal, T, Dutkowski, K, Radchenko, M. The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger. Energies 2022; 15: 5142, DOI: 10.3390/en15145142.
  • [19] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R. Research of exhaust gas boiler heat exchange surfaces with reduced corrosion when water-fuel emulsion combustion. Sustainability 2022: 14: 11927, DOI: 10.3390/su141911927.
  • [20] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R, Pavlenko, A. Capture of pollutants from exhaust gases by low-temperature heating surfaces. Energies 2022; 15(1): 120, DOI:10.3390/EN15010120.
  • [21] Yang, Z, Korobko, V, Radchenko, M, Radchenko, R. Improving thermoacoustic low temperature heat recovery systems. Sustainability 2022; 14: 12306, DOI: 10.3390/su141912306.
  • [22] Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Archives of Thermodynamics 2004; 25(4): 3–18.
  • [23] Yang, Z, Radchenko, R, Radchenko, M, Radchenko, A, Kornienko, V. Cooling potential of ship engine intake air cooling and its realization on the route line. Sustainability 2022; 14: 15058, DOI:10.3390/su142215058.
  • [24] Radchenko A, Radchenko M, Trushliakov E, Kantor S, Tkachenko V. Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, pp. 1294–1298, DOI:10.1109/ICSAI.2018.8599355.
  • [25] Yang, Z, Konovalov, D, Radchenko, M, Radchenko, R, Kobalava, H, Radchenko, A, Kornienko, V. Analysis of efficiency of thermopressor application for internal combustion engine. Energies 2022; 15: 2250, DOI:10.3390/en15062250.
  • [26] Radchenko N, Tsoy A, Mikielewicz D, Kantor S, Tkachenko V. Improving the efficiency of railway conditioners in actual climatic conditions of operation. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030072, DOI:10.1063/5.0026789.
  • [27] Kornienko V, Radchenko R, Bohdal T, Radchenko M, Andreev A. Thermal Characteristics of the Wet Pollution Layer on Condensing Heating Surfaces of Exhaust Gas Boilers. In: Ivanov V, Pavlenko I, Liaposhchenko O, Machado J, Edl M, editors. Lecture Notes in Mechanical Engineering, Advances in Design, Simulation and Manufacturing IV, Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2021, Lviv, Ukraine, 8–11 June 2021; Springer: Cham, Switzerland, 2021; Volume 2, pp. 339–348. DOI:10.1007/978-3-030-77823-1_34.
  • [28] Konovalov, D, Radchenko, M, Kobalava, H, Kornienko, V, Maksymov, V, Radchenko, A, Radchenko, R. Research of characteristics of the flow part of an aerothermopressor for gas turbine intercooling air. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2021; 236(4): 634-646, DOI: 10.1177/09576509211057952.
  • [29] Gluesenkamp, K, Hwang, Y, Radermacher, R. High efficiency micro trigeneration systems. Applied Thermal Engineering 2013; 50: 1480e1486.
  • [30] Radchenko A, Mikielewicz D, Radchenko M, Forduy S, Rizun O, Khaldobin V. Innovative combined in-cycle trigeneration technologies for food industries. V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021), E3S Web of Conferences 2021; 323: 00029, DOI: 10.1051/e3sconf/202132300029.
  • [31] Radchenko М, Radchenko R, Ostapenko O, Zubarev А, Hrych A. Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration. 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, pp. 240-244, DOI: 10.1109/ICSAI.2018.8599492.
  • [32] Elsenbruch Т. Jenbacher Gas Engines a Variety of Efficient Applications. Bucureşti, October 28, 2010, 73 p.
  • [33] Rocha, M, Andreos, R, Simões-Moreira, JR. Performance tests of two small trigeneration pilot plants. Appl. Therm. Eng. 2012; 41: 84–91, DOI: 10.1016/j.applthermaleng.2011.12.007.
  • [34] Radchenko, A, Radchenko, M, Koshlak, H, Radchenko, R, Forduy, S. Enhancing the efficiency of integrated energy system by redistribution of heat based of monitoring data. Energies 2022; 15: 8774, DOI: 10.3390/en15228774.
  • [35] Khliyeva, O, Shestopalov, K, Ierin, V, Zhelezny, V, Chen, G, Gao, N. Environmental and energy comparative analysis of expediency of heat-driven and electrically-driven refrigerators for air conditioning application. Applied Thermal Engineering Part B 2022; 219: 119533. DOI: 10.1016/j.applthermaleng.2022.119533.
  • [36] Radchenko R, Tsoy A, Forduy S, Anatoliy Z, Kalinichenko I. Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030084, DOI:10.1063/5.0026788.
  • [37] Radchenko, NI. On reducing the size of liquid separators for injector circulation plate freezers. International Journal of Refrigeration 1985; 8(5): 267–269.
  • [38] Yu, Z, Løvås, T, Konovalov, D, Trushliakov, E, Radchenko, M, Kobalava, H, Radchenko, R, Radchenko, A. Investigation of thermopressor with incomplete evaporation for gas turbine intercooling systems. Energies 2023; 16: 20, DOI: 10.3390/en16010020.
  • [39] Konovalov D, Trushliakov E, Radchenko M, Kobalava H, Maksymov V. Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation., In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 520–529, DOI: 10.1007/978-3-030-40724-7_53.
  • [40] Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Archives of Thermodynamics 2004, 25(4): 3−19.
  • [41] Radchenko N, Trushliakov E, Tsoy A, Shchesiuk O. Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030074, DOI: 10.1063/5.0026790.
  • [42] Radchenko A, Radchenko N, Tsoy A, Portnoi B, Kantor S. Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030071, DOI: 10.1063/5.0026787.
  • [43] Radchenko, A, Radchenko, M, Mikielewicz, D, Pavlenko, A, Radchenko, R, Forduy, S. Energy saving in trigeneration plant for food industries. Energies 2022; 15: 1163, DOI:10.3390/en15031163.
  • [44] Konovalov D, Kobalava H, Radchenko M, Scurtu IC, Radchenko R. Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. In: TE-RE-RD 2020, E3S Web of Conferences, vol. 180, p. 01012 (2020), DOI:10.1051/e3sconf/202018001012.
  • [45] Radchenko, M, Radchenko, A, Mikielewicz, D, Radchenko, R, Andreev, A. A novel degree-hour method for rational design loading. Proc. Inst. Mech. Eng. Part A: Journal of Power and Energy 2023; 237(3): 570-579, DOI: 10.1177/09576509221135659.
  • [46] Radchenko M, Mikielewicz D, Andreev A, Vanyeyev S, Savenkov O. Efficient Ship Engine Cyclic Air Cooling by Turboexpander Chiller for Tropical Climatic Conditions. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Lecture Notes in Networks and Systems, Proceedings of the Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering, ICTM 2020, Kharkiv, Ukraine, 28–29 October 2021; Cham, Switzerland: Springer, 2021; 188, pp. 498–507.
  • [47] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, AM, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation–Part 1: General approaches and criteria. Energies 2023; 16: 1381, DOI:10.3390/en16031381.
  • [48] Radchenko, M, Radchenko, A, Trushliakov, E, Koshlak, H, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation– Part 2: Phenomenological simulation to recuperate refrigeration energy. Energies 2023; 16: 1922, DOI: 10.3390/en16041922.
  • [49] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, A, Radchenko, R. Advanced method of variable refrigerant flow (VRF) system design to forecast on site operation–Part 3: Optimal solutions to minimize sizes. Energies 2023; 16: 2417, DOI: 10.3390/en16052417.
  • [50] Radchenko A, Mikielewicz D, Forduy S, Radchenko M, Zubarev A. Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Integrated Computer Technologies in Mechanical Engineering (ICTM 2019), Advances in Intelligent Systems and Computing (2020): Springer, Cham, 1113, pp. 361–370, DOI: 10.1007/978-3-030-37618-5_31.
  • [51] Yu, Z, Shevchenko, S, Radchenko, M, Shevchenko, O, Radchenko, A. Methodology of Designing Sealing Systems for Highly Loaded Rotary Machines. Sustainability 2022; 14(23): 15828, DOI:10.3390/su142315828.
  • [52] Trushliakov E, Radchenko M, Radchenko A, Kantor S, Zongming Y. Statistical Approach to Improve the Efficiency of Air Conditioning System Performance in Changeable Climatic Conditions. 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, pp. 256–260, DOI: 10.1109/ICSAI.2018.8599434.
  • [53] Radchenko, M, Yang, Z, Pavlenko, A, Radchenko, A, Radchenko, R, Koshlak, H, Bao, G. Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria. Energies 2023; 16: 6105, DOI: 10.3390/en16176105.
  • [54] Radchenko M, Portnoi B, Kantor S, Forduy S, Konovalov D. Rational Thermal Loading the Engine Inlet Air Chilling Complex with Cooling Towers. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes II (InterPartner 2020). Cham, Switzerland: Springer International Publishing, 2021, pp. 724–733.
  • [55] Cardona, E, Piacentino, A. A methodology for sizing a trigeneration plant in mediterranean areas. Applied Thermal Engineering 2003; 23(13): 1665-1680.
  • [56] Trushliakov E, Radchenko M, Bohdal T, Radchenko R, Kantor S. An innovative air conditioning system for changeable heat loads. In: Tonkonogyi V. et al. (eds.) Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering. Cham, Switzerland: Springer International Publishing, 2020, pp. 616–625, DOI: 10.1007/978-3-030-40724-7_63.
  • [57] Kurt, E, Demirci, M, Şahin, HM. Numerical analyses of the concentrated solar receiver pipes with superheated steam. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2022; 236(5):893-910, DOI:10.1177/09576509221074524.
  • [58] Radchenko A, Radchenko N, Tsoy A, Portnoi B, Kantor S. Increasing the Efficiency of Gas Turbine Inlet Air Cooling in Actual Climatic Conditions of Kazakhstan and Ukraine. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; 2285: 030071, DOI:10.1063/5.0026787.
  • [59] Tarasova, V, Kuznetsov, M, Kharlampidi, D, Kostikov, A. Development of a vacuum-evaporative thermotransformer for the cooling system at a nuclear power plant. East.-Eur. J. Enterp. Technol. 2019; 4: 45–56, DOI: 10.15587/1729-4061.2019.175679.
  • [60] Shubenko, A, Babak, M, Senetskyi, O, Tarasova, V, Goloshchapov, V, Senetska, D. Economic assessment of the modernization perspectives of a steam turbine power unit to the ultra-supercritical operation conditions. Int. J. Energy Res. 2022; 46, 23530–7, DOI:10.1002/er.8650.
  • [61] Ierin, V, Chen, G, Volovyk, O, Shestopalov, K. Hybrid two-stage CO2 transcritical mechanical compression – ejector cooling cycle: Thermodynamic analysis and optimization. Int. J. Refrig. 2021; 132: 45–55, DOI: 10.1016/j. ijrefrig.2021.09.012.
There are 61 citations in total.

Details

Primary Language English
Subjects Energy, Thermal Power Systems, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Andrii Radchenko 0000-0002-8735-9205

Mykola Radchenko 0000-0002-1596-6508

Serhiy Forduy 0000-0003-0110-4090

Oleksandr Rizun 0000-0002-1625-959X

Zielikov Oleksii 0000-0001-8051-6063

Viktor Khaldobin 0000-0002-0498-4401

Victor Sichko 0000-0002-5231-9975

Early Pub Date March 13, 2024
Publication Date March 31, 2024
Acceptance Date January 19, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

Vancouver Radchenko A, Radchenko M, Forduy S, Rizun O, Oleksii Z, Khaldobin V, Sichko V. Innovative approaches and modified criteria to improve a thermodynamic efficiency of trigeneration plants. JES. 2024;8(1):27-39.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.