Research Article
BibTex RIS Cite

Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation

Year 2019, Volume: 16 Issue: 1, 103 - 111, 25.01.2019
https://doi.org/10.33462/jotaf.472456

Abstract

The present research was conducted to evaluate the M1, M2, M3 and M4 bread wheat (Triticum aestivum L.) mutant populations for yield and
yield related traits during 2010-11, 2011-12, 2012-13 and 2013-14 at Tekirdağ ecological conditions. Three wheat genotypes were treated with
different levels of gamma rays (100 Gy, 200 Gy, 300 Gy, 400 Gy, 500 Gy and Control). The mutated plants were evaluated along with parental
lines (control) for grain yield (GY) and its contributing traits such as plant height (PH), spike length (SL), the number of spikelets per spike
(NSPS), the number of grains per spike (NGPS), grain weight per spike (GWPS), harvest index (HI) and thousand grain weight (TGW) under
field conditions. The results obtained from the present study showed that the genotypes significantly and variably differed in their response
for various traits at different gamma rays doses. The traits such as PH, TGW and grain yield (GY) showed generally reduction with higher
gamma irradiation doses as compared to low doses, while mutagenic treatments shifted the mean values mostly towards the negative direction
in the other yield components. But, the negative or positive shifts were not unidirectional or equally effective for all the traits. These findings
suggested that the variability could be induced through the use of gamma irradiations in bread wheat. Some of the traits showed improvement
due to the induced mutations could be used in future wheat breeding programs. The differences in mean values and the nature of variability
observed in M2 indicated a possible preference of selection in M3 generation.

References

  • Ahloowalia, B.S. and M. Maluszynski, 2001. Induced mutations - A new paradigm in plant. Euphytica. 118 (2): 167-173.
  • Ahloowalia, B.S., M. Maluszynski and K. Nichterlein, 2004. Global impact of mutation-derived varieties. Euphytica. 135: 187-204.
  • Ahmad, I., F. Mohammad, N.U. Khan, K. Maqbool, A. Naz, S. Shahee and K. Ali, 2011. Comparative study of morphological traits in wheat and triticale. Pakistan Journal of Botany. 1:165-170
  • Albajes, R., C. Cantero-Martínez, T. Capell, P. Christou, A. Farre, J. Galceran, A.F. López-Gatius, S. Marin, O. Martın-Belloso, M.J. Motilva, C. Nogareda, J. Peman, J. Puy, J. Recasens, I. Romagosa, M.P. Romero, V. Sanchis, R. Savin, G.A. Slafer, R. Soliva-Fortuny, I. Vi˜nas and J. Voltas, 2013. Building bridges: an integratedstrategy for sustainable food production throughout the value chain. Mol. Breed. 32: 743–770.
  • Al-Naggar, A.M.M., M.M. Atta, A.M. Shaheen and K.F. Al-Azab, 2007. Gamma rays and EMS induced drought tolerant mutants in bread wheat. Egypt. J. Plant Breed. 11 (3): 135-165.
  • Ayub, M., S. Rehmman and A.D. Khan, 1989. The response of different wheat varieties to gamma irradiation in relation to yield. Journalof Gomal University Research. 9: 77-84.
  • Bano, S., Z.A. Soomro, A.A. Kaleri, R. Akram, S. Nazeer, A.L. Laghari, I.A. Chandio, R. Keerio and N.A. Wahocho, 2017. Evaluation of M2 wheat (Triticum aestivum L.) mutants for yield and its contributing traits. Journal of Basic & Applied Sciences. 13: 359-362.
  • Başer, İ., O. Bilgin, E. Sara ve Ö. Yorgancılar, 1997. Uzun boylu makarnalık buğday çeşitlerine uygulanan farklı dozdaki gamma ışınlarının bitki boyu, tane verimi ve bazı tarımsal özellikler üzerine etkisi, II. Tarla Bitkileri Kongresi, Samsun, 25-27 Eylül, 26-31.
  • Borojevic, K. and S. Borojevic, 1972. Mutation breeding in wheat. In “Induced Mutations and Plant Improvement”. Proc. Panel Meeting, Buenos Aires, IAET/FAO, Vienna, pp. 237-249.
  • Braun, H.-J., G. Atlin and T. Payne, 2010. Multi-location testing as a tool to identify plantresponse to global climate change. In: Reynolds, M.P. (Ed.), Climate Change andCrop Production. CABI, Wallingford, UK, pp. 115–138.
  • Brock, R.D., 1965. Induced mutations affecting quantitative characters. In the use of induced mutations in plant breeding. Radiation Botany (Suppl.). 5: 451-464.
  • Calderini, D.F., M.F. Dreccer and G.A. Slafer, 1995. Genetic improvement in wheat yields and associated traits. A re-examination of previous results and the latest trends. Plant Breed 114:108–112
  • Chakraborty, N.R. and A. Paul, 2013. Role of Induced Mutations for Enhancing Nutrition Quality and Production of Food. International Journal of Bio-resource and Stress Management. 4(1): 091-096.
  • Chand, R., 2009. Challenges to ensuring food security through wheat. CAB Rev.: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 4.
  • Connor, D.J. and M.I. Minguez, 2012. Evolution nor revolution of farming systems will best feed and green the world. Global Food Secur. 1: 106-113.
  • Curtis, B.C., 2002. Wheat in the world. In B. C. Curtis, S. Rajaram, & H. Gomez Macpherson (Eds.), Bread wheat improvement and production (p. 544). Rome.
  • Farag, I.A.A. and A.A.H. El-Khawaga, 2013. Influence of gamma irradiation and nitrogen fertilizer levels on Gemmeiza-9 wheat cultivar. Yield and its attributes. Arab Journal of Nuclear Science and Applications. 46 (2): 363-371.
  • Fischer, R.A., 2011. Wheat physiology: a review of recent developments. Crop Pasture Sci. 62: 95–114.
  • Frey, K.J., 1969. Release of mutagen-induced genetic variability in oats by outcrossing. Japan J. Genet. 44: 396-403.
  • Gaul, H., 1977. Mutagen effects in first generation after seed treatment. In: Manual of Mutation Breeding. Tech. Report Series No. 119. IAEI, Vienna, Austria, pp. 87-96.
  • Githinji, G.G. and R.K. Birithia, 2015. Effects of induced mutagenesis and single crossing on agronomic traits of wheat (Triticum Aestivum L.). Journal of Agriculture and Life Science. 2(2): 31-37.
  • Gustavo, A.S. and F.H. Andrade, 1989. Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Research. 21: 289-296.
  • Jain, S.M., 2006. Mutation-assisted breeding in ornamental plant improvement. Acta Hort. 714: 85-98.
  • Khanna, V.K., G.C. Bajpai and S.M. Hussain, 1986. Effect of gamma radiation on germination and mature plant characters of wheat and triticale. Haryana Agricultural University Journal of Research. 16 (1): 42-50.
  • Louali, Y., N. Belbekri, R. Bouldjej, N. Ykhlef and A. Djekoun, 2015. Effect of gamma irradiation on morphological, biochemical, physiological character and cytological studies, of durum wheat mutants. Int. J. Advanced Res. 3(10): 246-256.
  • Mohammad, F., S.M.A. Shah, S.M. Swati, T. Shehzad and S. Iqbal, 2004. Genotypic variability for yield and morphological traits in bread wheat. Sarhad J. Agric. 20(1): 67-71.
  • Mohammad, M.R. and B. Abdollah, 2011. Influence of gamma irradiation on some physiological characteristics and grain protein in wheat (Triticum aestivum L.). World Appl. Sci. J. 15: 654-659.
  • Passioura, J. B., 1977. Grain yield, harvest index and water use of wheat. The Journal of the Australian Institute Agricultural Science. 43: 117–121.
  • Rachovska, G. and D. Dimova, 2000. Effect of sodium azide and gamma rays on M1 quantitative characteristics of the productivity and their connection with M2 mutation changes in winter common wheat. Rasteniev dni Nauki. 37(7): 413-419.
  • Sakin, M.A. and A. Yildirim, 2004. Induced mutations for yield and its components in durum wheat (Triticum durum Desf.). Food, Agric. and Environ. 2(1): 285-290.
  • Sakin, M.A., S. Gokmen and A. Yildirim, 2005. Investigation of mutants induced in durum wheat (Triticum durum Desf.) for yield and some agronomic and quality traits. Asian Journal of Plant Sciences. 4(3): 279-283.
  • Scarascia-Mugnozza, G.I., 1964. Induced mutations in breeding for lodging resistance. In: Use of induced mutations in plant breeding. Rad. Bot. 5: 537-558.
  • Shubhra, S., R.M. Marker, Y.B. Abrar and K. Akhilesh, 2013. Induced mutation through gamma irradiation at different doses to create genetic variability and study the improvement in yield and yield attributes of genotype HD 2867. Trends in Bio-Sciences. 6(1): 65-67.
  • Sial, M.A., M.A. Arain, M.U. Dahot, G.S. Markhand, K.A. Laghari, S.M. Mangrio, A.A. Mirbahar and M.H. Naqvi, 2010. Effect of sowing dates on yield and yield components of bread wheat. Pak. J. Bot. 42(1): 269-277.
  • Siddiqui, K.A., M.A. Rajput and K.H. Tahir, 1979. Inter relationships of straw architecture with grain yield of wheat mutants. Genet. Agraria. 33: 221-330.Singh, I.D. and N.C. Stoskopf, 1971. Harvest index in cereals. Agron. J. 63: 224-226.
  • Slade, A.J., S.I. Fuerstenberg, D. Loeffler, M.N. Steine and D. Facciotti, 2005. A reverse genetic, nontransgenic approach to wheat crop improvement by tilling. Nat. Biotechnol. 23: 75-81.
  • Sobieh, S.S. and A.I. Ragab, 2000. Gamma rays induced variability in bread wheat (Triticum aestivum L.). Seventh Conference of Arab J. of Nuclear Sci. and Applications 6-10 February, Cairo, Egypt, (1,2,3) 1341.
  • Sobieh, S.S., 2002. Induction of short culm mutants for bread wheat by using gamma rays. Arab Journal of Nuclear Sciences and Applications. 35(1): 309-317.
  • Steel, R.G.D. and J.H. Torrie, 1980. Principle and procedures of statistics: A Biometrical Approach. McGraw Hill Book Co. Inc. New York. pp: 232-249.
  • Suzuki, T., M. Eiguchi, T. Kumamaru, H. Satoh, H. Matsusaka, K. Moriguchi, 2008. MNU-induced mutant pools and high performance tilling enable finding of any gene mutation in rice. Mol. Genet. Genomics. 279: 213-223.
  • van Harten, A.M., 1998. Mutation Breeding: Theory and practical application. Cambridge University Press. Cambridge.

Ekmeklik Buğday (Triticum aestivum L.) Genotiplerinde Tane Verimi ve Verimle İlişkili Özelliklerin Gamma Işını Kullanılarak Mutasyon Islahı ile Geliştirilmesi

Year 2019, Volume: 16 Issue: 1, 103 - 111, 25.01.2019
https://doi.org/10.33462/jotaf.472456

Abstract

Bu araştırma, M1, M2, M3 ve M4 ekmeklik buğday mutant populasyonlarını verim ve verime etkili özellikler bakımından değerlendirmek
için 2010-11, 2011-12, 2012-13 ve 2013-14 yıllarında Tekirdağ ekolojik koşullarında yürütülmüştür. Üç buğday genotipine farklı dozlarda
gamma ışını (Kontrol, 100 Gy, 200 Gy, 300 Gy, 400 Gy ve 500 Gy) uygulanmıştır. Mutant bitkiler anaçları (kontrol) ile birlikte tane verimi
(TV) ve bitki boyu (BB), başak uzunluğu (BAU), başakta başakçık sayısı (BABS), başakta tane sayısı (BATS), başakta tane ağırlığı (BATA),
hasat indeksi (HI) ve bin tane ağırlığı (BTA) gibi verime etkili özellikler bakımından tarla koşullarında değerlendirilmiştir. Çalışmadan elde
edilen sonuçlar, genotiplerin çeşitli özellikler için farklı gamma ışını dozlarına yanıtlarının önemli ve değişken bir şekilde farklı olduğunu
göstermiştir. Bitki boyu, bin tane ağırlığı ve tane verimi gibi özellikler düşük dozlarla karşılaştırıldığında yüksek gamma ışını dozlarında
genellikle azalma gösterirken, mutagen uygulamaları diğer verim unsurlarında ortalama değerleri çoğunlukla negatif yöne doğru kaydırmıştır.
Ancak, negatif ya da pozitif yöndeki kaymalar tüm özellikler için tek yönde ya da eşit derecede etkili olmamıştır. Bu bulgular, buğdayda gamma
ışınları kullanılarak varyabilitenin oluşturulabileceğini göstermiştir. Oluşturulan mutasyonlara bağlı olarak gelişme gösteren bazı özellikler
gelecekte buğday ıslahı çalışmalarında kullanılabilecektir. M2’de gözlenen varyabilite ve ortalama değerlerdeki farklar M3 generasyonunda
seleksiyonun mümkün olabileceğini göstermiştir.

References

  • Ahloowalia, B.S. and M. Maluszynski, 2001. Induced mutations - A new paradigm in plant. Euphytica. 118 (2): 167-173.
  • Ahloowalia, B.S., M. Maluszynski and K. Nichterlein, 2004. Global impact of mutation-derived varieties. Euphytica. 135: 187-204.
  • Ahmad, I., F. Mohammad, N.U. Khan, K. Maqbool, A. Naz, S. Shahee and K. Ali, 2011. Comparative study of morphological traits in wheat and triticale. Pakistan Journal of Botany. 1:165-170
  • Albajes, R., C. Cantero-Martínez, T. Capell, P. Christou, A. Farre, J. Galceran, A.F. López-Gatius, S. Marin, O. Martın-Belloso, M.J. Motilva, C. Nogareda, J. Peman, J. Puy, J. Recasens, I. Romagosa, M.P. Romero, V. Sanchis, R. Savin, G.A. Slafer, R. Soliva-Fortuny, I. Vi˜nas and J. Voltas, 2013. Building bridges: an integratedstrategy for sustainable food production throughout the value chain. Mol. Breed. 32: 743–770.
  • Al-Naggar, A.M.M., M.M. Atta, A.M. Shaheen and K.F. Al-Azab, 2007. Gamma rays and EMS induced drought tolerant mutants in bread wheat. Egypt. J. Plant Breed. 11 (3): 135-165.
  • Ayub, M., S. Rehmman and A.D. Khan, 1989. The response of different wheat varieties to gamma irradiation in relation to yield. Journalof Gomal University Research. 9: 77-84.
  • Bano, S., Z.A. Soomro, A.A. Kaleri, R. Akram, S. Nazeer, A.L. Laghari, I.A. Chandio, R. Keerio and N.A. Wahocho, 2017. Evaluation of M2 wheat (Triticum aestivum L.) mutants for yield and its contributing traits. Journal of Basic & Applied Sciences. 13: 359-362.
  • Başer, İ., O. Bilgin, E. Sara ve Ö. Yorgancılar, 1997. Uzun boylu makarnalık buğday çeşitlerine uygulanan farklı dozdaki gamma ışınlarının bitki boyu, tane verimi ve bazı tarımsal özellikler üzerine etkisi, II. Tarla Bitkileri Kongresi, Samsun, 25-27 Eylül, 26-31.
  • Borojevic, K. and S. Borojevic, 1972. Mutation breeding in wheat. In “Induced Mutations and Plant Improvement”. Proc. Panel Meeting, Buenos Aires, IAET/FAO, Vienna, pp. 237-249.
  • Braun, H.-J., G. Atlin and T. Payne, 2010. Multi-location testing as a tool to identify plantresponse to global climate change. In: Reynolds, M.P. (Ed.), Climate Change andCrop Production. CABI, Wallingford, UK, pp. 115–138.
  • Brock, R.D., 1965. Induced mutations affecting quantitative characters. In the use of induced mutations in plant breeding. Radiation Botany (Suppl.). 5: 451-464.
  • Calderini, D.F., M.F. Dreccer and G.A. Slafer, 1995. Genetic improvement in wheat yields and associated traits. A re-examination of previous results and the latest trends. Plant Breed 114:108–112
  • Chakraborty, N.R. and A. Paul, 2013. Role of Induced Mutations for Enhancing Nutrition Quality and Production of Food. International Journal of Bio-resource and Stress Management. 4(1): 091-096.
  • Chand, R., 2009. Challenges to ensuring food security through wheat. CAB Rev.: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 4.
  • Connor, D.J. and M.I. Minguez, 2012. Evolution nor revolution of farming systems will best feed and green the world. Global Food Secur. 1: 106-113.
  • Curtis, B.C., 2002. Wheat in the world. In B. C. Curtis, S. Rajaram, & H. Gomez Macpherson (Eds.), Bread wheat improvement and production (p. 544). Rome.
  • Farag, I.A.A. and A.A.H. El-Khawaga, 2013. Influence of gamma irradiation and nitrogen fertilizer levels on Gemmeiza-9 wheat cultivar. Yield and its attributes. Arab Journal of Nuclear Science and Applications. 46 (2): 363-371.
  • Fischer, R.A., 2011. Wheat physiology: a review of recent developments. Crop Pasture Sci. 62: 95–114.
  • Frey, K.J., 1969. Release of mutagen-induced genetic variability in oats by outcrossing. Japan J. Genet. 44: 396-403.
  • Gaul, H., 1977. Mutagen effects in first generation after seed treatment. In: Manual of Mutation Breeding. Tech. Report Series No. 119. IAEI, Vienna, Austria, pp. 87-96.
  • Githinji, G.G. and R.K. Birithia, 2015. Effects of induced mutagenesis and single crossing on agronomic traits of wheat (Triticum Aestivum L.). Journal of Agriculture and Life Science. 2(2): 31-37.
  • Gustavo, A.S. and F.H. Andrade, 1989. Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Research. 21: 289-296.
  • Jain, S.M., 2006. Mutation-assisted breeding in ornamental plant improvement. Acta Hort. 714: 85-98.
  • Khanna, V.K., G.C. Bajpai and S.M. Hussain, 1986. Effect of gamma radiation on germination and mature plant characters of wheat and triticale. Haryana Agricultural University Journal of Research. 16 (1): 42-50.
  • Louali, Y., N. Belbekri, R. Bouldjej, N. Ykhlef and A. Djekoun, 2015. Effect of gamma irradiation on morphological, biochemical, physiological character and cytological studies, of durum wheat mutants. Int. J. Advanced Res. 3(10): 246-256.
  • Mohammad, F., S.M.A. Shah, S.M. Swati, T. Shehzad and S. Iqbal, 2004. Genotypic variability for yield and morphological traits in bread wheat. Sarhad J. Agric. 20(1): 67-71.
  • Mohammad, M.R. and B. Abdollah, 2011. Influence of gamma irradiation on some physiological characteristics and grain protein in wheat (Triticum aestivum L.). World Appl. Sci. J. 15: 654-659.
  • Passioura, J. B., 1977. Grain yield, harvest index and water use of wheat. The Journal of the Australian Institute Agricultural Science. 43: 117–121.
  • Rachovska, G. and D. Dimova, 2000. Effect of sodium azide and gamma rays on M1 quantitative characteristics of the productivity and their connection with M2 mutation changes in winter common wheat. Rasteniev dni Nauki. 37(7): 413-419.
  • Sakin, M.A. and A. Yildirim, 2004. Induced mutations for yield and its components in durum wheat (Triticum durum Desf.). Food, Agric. and Environ. 2(1): 285-290.
  • Sakin, M.A., S. Gokmen and A. Yildirim, 2005. Investigation of mutants induced in durum wheat (Triticum durum Desf.) for yield and some agronomic and quality traits. Asian Journal of Plant Sciences. 4(3): 279-283.
  • Scarascia-Mugnozza, G.I., 1964. Induced mutations in breeding for lodging resistance. In: Use of induced mutations in plant breeding. Rad. Bot. 5: 537-558.
  • Shubhra, S., R.M. Marker, Y.B. Abrar and K. Akhilesh, 2013. Induced mutation through gamma irradiation at different doses to create genetic variability and study the improvement in yield and yield attributes of genotype HD 2867. Trends in Bio-Sciences. 6(1): 65-67.
  • Sial, M.A., M.A. Arain, M.U. Dahot, G.S. Markhand, K.A. Laghari, S.M. Mangrio, A.A. Mirbahar and M.H. Naqvi, 2010. Effect of sowing dates on yield and yield components of bread wheat. Pak. J. Bot. 42(1): 269-277.
  • Siddiqui, K.A., M.A. Rajput and K.H. Tahir, 1979. Inter relationships of straw architecture with grain yield of wheat mutants. Genet. Agraria. 33: 221-330.Singh, I.D. and N.C. Stoskopf, 1971. Harvest index in cereals. Agron. J. 63: 224-226.
  • Slade, A.J., S.I. Fuerstenberg, D. Loeffler, M.N. Steine and D. Facciotti, 2005. A reverse genetic, nontransgenic approach to wheat crop improvement by tilling. Nat. Biotechnol. 23: 75-81.
  • Sobieh, S.S. and A.I. Ragab, 2000. Gamma rays induced variability in bread wheat (Triticum aestivum L.). Seventh Conference of Arab J. of Nuclear Sci. and Applications 6-10 February, Cairo, Egypt, (1,2,3) 1341.
  • Sobieh, S.S., 2002. Induction of short culm mutants for bread wheat by using gamma rays. Arab Journal of Nuclear Sciences and Applications. 35(1): 309-317.
  • Steel, R.G.D. and J.H. Torrie, 1980. Principle and procedures of statistics: A Biometrical Approach. McGraw Hill Book Co. Inc. New York. pp: 232-249.
  • Suzuki, T., M. Eiguchi, T. Kumamaru, H. Satoh, H. Matsusaka, K. Moriguchi, 2008. MNU-induced mutant pools and high performance tilling enable finding of any gene mutation in rice. Mol. Genet. Genomics. 279: 213-223.
  • van Harten, A.M., 1998. Mutation Breeding: Theory and practical application. Cambridge University Press. Cambridge.
There are 41 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Alpay Balkan 0000-0002-9203-6144

Oğuz Bilgin

İsmet Başer

Damla Balaban Göçmen This is me

Alp Kayahan Demirkan This is me

Birol Deviren This is me

Publication Date January 25, 2019
Submission Date October 19, 1918
Acceptance Date November 20, 18
Published in Issue Year 2019 Volume: 16 Issue: 1

Cite

APA Balkan, A., Bilgin, O., Başer, İ., Balaban Göçmen, D., et al. (2019). Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation. Tekirdağ Ziraat Fakültesi Dergisi, 16(1), 103-111. https://doi.org/10.33462/jotaf.472456
AMA Balkan A, Bilgin O, Başer İ, Balaban Göçmen D, Demirkan AK, Deviren B. Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation. JOTAF. January 2019;16(1):103-111. doi:10.33462/jotaf.472456
Chicago Balkan, Alpay, Oğuz Bilgin, İsmet Başer, Damla Balaban Göçmen, Alp Kayahan Demirkan, and Birol Deviren. “Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum Aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation”. Tekirdağ Ziraat Fakültesi Dergisi 16, no. 1 (January 2019): 103-11. https://doi.org/10.33462/jotaf.472456.
EndNote Balkan A, Bilgin O, Başer İ, Balaban Göçmen D, Demirkan AK, Deviren B (January 1, 2019) Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation. Tekirdağ Ziraat Fakültesi Dergisi 16 1 103–111.
IEEE A. Balkan, O. Bilgin, İ. Başer, D. Balaban Göçmen, A. K. Demirkan, and B. Deviren, “Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation”, JOTAF, vol. 16, no. 1, pp. 103–111, 2019, doi: 10.33462/jotaf.472456.
ISNAD Balkan, Alpay et al. “Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum Aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation”. Tekirdağ Ziraat Fakültesi Dergisi 16/1 (January 2019), 103-111. https://doi.org/10.33462/jotaf.472456.
JAMA Balkan A, Bilgin O, Başer İ, Balaban Göçmen D, Demirkan AK, Deviren B. Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation. JOTAF. 2019;16:103–111.
MLA Balkan, Alpay et al. “Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum Aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 16, no. 1, 2019, pp. 103-11, doi:10.33462/jotaf.472456.
Vancouver Balkan A, Bilgin O, Başer İ, Balaban Göçmen D, Demirkan AK, Deviren B. Improvement of Grain Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes Through Mutation Breeding Using Gamma Irradiation. JOTAF. 2019;16(1):103-11.