Review
BibTex RIS Cite

Recycling of valuable elements contained in waste lithium ion batteries

Year 2024, Issue: 006, 19 - 36, 30.04.2024

Abstract

Today, fossil fuels that are not renewable are frequently used. Since their use has continued from past years, their reserves have decreased and since they cannot be renewed, renewable and recyclable materials are needed. These renewable and recyclable energy sources are frequently mentioned because they can be used over and over again or are ready for reuse after being used. In this article, Lithium-ion (Li-ion) batteries, which can be recycled, and the recycling stages of these batteries are mentioned since the authors of the article want to work in this field. Lithium-ion batteries (Li-ion) are a type of battery that can be charged and used as an energy storage device. Li-ion batteries are actively used today. The anode material of Li-ion batteries is usually graphite made of carbon. The cathode material is usually metal oxides. The electrolyte material is usually lithium salt in an organic solvent. Lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium manganite (LMO), lithium nickel manganite cobalt oxide (NMC) are Li-ion battery types. Recycling of these types is carried out using pyrometallurgy, hydrometallurgy and mechanical separation methods. In this period when recycling is increasing day by day, this review article on Li-ion batteries is written to help readers in their studies and research.

References

  • [1] A. G. Olabi et al., “Renewable Energy Systems: Comparisons, Challenges And Barriers, Sustainability İndicators, And The Contribution To UN Sustainable Development Goals,” Int. J. Thermofluids, vol. 20, no. October, p. 100498, 2023, doi: 10.1016/j.ijft.2023.100498.
  • [2] T. Z. Ang, M. Salem, M. Kamarol, H. S. Das, M. A. Nazari, and N. Prabaharan, “A Comprehensive Study Of Renewable Energy Sources: Classifications, Challenges And Suggestions.,” Energy Strateg. Rev., vol. 43, no. August, p. 100939, 2022, doi: 10.1016/j.esr.2022.100939.
  • [3] A. A. Kebede, T. Kalogiannis, J. Van Mierlo, and M. Berecibar, “A Comprehensive Review Of Stationary Energy Storage Devices For Large Scale Renewable Energy Sources Grid İntegration.,” Renew. Sustain. Energy Rev., vol. 159, p. 112213, 2022, doi: 10.1016/j.rser.2022.112213.
  • [4] W. F. . Meyers, B. Bell, and J. W. Simmon, “Electric Current-Producing Cell With Anydrous Organic Liquid Electrolyte.,” United States Pat. Off., vol. 28, no. 2, pp. 131–134, 1969.
  • [5] C. L. Batteries and M. Fowler, “Comparative Study of Equivalent Circuit Models Performance,” MDPI Batter., 2021.
  • [6] R. Van Noorden, “The Rechargeable Revolution A Better Battery.,” Nature, vol. 507, pp. 26–28, 2014.
  • [7] R. S. Treptow, “A Practical Application Of Chemical Principles.,” J. Chem. Educ., vol. 80, no. 9, pp. 1015–1020, 2003, doi: 10.1021/ed080p1015.
  • [8] L. E. Asp, M. Johansson, G. Lindbergh, J. Xu, and D. Zenkert, “Structural Battery Composites:,” Funct. Compos. Struct., vol. 1, no. 4, 2019, doi: 10.1088/2631-6331/ab5571.
  • [9] Y. Zhao et al., “A Review on Battery Market Trends, Second-Life Reuse, and Recycling,” Sustain. Chem., vol. 2, no. 1, pp. 167–205, 2021, doi: 10.3390/suschem2010011.
  • [10] L. Wang, B. Chen, J. Ma, G. Cui, and L. Chen, “Reviving Lithium Cobalt Oxide-Based Lithium Secondary Batteries-Toward A Higher Energy Density,” Chem. Soc. Rev., vol. 47, no. 17, pp. 6505–6602, 2018, doi: 10.1039/c8cs00322j.
  • [11] M. J. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, “High Performance Limn2o4 Cathode Materials Grown With Epitaxial Layered Nanostructure For Li-Ion Batteries.,” Nano Lett., vol. 14, no. 2, pp. 993–999, 2014, doi: 10.1021/nl404430e.
  • [12] F. Forte, M. Pietrantonio, S. Pucciarmati, M. Puzone, and D. Fontana, “Lithium İron Phosphate Batteries Recycling: An Assessment Of Current Status.,” Crit. Rev. Environ. Sci. Technol., vol. 51, no. 19, pp. 2232–2259, 2021, doi: 10.1080/10643389.2020.1776053.
  • [13] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium Nickel Nanoparticles Decorated On Functionalized MWCNT For High Precision Non-Enzymatic Glucose Sensing,” Mater. Chem. Phys., vol. 250, p. 123042, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123042.
  • [14] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric Sensor Based on Biogenic Nanomaterials for High Sensitive Detection of Hydrogen Peroxide and Multi Metals,” Chemosphere, vol. 339, p. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [15] K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose Nano Biosensor With Nonenzymatic Excellent Sensitivity Prepared With Nickel Cobalt Nanocomposites On F-MWCNT,” Chemosphere, vol. 291, p. 132720, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • [16] A. Şavk et al., “Highly Monodisperse Pd-Ni Nanoparticles Supported On Rgo As A Rapid, Sensitive, Reusable And Selective Enzyme-Free Glucose Sensor,” Sci. Rep., vol. 9, no. 1, p. 19228, Dec. 2019, doi: 10.1038/s41598-019-55746-y.
  • [17] N. Korkmaz et al., “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • [18] Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The Preparation and Characterization of Nano Sized Pt–Pd/C Catalysts and Comparison of Their Superior Catalytic Activities for Methanol and Ethanol Oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • [19] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • [20] M. H. Calimli, M. S. Nas, H. Burhan, S. D. Mustafov, Ö. Demirbas, and F. Sen, “Preparation, Characterization and Adsorption Kinetics of Methylene Blue Dye in Reduced Graphene Oxide Supported Nanoadsorbents,” J. Mol. Liq., vol. 309, p. 113171, Jul. 2020, doi: 10.1016/j.molliq.2020.113171.
  • [21] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, and F. Sen, “Highly Efficient Polymer Supported Monodisperse Ruthenium Nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane,” J. Colloid Interface Sci., vol. 526, pp. 480–486, Sep. 2018, doi: 10.1016/j.jcis.2018.05.021.
  • [22] S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum Nanocatalysts Prepared With Different Surfactants for C1–C3 Alcohol Oxidations and Their Surface Morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • [23] B. Demirkan et al., “Palladium Supported on Polypyrrole/Reduced Graphene Oxide Nanoparticles for Simultaneous Biosensing Application of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • [24] F. Şen, Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis. Elsevier, 2021. doi: 10.1016/B978-0-12-821713-9.09990-X.
  • [25] D. Deng, “Li-ion Batteries: Basics, Progress, and Challenges,” Energy Sci. Eng., vol. 3, no. 5, pp. 385–418, 2015, doi: 10.1002/ese3.95.
  • [26] J. Heelan et al., “Current and Prospective Li-Ion Battery Recycling and Recovery Processes,” Jom, vol. 68, no. 10, pp. 2632–2638, 2016, doi: 10.1007/s11837-016-1994-y.
  • [27] D. Steward, A. Mayyas, and M. Mann, “Economics And Challenges Of Li-İon Battery Recycling From End-Of-Life Vehicles.,” Procedia Manuf., vol. 33, pp. 272–279, 2019, doi: 10.1016/j.promfg.2019.04.033.
  • [28] P. Kuchhal and U. C. Sharma, “Battery Waste Management,” Environ. Sci. Eng., vol. 5, no. March, pp. 141–155, 2019.
  • [29] J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, “The Environmental İmpact Of Li-Ion Batteries andThe Role Of Key Parameters,” Renew. Sustain. Energy Rev., vol. 67, pp. 491–506, 2017, doi: 10.1016/j.rser.2016.08.039.
  • [30] S. Natarajan and V. Aravindan, “Burgeoning Prospects of Spent Lithium-Ion Batteries in Multifarious Applications,” Adv. Energy Mater., vol. 8, no. 33, pp. 1–16, 2018, doi: 10.1002/aenm.201802303.
  • [31] F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • [32] K. Arikan, H. Burhan, E. Sahin, and F. Sen, “A sensitive, Fast, Selective, and Reusable Enzyme Free Glucose Sensor Based on Monodisperse AuNi Alloy Nanoparticles on Activated Carbon Support,” Chemosphere, vol. 291, p. 132718, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132718.
  • [33] R. Darabi et al., “Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor,” Electrochim. Acta, vol. 457, p. 142402, Jul. 2023, doi: 10.1016/J.ELECTACTA.2023.142402.
  • [34] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/slct.201600207.
  • [35] B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Polymer Graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for the Dehydrogenation of Dimethylamine Borane at Room Temperature,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23284–23291, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.112.
  • [36] M. Kurtay, H. G. Göksu, Haydar, H. Burhan, M. I. Ahamed, and F. Şen, “Magnetic Nanomaterials for Lithium-ion Batteries,” in Magnetic Nanomaterials for Lithium-ion Batteries, 2020, pp. 123–147. doi: 10.21741/9781644900918-5.
  • [37] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, and F. Sen, “Highly Efficient Catalytic Dehydrogenation of Dimethyl Ammonia Borane Via Monodisperse Palladium Nickel Alloy Nanoparticles Assembled on PEDOT,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.115.
  • [38] F. Şen and G. Gökaǧaç, “Activity of Carbon-Supported Platinum Nanoparticles toward Methanol Oxidation Reaction: Role of Metal Precursor and a New Surfactant, tert -Octanethiol,” J. Phys. Chem. C, vol. 111, no. 3, pp. 1467–1473, Jan. 2007, doi: 10.1021/jp065809y.
  • [39] H. Kumar et al., “Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications,” Int. J. Mol. Sci., vol. 21, no. 22, p. 8458, Nov. 2020, doi: 10.3390/ijms21228458.
  • [40] E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • [41] R. Darabi et al., “Biogenic Platinum-Based Bimetallic Nanoparticles: Synthesis, Characterization, Antimicrobial Activity And Hydrogen Evolution,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21270–21284, Jun. 2023, doi: 10.1016/j.ijhydene.2022.12.072.
  • [42] C. Demir, S. Keskin, and F. Şen, “ANOM Approach for Statistical Evaluation of Some Antioxidant Enzyme Activities,” Front. Chem., vol. 10, May 2022, doi: 10.3389/fchem.2022.894547.
  • [43] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green Synthesis And Characterization Of Camellia Sinensis Mediated Silver Nanoparticles For Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123037.
  • [44] H. Burhan et al., “Highly Efficient Carbon Hybrid Supported Catalysts Using Nano Architecture as Anode Catalysts for Direct Methanol Fuel Cells,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6657–6665, Feb. 2023, doi: 10.1016/j.ijhydene.2021.12.141.
  • [45] Y. Wu et al., “Hydrogen Generation From Methanolysis Of Sodium Borohydride Using Waste Coffee Oil Modified Zinc Oxide Nanoparticles And Their Photocatalytic Activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
  • [46] A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A Novel High Performance Non Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon Supported Pt-Ni Nanocomposite,” J. Mol. Liq., vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • [47] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A superior Catalyst for the Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • [48] Y. Yildiz et al., “Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions,” ChemistrySelect, vol. 2, no. 2, pp. 697–701, Jan. 2017, doi: 10.1002/slct.201601608.
  • [49] J. T. Abrahamson et al., “Excess Thermopower and the Theory of Thermopower Waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • [50] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine Borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • [51] R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation Of Biosensors and Nanotechnology In Disease Diagnosis: Mini-Review,” Sensors Int., vol. 2, p. 100089, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • [52] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon Nanotube Based Rhodium Nanoparticles as Highly Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • [53] F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol,” Energy & Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/ef700575t.
  • [54] V. Aravindan, Y. Lee, and S. Madhavi, “Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes,” Adv. Energy Mater., vol. 5, no. 13, Jul. 2015, doi: 10.1002/aenm.201402225.
  • [55] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-İon Battery Materials: Present And Future.,” Mater. Today, vol. 18, no. 5, pp. 252–264, Jun. 2015, doi: 10.1016/j.mattod.2014.10.040.
  • [56] S. Yasa, O. Aydin, M. Al-Bujasim, B. Birol, and M. Gencten, “Recycling Valuable Materials From The Cathodes Of Spent Lithium-İon Batteries: A Comprehensive Review,” J. Energy Storage, vol. 73, p. 109073, Dec. 2023, doi: 10.1016/j.est.2023.109073.
  • [57] C. A. F. Nason and Y. Xu, “Pre-İntercalation: A Valuable Approach For The İmprovement Of Post-Lithium Battery Materials,” eScience, p. 100183, Sep. 2023, doi: 10.1016/j.esci.2023.100183.
  • [58] P. A. Nelson, S. Ahmed, K. G. Gallagher, and D. W. Dees, “Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, Third Edition,” Argonne, IL (United States), Mar. 2019. doi: 10.2172/1503280.
  • [59] P. P. R. M. L. Harks, F. M. Mulder, and P. H. L. Notten, “In Situ Methods For Li-İon Battery Research: A Review Of Recent Developments.,” J. Power Sources, vol. 288, pp. 92–105, Aug. 2015, doi: 10.1016/j.jpowsour.2015.04.084.
  • [60] Y. Miao, L. Liu, Y. Zhang, Q. Tan, and J. Li, “An Overview Of Global Power Lithium-İon Batteries And Associated Critical Metal Recycling.,” J. Hazard. Mater., vol. 425, no. June 2021, p. 127900, 2022, doi: 10.1016/j.jhazmat.2021.127900.
  • [61] A. Kaya, “Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözümfile:///C:/Users/irem7/Desktop/1-s2.0-S0304389421028697-main.pdf,” Tez, vol. 044, no. 2017, 2019.
  • [62] Y. Hu, Y. Yu, K. Huang, and L. Wang, “Development Tendency And Future Response About The Recycling Methods Of Spent Lithium-İon Batteries Based On Bibliometrics Analysis.,” J. Energy Storage, vol. 27, no. August 2019, p. 101111, 2020, doi: 10.1016/j.est.2019.101111.
  • [63] L. Yun et al., “Metallurgical And Mechanical Methods For Recycling Of Lithium-İon Battery Pack For Electric Vehicles.,” Resour. Conserv. Recycl., vol. 136, no. May, pp. 198–208, 2018, doi: 10.1016/j.resconrec.2018.04.025.
  • [64] P. H. Camargos, “Perspectives On Li-İon Battery Categories For Electric Vehicleapplications: A Review Of State Of The Art.” pp. 19258–19268, 2022.
  • [65] M. Sanders, “Lithium-İon Battery Raw Material Supply And Demand 2016-2025,” Glob. Batter. Raw Mater. 2017, Held AABC 2017, pp. 162–181, 2017.
  • [66] H. Ali, H. A. Khan, and M. G. Pecht, “Circular Economy Of Li Batteries: Technologies And Trends.,” J. Energy Storage, vol. 40, no. March, p. 102690, 2021, doi: 10.1016/j.est.2021.102690.
  • [67] Y. Wang et al., “Recent Progress On The Recycling Technology Of Li-İon Batteries.,” J. Energy Chem., vol. 55, pp. 391–419, Apr. 2021, doi: 10.1016/j.jechem.2020.05.008.
  • [68] L. li QU et al., “Enhancement Of Leaching Of Cobalt And Lithium From Spent Lithium-İon Batteries By Mechanochemical Process.,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 32, no. 4, pp. 1325–1335, 2022, doi: 10.1016/S1003-6326(22)65877-1.
  • [69] V. Chaudhary, P. Lakhera, V. Shrivastav, P. Kumar, and A. Deep, “Nanoporous Carbon/Cobalt Composite Derived from End-of-Life Lithium Cobalt Oxide-Type Lithium-Ion Batteries for Supercapacitor Applications,” Ind. Eng. Chem. Res., vol. 61, no. 50, pp. 18492–18502, 2022, doi: 10.1021/acs.iecr.2c03293.
  • [70] A. Verma, A. J. Henne, D. R. Corbin, and M. B. Shiflett, “Lithium and Cobalt Recovery from LiCoO2Using Oxalate Chemistry: Scale-Up and Techno-Economic Analysis,” Ind. Eng. Chem. Res., vol. 61, no. 15, pp. 5285–5294, 2022, doi: 10.1021/acs.iecr.1c04876.
  • [71] X. Liao et al., “Feasibility Of Reduced İron Species For Promoting Li And Co Recovery From Spent Licoo2 Batteries Using A Mixed-Culture Bioleaching Process.,” Sci. Total Environ., vol. 830, p. 154577, 2022, doi: 10.1016/j.scitotenv.2022.154577.
  • [72] N. Peeters, K. Janssens, D. de Vos, K. Binnemans, and S. Riaño, “Choline Chloride-Ethylene Glycol Based Deep-Eutectic Solvents As Lixiviants For Cobalt Recovery From Lithium-İon Battery Cathode Materials: Are These Solvents Really Green İn High-Temperature Processes?,” Green Chem., vol. 24, no. 17, pp. 6685–6695, 2022, doi: 10.1039/d2gc02075k.
  • [73] N. Peeters, K. Binnemans, and S. Riaño, “Solvometallurgical Recovery Of Cobalt From Lithium-İon Battery Cathode Materials Using Deep-Eutectic Solvents,” Green Chem., vol. 22, no. 13, pp. 4210–4221, 2020, doi: 10.1039/d0gc00940g.
  • [74] M. Liu, W. Ma, X. Zhang, Z. Liang, and Q. Zhao, “Recycling Lithium And Cobalt From Lıbs Using Microwave-Assisted Deep Eutectic Solvent Leaching Technology At Low-Temperature.,” Mater. Chem. Phys., vol. 289, no. June, p. 126466, 2022, doi: 10.1016/j.matchemphys.2022.126466.
  • [75] K. Turcheniuk, D. Bondarev, V. Singhal, and G. Yushin, “Ten Years Left To Redesign Lithium-İon Batteries.,” Nature, vol. 559, no. 7715, pp. 467–470, Jul. 2018, doi: 10.1038/d41586-018-05752-3.
  • [76] E. Fan et al., “Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects,” Chem. Rev., vol. 120, no. 14, pp. 7020–7063, Jul. 2020, doi: 10.1021/acs.chemrev.9b00535.
  • [77] L. Ingeborgrud and M. Ryghaug, “The Role Of Practical, Cognitive And Symbolic Factors İn The Successful İmplementation Of Battery Electric Vehicles İn Norway.,” Transp. Res. Part A Policy Pract., vol. 130, pp. 507–516, Dec. 2019, doi: 10.1016/j.tra.2019.09.045.
  • [78] X. Chen, D. Kang, J. Li, T. Zhou, and H. Ma, “Gradient And Facile Extraction Of Valuable Metals From Spent Lithium İon Batteries For New Cathode Materials Re-Fabrication.,” J. Hazard. Mater., vol. 389, p. 121887, May 2020, doi: 10.1016/j.jhazmat.2019.121887.
  • [79] T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, “Development Of A Recycling Process For Li-İon Batteries.,” J. Power Sources, vol. 207, pp. 173–182, Jun. 2012, doi: 10.1016/j.jpowsour.2012.01.152.
  • [80] G. Harper et al., “Recycling Lithium-İon Batteries From Electric Vehicles.,” Nature, vol. 575, no. 7781, pp. 75–86, Nov. 2019, doi: 10.1038/s41586-019-1682-5.
  • [81] Y.-F. Meng et al., “Concurrent Recycling Chemistry For Cathode/Anode İn Spent Graphite/Lifepo4 Batteries: Designing A Unique Cation/Anion-Co-Workable Dual-İon Battery.,” J. Energy Chem., vol. 64, pp. 166–171, Jan. 2022, doi: 10.1016/j.jechem.2021.04.047.
  • [82] M.-C. Fan et al., “Room-Temperature Extraction Of İndividual Elements From Charged Spent Lifepo4 Batteries.,” Rare Met., vol. 41, no. 5, pp. 1595–1604, May 2022, doi: 10.1007/s12598-021-01919-6.
  • [83] W. Liu, K. Li, W. Wang, Y. Hu, Z. Ren, and Z. Zhou, “Selective Leaching Of Lithium İons From <Scp> Lifepo 4 </Scp> Powders Using Hydrochloric Acid And Sodium Hypochlorite System.,” Can. J. Chem. Eng., vol. 101, no. 4, pp. 1831–1841, Apr. 2023, doi: 10.1002/cjce.24617.
  • [84] B. Gangaja, S. Nair, and D. Santhanagopalan, “Reuse, Recycle, and Regeneration of LiFePO 4 Cathode from Spent Lithium-Ion Batteries for Rechargeable Lithium- and Sodium-Ion Batteries,” ACS Sustain. Chem. Eng., vol. 9, no. 13, pp. 4711–4721, Apr. 2021, doi: 10.1021/acssuschemeng.0c08487.
  • [85] W. Zou et al., “High-Efficiency Core-Shell Magnetic Heavy-Metal Absorbents Derived From Spent-Lifepo4 Battery,” J. Hazard. Mater., vol. 402, p. 123583, Jan. 2021, doi: 10.1016/j.jhazmat.2020.123583.
  • [86] X.-H. Yue, C.-C. Zhang, W.-B. Zhang, Y. Wang, and F.-S. Zhang, “Recycling Phosphorus From Spent Lifepo4 Battery For Multifunctional Slow-Release Fertilizer Preparation And Simultaneous Recovery Of Lithium.,” Chem. Eng. J., vol. 426, p. 131311, Dec. 2021, doi: 10.1016/j.cej.2021.131311.
  • [87] C. Ma, M. Svärd, and K. Forsberg, “Recycling Cathode Material Lico1/3Ni1/3Mn1/3O2 By Leaching With A Deep Eutectic Solvent And Metal Recovery With Antisolvent Crystallization.,” Resour. Conserv. Recycl., vol. 186, no. August, 2022, doi: 10.1016/j.resconrec.2022.106579.
  • [88] X.-H. Yue and F.-S. Zhang, “Recycling Spent Lifepo4 Battery For Fabricating Visible-Light Photocatalyst With Adsorption-Photocatalytic Synergistic Performance And Simultaneous Recovery Of Lithium And Phosphorus.,” Chem. Eng. J., vol. 450, p. 138388, Dec. 2022, doi: 10.1016/j.cej.2022.138388.
  • [89] H. Chu, C. Qian, B. Tian, S. Qi, J. Wang, and B. Xin, “Pyrometallurgy Coupling Bioleaching For Recycling Of Waste Printed Circuit Boards.,” Resour. Conserv. Recycl., vol. 178, p. 106018, Mar. 2022, doi: 10.1016/j.resconrec.2021.106018.
  • [90] B. Zhang et al., “A Sodium Salt-Assisted Roasting Approach Followed By Leaching For Recovering Spent Lifepo4 Batteries.,” J. Hazard. Mater., vol. 424, p. 127586, Feb. 2022, doi: 10.1016/j.jhazmat.2021.127586.
  • [91] J. Kumar, X. Shen, B. Li, H. Liu, and J. Zhao, “Selective Recovery Of Li And Fepo4 From Spent Lifepo4 Cathode Scraps By Organic Acids And The Properties Of The Regenerated Lifepo4.,” Waste Manag., vol. 113, pp. 32–40, Jul. 2020, doi: 10.1016/j.wasman.2020.05.046.
  • [92] Y. Zhao et al., “Regeneration And Reutilization Of Cathode Materials From Spent Lithium-İon Batteries.,” Chem. Eng. J., vol. 383, p. 123089, Mar. 2020, doi: 10.1016/j.cej.2019.123089.
  • [93] M. Fan et al., “In Situ Electrochemical Regeneration of Degraded LiFePO 4 Electrode with Functionalized Prelithiation Separator,” Adv. Energy Mater., vol. 12, no. 18, May 2022, doi: 10.1002/aenm.202103630.
  • [94] W. Zhang, D. Wang, and W. Zheng, “A Semiconductor-Electrochemistry Model For Design Of High-Rate Li İon Battery.,” J. Energy Chem., vol. 41, pp. 100–106, Feb. 2020, doi: 10.1016/j.jechem.2019.04.018.
  • [95] S. S. Zhang, “Identifying Rate Limitation And A Guide To Design Of Fast‐Charging Li‐İon Battery.,” InfoMat, vol. 2, no. 5, pp. 942–949, Sep. 2020, doi: 10.1002/inf2.12058.
  • [96] J. Wang et al., “Electrochemical technologies for lithium recovery from liquid resources: A Rewiew,” Renew. Sustain. Energy Rev., vol. 154, p. 111813, Feb. 2022, doi: 10.1016/j.rser.2021.111813.
  • [97] P. Xu et al., “Materials For Lithium Recovery From Salt Lake Brine.,” J. Mater. Sci., vol. 56, no. 1, pp. 16–63, Jan. 2021, doi: 10.1007/s10853-020-05019-1.
  • [98] Z. Wang, Y. Huang, X. Wang, D. Wu, and X. Wu, “Advanced Solid-State Electrolysis for Green and Efficient Spent LiFePO 4 Cathode Material Recycling: Prototype Reactor Tests,” Ind. Eng. Chem. Res., vol. 61, no. 34, pp. 12318–12328, Aug. 2022, doi: 10.1021/acs.iecr.2c02266.
  • [99] H. Gao et al., “Efficient Direct Recycling of Degraded LiMn 2 O 4 Cathodes by One-Step Hydrothermal Relithiation,” ACS Appl. Mater. Interfaces, vol. 12, no. 46, pp. 51546–51554, Nov. 2020, doi: 10.1021/acsami.0c15704.
  • [100] M. Sarkar, R. Hossain, and V. Sahajwalla, “Sustainable Recovery And Resynthesis Of Electroactive Materials From Spent Li-İon Batteries To Ensure Material Sustainability.,” Resour. Conserv. Recycl., vol. 200, p. 107292, Jan. 2024, doi: 10.1016/j.resconrec.2023.107292.
  • [101] D. Liu, Z. Su, and L. Wang, “Pyrometallurgically Regenerated Limn2o4 Cathode Scrap Material And İts Electrochemical Properties.,” Ceram. Int., vol. 47, no. 1, pp. 42–47, Jan. 2021, doi: 10.1016/j.ceramint.2020.06.037.
  • [102] T. Zhao et al., “Direct Selective Leaching Of Lithium From İndustrial-Grade Black Mass Of Waste Lithium-İon Batteries Containing Lifepo4 Cathodes.,” Waste Manag., vol. 171, pp. 134–142, Nov. 2023, doi: 10.1016/j.wasman.2023.08.030.
  • [103] M. He et al., “Sustainable And Facile Process For Li2co3 And Mn2o3 Recovery From Spent Limn2o4 Batteries Via Selective Sulfation With Waste Copperas.,” J. Environ. Chem. Eng., vol. 11, no. 3, p. 110222, Jun. 2023, doi: 10.1016/j.jece.2023.110222.
  • [104] Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, and S. Yang, “Thermal Treatment And Ammoniacal Leaching For The Recovery Of Valuable Metals From Spent Lithium-İon Batteries.,” Waste Manag., vol. 75, pp. 469–476, May 2018, doi: 10.1016/j.wasman.2018.02.024.
  • [105] C. Wu et al., “Cost-Effective Recycling Of Spent Limn2o4 Cathode Via A Chemical Lithiation Strategy.,” Energy Storage Mater., vol. 55, pp. 154–165, Jan. 2023, doi: 10.1016/j.ensm.2022.11.043.
  • [106] J. Wang et al., “A Green Process For Recycling And Synthesis Of Cathode Materials Limn 2 O 4 From Spent Lithium-İon Batteries Using Citric Acid.,” RSC Adv., vol. 12, no. 36, pp. 23683–23691, 2022, doi: 10.1039/D2RA04391B.
  • [107] J. Zhou, J. Bing, J. Ni, X. Wang, and X. Guan, “Recycling The Waste Limn2o4 Of Spent Li-İon Batteries By Ph Gradient İn Neutral Water Electrolyser,” Mater. Today Sustain., vol. 20, p. 100205, Dec. 2022, doi: 10.1016/j.mtsust.2022.100205.
  • [108] A. Mohanty, L. B. Sukla, S. Nayak, and N. Devi, “Selective Recovery And İntensification Of Mn From Spent Limn 2 O 4 Using Sulfuric Acid As Lixiviant And Na-D2ehpa As Extractant.,” Geosystem Eng., vol. 25, no. 5–6, pp. 246–255, Nov. 2022, doi: 10.1080/12269328.2022.2127426.
  • [109] L. Yao, Y. Xi, H. Han, W. Li, C. Wang, and Y. Feng, “Limn2o4 Prepared From Waste Lithium İon Batteries Through Sol-Gel Process,” J. Alloys Compd., vol. 868, p. 159222, Jul. 2021, doi: 10.1016/j.jallcom.2021.159222.
  • [110] O. Dolotko, N. Gehrke, M. Knapp, and H. Ehrenberg, “Mechanochemically İnduced Hydrometallurgical Method For Recycling D-Elements From Li-İon Battery Cathodes.,” J. Alloys Compd., p. 172884, Nov. 2023, doi: 10.1016/j.jallcom.2023.172884.
  • [111] R. Tao, P. Xing, H. Li, Z. Cun, Z. Sun, and Y. Wu, “In Situ Reduction Of Cathode Material By Organics And Anode Graphite Without Additive To Recycle Spent Electric Vehicle Limn2o4 Batteries.,” J. Power Sources, vol. 520, p. 230827, Feb. 2022, doi: 10.1016/j.jpowsour.2021.230827.
  • [112] Z. Liu, H. Chen, D. Wang, X. Zhou, and P. Hu, “Metal Recovery from Spent LiMn2O4 Cathode Material Based on Sulfating Roasting with NaHSO4·H2O and Water Leaching,” J. Sustain. Metal., vol. 8, no. 2, pp. 684–699, Jun. 2022, doi: 10.1007/s40831-022-00519-7.
  • [113] J. Han, L. Chen, X. Zhong, X. Wei, and W. Qin, “A Promising Method For Recovery Of Limn2o4 And Graphite From Waste Lithium-İon Batteries: Roasting Enhanced Flotation.,” J. Cent. South Univ., vol. 29, no. 9, pp. 2873–2887, Sep. 2022, doi: 10.1007/s11771-022-5127-1.
  • [114] S. He and Z. Liu, “Efficient Process For Recovery Of Waste Limn2o4 Cathode Material: Low-Temperature (NH4)2SO4 Calcination Mechanisms And Water-Leaching Characteristics.,” Waste Manag., vol. 108, pp. 28–40, May 2020, doi: 10.1016/j.wasman.2020.04.030.
  • [115] S. Pindar and N. Dhawan, “Recycling Of Discarded Coin Cells For Recovery Of Metal Values.,” Miner. Eng., vol. 159, p. 106650, Dec. 2020, doi: 10.1016/j.mineng.2020.106650.
  • [116] J. Shi et al., “Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere,” JOM, vol. 71, no. 12, pp. 4473–4482, Dec. 2019, doi: 10.1007/s11837-019-03800-5.
  • [117] M. He et al., “Combined Pyro-Hydrometallurgical Technology For Recovering Valuable Metal Elements From Spent Lithium-İon Batteries: A Review Of Recent Developments.,” Green Chem., vol. 25, no. 17, pp. 6561–6580, 2023, doi: 10.1039/D3GC01077E.
  • [118] J. Liang, D. Wang, L. Wang, H. Li, W. Cao, and H. Yan, “Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts,” Int. J. Miner. Metal. Mater., vol. 29, no. 3, pp. 473–478, Mar. 2022, doi: 10.1007/s12613-020-2144-7.
  • [119] Ö. F. Özcan, T. Karadağ, M. Altuğ, and Ö. F. Özgüven, “A Review Study On The Characteristics And Advantages Of Battery Chemicals Used İn Electric Vehicles.,” Gazi Univ. J. Sci., vol. 8, no. 2, pp. 276–298, 2021.
  • [120] S. Tez, “Fen Bilimleri Enstitüsü Lityum İyon Piller İçin NMC / Karbon Hibrit Kompozitlerin Sentezi ve Elektrokimyasal Karakterizasyonu,” pp. 10–30, 2018.
  • [121] W. Y. Wang, C. H. Yen, J. L. Lin, and R. Bin Xu, “Recovery Of High-Purity Metallic Cobalt From Lithium Nickel Manganese Cobalt Oxide (NMC)-Type Li-İon Battery.,” J. Mater. Cycles Waste Manag., vol. 21, no. 2, pp. 300–307, 2019, doi: 10.1007/s10163-018-0790-x.
  • [122] G. Destekl and V. E. Elektrok, “Doktora tezi̇,” 2022.
  • [123] R. H. Balcı and M. Sertsöz, “Farklı tip anot ve katot bazlı Li-iyon pillerinin küresel ısınma etkisinin ( GWI ) hesaplanması Calculating the global warming impact ( GWI ) of different types of anode and cathode based Li-ion batteries”.
  • [124] O. Celep, E. Y. Yazici, H. Deveci, and C. Dorfling, “Recovery Of Lithium, Cobalt And Other Metals From Lithium-İon Batteries.,” Pamukkale Univ. J. Eng. Sci., vol. 29, no. 4, pp. 384–400, 2023, doi: 10.5505/pajes.2022.98793.
  • [125] P. Halil and İ. Zeybek, “International Online Conferences on Full Texts Book,” pp. 30–40, 2021.
  • [126] S. Ilyas, R. Ranjan Srivastava, V. K. Singh, R. Chi, and H. Kim, “Recovery Of Critical Metals From Spent Li-İon Batteries: Sequential Leaching, Precipitation, And Cobalt–Nickel Separation Using Cyphos Il104.,” Waste Manag., vol. 154, no. October, pp. 175–186, 2022, doi: 10.1016/j.wasman.2022.10.005.
  • [127] H. Wang et al., “Green and Low-Cost Approach for Recovering Valuable Metals from Spent Lithium-Ion Batteries,” Ind. Eng. Chem. Res., vol. 62, no. 9, pp. 3973–3984, 2023, doi: 10.1021/acs.iecr.2c02802.
  • [128] W. Xuan, A. Chagnes, X. Xiao, R. T. Olsson, and K. Forsberg, “Antisolvent Precipitation for Metal Recovery from Citric Acid Solution in Recycling of NMC Cathode Materials,” Metals (Basel)., vol. 12, no. 4, pp. 1–14, 2022, doi: 10.3390/met12040607.
  • [129] P. M. Guarango, “Çinkur Atıklarından Metal Kazanımında Kolin Klorür - Üre Derin Ötektik Çözücüsünün Kullanımı,” no. 8.5.2017, pp. 2003–2005, 2022.
  • [130] M. A. Topçu and A. Rüşen, “Investigation of Use of Deep Eutetic Solvent on Copper Recovery from Copper Anode Slag,” J. Eng. Archit. Fac. Eskişehir Osmangazi Univ., vol. 28, no. 3, pp. 308–320, 2020.
  • [131] Y. Luo, L. Ou, and C. Yin, “High-Efficiency Recycling Of Spent Lithium-İon Batteries: A Double Closed-Loop Process.,” Sci. Total Environ., vol. 875, no. February, p. 162567, 2023, doi: 10.1016/j.scitotenv.2023.162567.
  • [132] T. Yang et al., “An Effective Relithiation Process for Recycling Lithium-Ion Battery Cathode Materials,” Adv. Sustain. Syst., vol. 4, no. 1, pp. 4–9, 2020, doi: 10.1002/adsu.201900088.
  • [133] S. Windisch-Kern, A. Holzer, C. Ponak, T. Hochsteiner, and H. Raupenstrauch, “Thermal Analysis Of Lithium İon Battery Cathode Materials For The Development Of A Novel Pyrometallurgical Recycling Approach.,” Carbon Resour. Convers., vol. 4, no. December 2020, pp. 184–189, 2021, doi: 10.1016/j.crcon.2021.04.005.
  • [134] G. Zhang, X. Yuan, C. Y. Tay, Y. He, H. Wang, and C. Duan, “Selective Recycling Of Lithium From Spent Lithium-İon Batteries By Carbothermal Reduction Combined With Multistage Leaching.,” Sep. Purif. Technol., vol. 314, no. 1, p. 123555, 2023, doi: 10.1016/j.seppur.2023.123555.
  • [135] Z. Yan, A. Sattar, and Z. Li, “Priority Lithium Recovery From Spent Li-İon Batteries Via Carbothermal Reduction With Water Leaching.,” Resour. Conserv. Recycl., vol. 192, no. February, p. 106937, 2023, doi: 10.1016/j.resconrec.2023.106937.
  • [136] G. S. Bhandari and N. Dhawan, “Gaseous Reduction Of NMC-Type Cathode Materials Using Hydrogen For Metal Recovery.,” Process Saf. Environ. Prot., vol. 172, no. August 2022, pp. 523–534, 2023, doi: 10.1016/j.psep.2023.02.053.
  • [137] Z. Liang et al., “Mechanochemically Assisted Persulfate Activation For The Facile Recovery Of Metals From Spent Lithium İon Batteries,” Waste Manag., vol. 150, no. July, pp. 290–300, 2022, doi: 10.1016/j.wasman.2022.07.014.
  • [138] İ. E. Çuhadar, F. Mennik, N. İ. Dinç, A. Gül, and F. Burat, “Characterization And Recycling Of Lithium Nickel Manganese Cobalt Oxide Type Spent Mobile Phone Batteries Based On Mineral Processing Technology,”,” J. Mater. Cycles Waste Manag., vol. 25, no. 3, pp. 1746–1759, 2023, doi: 10.1007/s10163-023-01652-5.
  • [139] H. Qiu, C. Peschel, M. Winter, S. Nowak, J. Köthe, and D. Goldmann, “Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique,” Metals (Basel)., vol. 12, no. 4, 2022, doi: 10.3390/met12040677.
  • [140] J. Liu et al., “Efficient Liberation Of Electrode Materials İn Spent Lithium-İon Batteries Using A Cryogenic Ball Mill,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106017, 2021, doi: 10.1016/j.jece.2021.106017.
  • [141] J. Neumann et al., “Recycling of Lithium‐Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling,” Adv. Energy Mater., vol. 12, no. 17, May 2022, doi: 10.1002/aenm.202102917.
  • [142] T. Ercan, N. C. Onat, N. Keya, O. Tatari, N. Eluru, and M. Kucukvar, “Autonomous Electric Vehicles Can Reduce Carbon Emissions And Air Pollution İn Cities,” Transp. Res. Part D Transp. Environ., vol. 112, p. 103472, Nov. 2022, doi: 10.1016/j.trd.2022.103472.
  • [143] Y. Qiao et al., “Recycling Of Graphite Anode From Spent Lithium‐İon Batteries: Advances And Perspectives,” EcoMat, vol. 5, no. 4, Apr. 2023, doi: 10.1002/eom2.12321.
  • [144] R. P. Sheth, N. S. Ranawat, A. Chakraborty, R. P. Mishra, and M. Khandelwal, “The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective—A Review and Future Directions,” Energies, vol. 16, no. 7, p. 3228, Apr. 2023, doi: 10.3390/en16073228.
  • [145] M. Bhar, S. Ghosh, S. Krishnamurthy, K. Yalamanchili, and S. K. Martha, “Electrochemical Compatibility of Graphite Anode from Spent Li-Ion Batteries: Recycled via a Greener and Sustainable Approach,” ACS Sustain. Chem. Eng., vol. 10, no. 23, pp. 7515–7525, Jun. 2022, doi: 10.1021/acssuschemeng.2c00554.
Year 2024, Issue: 006, 19 - 36, 30.04.2024

Abstract

References

  • [1] A. G. Olabi et al., “Renewable Energy Systems: Comparisons, Challenges And Barriers, Sustainability İndicators, And The Contribution To UN Sustainable Development Goals,” Int. J. Thermofluids, vol. 20, no. October, p. 100498, 2023, doi: 10.1016/j.ijft.2023.100498.
  • [2] T. Z. Ang, M. Salem, M. Kamarol, H. S. Das, M. A. Nazari, and N. Prabaharan, “A Comprehensive Study Of Renewable Energy Sources: Classifications, Challenges And Suggestions.,” Energy Strateg. Rev., vol. 43, no. August, p. 100939, 2022, doi: 10.1016/j.esr.2022.100939.
  • [3] A. A. Kebede, T. Kalogiannis, J. Van Mierlo, and M. Berecibar, “A Comprehensive Review Of Stationary Energy Storage Devices For Large Scale Renewable Energy Sources Grid İntegration.,” Renew. Sustain. Energy Rev., vol. 159, p. 112213, 2022, doi: 10.1016/j.rser.2022.112213.
  • [4] W. F. . Meyers, B. Bell, and J. W. Simmon, “Electric Current-Producing Cell With Anydrous Organic Liquid Electrolyte.,” United States Pat. Off., vol. 28, no. 2, pp. 131–134, 1969.
  • [5] C. L. Batteries and M. Fowler, “Comparative Study of Equivalent Circuit Models Performance,” MDPI Batter., 2021.
  • [6] R. Van Noorden, “The Rechargeable Revolution A Better Battery.,” Nature, vol. 507, pp. 26–28, 2014.
  • [7] R. S. Treptow, “A Practical Application Of Chemical Principles.,” J. Chem. Educ., vol. 80, no. 9, pp. 1015–1020, 2003, doi: 10.1021/ed080p1015.
  • [8] L. E. Asp, M. Johansson, G. Lindbergh, J. Xu, and D. Zenkert, “Structural Battery Composites:,” Funct. Compos. Struct., vol. 1, no. 4, 2019, doi: 10.1088/2631-6331/ab5571.
  • [9] Y. Zhao et al., “A Review on Battery Market Trends, Second-Life Reuse, and Recycling,” Sustain. Chem., vol. 2, no. 1, pp. 167–205, 2021, doi: 10.3390/suschem2010011.
  • [10] L. Wang, B. Chen, J. Ma, G. Cui, and L. Chen, “Reviving Lithium Cobalt Oxide-Based Lithium Secondary Batteries-Toward A Higher Energy Density,” Chem. Soc. Rev., vol. 47, no. 17, pp. 6505–6602, 2018, doi: 10.1039/c8cs00322j.
  • [11] M. J. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, “High Performance Limn2o4 Cathode Materials Grown With Epitaxial Layered Nanostructure For Li-Ion Batteries.,” Nano Lett., vol. 14, no. 2, pp. 993–999, 2014, doi: 10.1021/nl404430e.
  • [12] F. Forte, M. Pietrantonio, S. Pucciarmati, M. Puzone, and D. Fontana, “Lithium İron Phosphate Batteries Recycling: An Assessment Of Current Status.,” Crit. Rev. Environ. Sci. Technol., vol. 51, no. 19, pp. 2232–2259, 2021, doi: 10.1080/10643389.2020.1776053.
  • [13] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium Nickel Nanoparticles Decorated On Functionalized MWCNT For High Precision Non-Enzymatic Glucose Sensing,” Mater. Chem. Phys., vol. 250, p. 123042, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123042.
  • [14] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric Sensor Based on Biogenic Nanomaterials for High Sensitive Detection of Hydrogen Peroxide and Multi Metals,” Chemosphere, vol. 339, p. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [15] K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose Nano Biosensor With Nonenzymatic Excellent Sensitivity Prepared With Nickel Cobalt Nanocomposites On F-MWCNT,” Chemosphere, vol. 291, p. 132720, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • [16] A. Şavk et al., “Highly Monodisperse Pd-Ni Nanoparticles Supported On Rgo As A Rapid, Sensitive, Reusable And Selective Enzyme-Free Glucose Sensor,” Sci. Rep., vol. 9, no. 1, p. 19228, Dec. 2019, doi: 10.1038/s41598-019-55746-y.
  • [17] N. Korkmaz et al., “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • [18] Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The Preparation and Characterization of Nano Sized Pt–Pd/C Catalysts and Comparison of Their Superior Catalytic Activities for Methanol and Ethanol Oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • [19] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • [20] M. H. Calimli, M. S. Nas, H. Burhan, S. D. Mustafov, Ö. Demirbas, and F. Sen, “Preparation, Characterization and Adsorption Kinetics of Methylene Blue Dye in Reduced Graphene Oxide Supported Nanoadsorbents,” J. Mol. Liq., vol. 309, p. 113171, Jul. 2020, doi: 10.1016/j.molliq.2020.113171.
  • [21] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, and F. Sen, “Highly Efficient Polymer Supported Monodisperse Ruthenium Nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane,” J. Colloid Interface Sci., vol. 526, pp. 480–486, Sep. 2018, doi: 10.1016/j.jcis.2018.05.021.
  • [22] S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum Nanocatalysts Prepared With Different Surfactants for C1–C3 Alcohol Oxidations and Their Surface Morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • [23] B. Demirkan et al., “Palladium Supported on Polypyrrole/Reduced Graphene Oxide Nanoparticles for Simultaneous Biosensing Application of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • [24] F. Şen, Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis. Elsevier, 2021. doi: 10.1016/B978-0-12-821713-9.09990-X.
  • [25] D. Deng, “Li-ion Batteries: Basics, Progress, and Challenges,” Energy Sci. Eng., vol. 3, no. 5, pp. 385–418, 2015, doi: 10.1002/ese3.95.
  • [26] J. Heelan et al., “Current and Prospective Li-Ion Battery Recycling and Recovery Processes,” Jom, vol. 68, no. 10, pp. 2632–2638, 2016, doi: 10.1007/s11837-016-1994-y.
  • [27] D. Steward, A. Mayyas, and M. Mann, “Economics And Challenges Of Li-İon Battery Recycling From End-Of-Life Vehicles.,” Procedia Manuf., vol. 33, pp. 272–279, 2019, doi: 10.1016/j.promfg.2019.04.033.
  • [28] P. Kuchhal and U. C. Sharma, “Battery Waste Management,” Environ. Sci. Eng., vol. 5, no. March, pp. 141–155, 2019.
  • [29] J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, “The Environmental İmpact Of Li-Ion Batteries andThe Role Of Key Parameters,” Renew. Sustain. Energy Rev., vol. 67, pp. 491–506, 2017, doi: 10.1016/j.rser.2016.08.039.
  • [30] S. Natarajan and V. Aravindan, “Burgeoning Prospects of Spent Lithium-Ion Batteries in Multifarious Applications,” Adv. Energy Mater., vol. 8, no. 33, pp. 1–16, 2018, doi: 10.1002/aenm.201802303.
  • [31] F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • [32] K. Arikan, H. Burhan, E. Sahin, and F. Sen, “A sensitive, Fast, Selective, and Reusable Enzyme Free Glucose Sensor Based on Monodisperse AuNi Alloy Nanoparticles on Activated Carbon Support,” Chemosphere, vol. 291, p. 132718, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132718.
  • [33] R. Darabi et al., “Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor,” Electrochim. Acta, vol. 457, p. 142402, Jul. 2023, doi: 10.1016/J.ELECTACTA.2023.142402.
  • [34] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/slct.201600207.
  • [35] B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Polymer Graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for the Dehydrogenation of Dimethylamine Borane at Room Temperature,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23284–23291, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.112.
  • [36] M. Kurtay, H. G. Göksu, Haydar, H. Burhan, M. I. Ahamed, and F. Şen, “Magnetic Nanomaterials for Lithium-ion Batteries,” in Magnetic Nanomaterials for Lithium-ion Batteries, 2020, pp. 123–147. doi: 10.21741/9781644900918-5.
  • [37] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, and F. Sen, “Highly Efficient Catalytic Dehydrogenation of Dimethyl Ammonia Borane Via Monodisperse Palladium Nickel Alloy Nanoparticles Assembled on PEDOT,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.115.
  • [38] F. Şen and G. Gökaǧaç, “Activity of Carbon-Supported Platinum Nanoparticles toward Methanol Oxidation Reaction: Role of Metal Precursor and a New Surfactant, tert -Octanethiol,” J. Phys. Chem. C, vol. 111, no. 3, pp. 1467–1473, Jan. 2007, doi: 10.1021/jp065809y.
  • [39] H. Kumar et al., “Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications,” Int. J. Mol. Sci., vol. 21, no. 22, p. 8458, Nov. 2020, doi: 10.3390/ijms21228458.
  • [40] E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • [41] R. Darabi et al., “Biogenic Platinum-Based Bimetallic Nanoparticles: Synthesis, Characterization, Antimicrobial Activity And Hydrogen Evolution,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21270–21284, Jun. 2023, doi: 10.1016/j.ijhydene.2022.12.072.
  • [42] C. Demir, S. Keskin, and F. Şen, “ANOM Approach for Statistical Evaluation of Some Antioxidant Enzyme Activities,” Front. Chem., vol. 10, May 2022, doi: 10.3389/fchem.2022.894547.
  • [43] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green Synthesis And Characterization Of Camellia Sinensis Mediated Silver Nanoparticles For Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123037.
  • [44] H. Burhan et al., “Highly Efficient Carbon Hybrid Supported Catalysts Using Nano Architecture as Anode Catalysts for Direct Methanol Fuel Cells,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6657–6665, Feb. 2023, doi: 10.1016/j.ijhydene.2021.12.141.
  • [45] Y. Wu et al., “Hydrogen Generation From Methanolysis Of Sodium Borohydride Using Waste Coffee Oil Modified Zinc Oxide Nanoparticles And Their Photocatalytic Activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
  • [46] A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A Novel High Performance Non Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon Supported Pt-Ni Nanocomposite,” J. Mol. Liq., vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • [47] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A superior Catalyst for the Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • [48] Y. Yildiz et al., “Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions,” ChemistrySelect, vol. 2, no. 2, pp. 697–701, Jan. 2017, doi: 10.1002/slct.201601608.
  • [49] J. T. Abrahamson et al., “Excess Thermopower and the Theory of Thermopower Waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • [50] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine Borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • [51] R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation Of Biosensors and Nanotechnology In Disease Diagnosis: Mini-Review,” Sensors Int., vol. 2, p. 100089, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • [52] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon Nanotube Based Rhodium Nanoparticles as Highly Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • [53] F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol,” Energy & Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/ef700575t.
  • [54] V. Aravindan, Y. Lee, and S. Madhavi, “Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes,” Adv. Energy Mater., vol. 5, no. 13, Jul. 2015, doi: 10.1002/aenm.201402225.
  • [55] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-İon Battery Materials: Present And Future.,” Mater. Today, vol. 18, no. 5, pp. 252–264, Jun. 2015, doi: 10.1016/j.mattod.2014.10.040.
  • [56] S. Yasa, O. Aydin, M. Al-Bujasim, B. Birol, and M. Gencten, “Recycling Valuable Materials From The Cathodes Of Spent Lithium-İon Batteries: A Comprehensive Review,” J. Energy Storage, vol. 73, p. 109073, Dec. 2023, doi: 10.1016/j.est.2023.109073.
  • [57] C. A. F. Nason and Y. Xu, “Pre-İntercalation: A Valuable Approach For The İmprovement Of Post-Lithium Battery Materials,” eScience, p. 100183, Sep. 2023, doi: 10.1016/j.esci.2023.100183.
  • [58] P. A. Nelson, S. Ahmed, K. G. Gallagher, and D. W. Dees, “Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, Third Edition,” Argonne, IL (United States), Mar. 2019. doi: 10.2172/1503280.
  • [59] P. P. R. M. L. Harks, F. M. Mulder, and P. H. L. Notten, “In Situ Methods For Li-İon Battery Research: A Review Of Recent Developments.,” J. Power Sources, vol. 288, pp. 92–105, Aug. 2015, doi: 10.1016/j.jpowsour.2015.04.084.
  • [60] Y. Miao, L. Liu, Y. Zhang, Q. Tan, and J. Li, “An Overview Of Global Power Lithium-İon Batteries And Associated Critical Metal Recycling.,” J. Hazard. Mater., vol. 425, no. June 2021, p. 127900, 2022, doi: 10.1016/j.jhazmat.2021.127900.
  • [61] A. Kaya, “Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözümfile:///C:/Users/irem7/Desktop/1-s2.0-S0304389421028697-main.pdf,” Tez, vol. 044, no. 2017, 2019.
  • [62] Y. Hu, Y. Yu, K. Huang, and L. Wang, “Development Tendency And Future Response About The Recycling Methods Of Spent Lithium-İon Batteries Based On Bibliometrics Analysis.,” J. Energy Storage, vol. 27, no. August 2019, p. 101111, 2020, doi: 10.1016/j.est.2019.101111.
  • [63] L. Yun et al., “Metallurgical And Mechanical Methods For Recycling Of Lithium-İon Battery Pack For Electric Vehicles.,” Resour. Conserv. Recycl., vol. 136, no. May, pp. 198–208, 2018, doi: 10.1016/j.resconrec.2018.04.025.
  • [64] P. H. Camargos, “Perspectives On Li-İon Battery Categories For Electric Vehicleapplications: A Review Of State Of The Art.” pp. 19258–19268, 2022.
  • [65] M. Sanders, “Lithium-İon Battery Raw Material Supply And Demand 2016-2025,” Glob. Batter. Raw Mater. 2017, Held AABC 2017, pp. 162–181, 2017.
  • [66] H. Ali, H. A. Khan, and M. G. Pecht, “Circular Economy Of Li Batteries: Technologies And Trends.,” J. Energy Storage, vol. 40, no. March, p. 102690, 2021, doi: 10.1016/j.est.2021.102690.
  • [67] Y. Wang et al., “Recent Progress On The Recycling Technology Of Li-İon Batteries.,” J. Energy Chem., vol. 55, pp. 391–419, Apr. 2021, doi: 10.1016/j.jechem.2020.05.008.
  • [68] L. li QU et al., “Enhancement Of Leaching Of Cobalt And Lithium From Spent Lithium-İon Batteries By Mechanochemical Process.,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 32, no. 4, pp. 1325–1335, 2022, doi: 10.1016/S1003-6326(22)65877-1.
  • [69] V. Chaudhary, P. Lakhera, V. Shrivastav, P. Kumar, and A. Deep, “Nanoporous Carbon/Cobalt Composite Derived from End-of-Life Lithium Cobalt Oxide-Type Lithium-Ion Batteries for Supercapacitor Applications,” Ind. Eng. Chem. Res., vol. 61, no. 50, pp. 18492–18502, 2022, doi: 10.1021/acs.iecr.2c03293.
  • [70] A. Verma, A. J. Henne, D. R. Corbin, and M. B. Shiflett, “Lithium and Cobalt Recovery from LiCoO2Using Oxalate Chemistry: Scale-Up and Techno-Economic Analysis,” Ind. Eng. Chem. Res., vol. 61, no. 15, pp. 5285–5294, 2022, doi: 10.1021/acs.iecr.1c04876.
  • [71] X. Liao et al., “Feasibility Of Reduced İron Species For Promoting Li And Co Recovery From Spent Licoo2 Batteries Using A Mixed-Culture Bioleaching Process.,” Sci. Total Environ., vol. 830, p. 154577, 2022, doi: 10.1016/j.scitotenv.2022.154577.
  • [72] N. Peeters, K. Janssens, D. de Vos, K. Binnemans, and S. Riaño, “Choline Chloride-Ethylene Glycol Based Deep-Eutectic Solvents As Lixiviants For Cobalt Recovery From Lithium-İon Battery Cathode Materials: Are These Solvents Really Green İn High-Temperature Processes?,” Green Chem., vol. 24, no. 17, pp. 6685–6695, 2022, doi: 10.1039/d2gc02075k.
  • [73] N. Peeters, K. Binnemans, and S. Riaño, “Solvometallurgical Recovery Of Cobalt From Lithium-İon Battery Cathode Materials Using Deep-Eutectic Solvents,” Green Chem., vol. 22, no. 13, pp. 4210–4221, 2020, doi: 10.1039/d0gc00940g.
  • [74] M. Liu, W. Ma, X. Zhang, Z. Liang, and Q. Zhao, “Recycling Lithium And Cobalt From Lıbs Using Microwave-Assisted Deep Eutectic Solvent Leaching Technology At Low-Temperature.,” Mater. Chem. Phys., vol. 289, no. June, p. 126466, 2022, doi: 10.1016/j.matchemphys.2022.126466.
  • [75] K. Turcheniuk, D. Bondarev, V. Singhal, and G. Yushin, “Ten Years Left To Redesign Lithium-İon Batteries.,” Nature, vol. 559, no. 7715, pp. 467–470, Jul. 2018, doi: 10.1038/d41586-018-05752-3.
  • [76] E. Fan et al., “Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects,” Chem. Rev., vol. 120, no. 14, pp. 7020–7063, Jul. 2020, doi: 10.1021/acs.chemrev.9b00535.
  • [77] L. Ingeborgrud and M. Ryghaug, “The Role Of Practical, Cognitive And Symbolic Factors İn The Successful İmplementation Of Battery Electric Vehicles İn Norway.,” Transp. Res. Part A Policy Pract., vol. 130, pp. 507–516, Dec. 2019, doi: 10.1016/j.tra.2019.09.045.
  • [78] X. Chen, D. Kang, J. Li, T. Zhou, and H. Ma, “Gradient And Facile Extraction Of Valuable Metals From Spent Lithium İon Batteries For New Cathode Materials Re-Fabrication.,” J. Hazard. Mater., vol. 389, p. 121887, May 2020, doi: 10.1016/j.jhazmat.2019.121887.
  • [79] T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, “Development Of A Recycling Process For Li-İon Batteries.,” J. Power Sources, vol. 207, pp. 173–182, Jun. 2012, doi: 10.1016/j.jpowsour.2012.01.152.
  • [80] G. Harper et al., “Recycling Lithium-İon Batteries From Electric Vehicles.,” Nature, vol. 575, no. 7781, pp. 75–86, Nov. 2019, doi: 10.1038/s41586-019-1682-5.
  • [81] Y.-F. Meng et al., “Concurrent Recycling Chemistry For Cathode/Anode İn Spent Graphite/Lifepo4 Batteries: Designing A Unique Cation/Anion-Co-Workable Dual-İon Battery.,” J. Energy Chem., vol. 64, pp. 166–171, Jan. 2022, doi: 10.1016/j.jechem.2021.04.047.
  • [82] M.-C. Fan et al., “Room-Temperature Extraction Of İndividual Elements From Charged Spent Lifepo4 Batteries.,” Rare Met., vol. 41, no. 5, pp. 1595–1604, May 2022, doi: 10.1007/s12598-021-01919-6.
  • [83] W. Liu, K. Li, W. Wang, Y. Hu, Z. Ren, and Z. Zhou, “Selective Leaching Of Lithium İons From <Scp> Lifepo 4 </Scp> Powders Using Hydrochloric Acid And Sodium Hypochlorite System.,” Can. J. Chem. Eng., vol. 101, no. 4, pp. 1831–1841, Apr. 2023, doi: 10.1002/cjce.24617.
  • [84] B. Gangaja, S. Nair, and D. Santhanagopalan, “Reuse, Recycle, and Regeneration of LiFePO 4 Cathode from Spent Lithium-Ion Batteries for Rechargeable Lithium- and Sodium-Ion Batteries,” ACS Sustain. Chem. Eng., vol. 9, no. 13, pp. 4711–4721, Apr. 2021, doi: 10.1021/acssuschemeng.0c08487.
  • [85] W. Zou et al., “High-Efficiency Core-Shell Magnetic Heavy-Metal Absorbents Derived From Spent-Lifepo4 Battery,” J. Hazard. Mater., vol. 402, p. 123583, Jan. 2021, doi: 10.1016/j.jhazmat.2020.123583.
  • [86] X.-H. Yue, C.-C. Zhang, W.-B. Zhang, Y. Wang, and F.-S. Zhang, “Recycling Phosphorus From Spent Lifepo4 Battery For Multifunctional Slow-Release Fertilizer Preparation And Simultaneous Recovery Of Lithium.,” Chem. Eng. J., vol. 426, p. 131311, Dec. 2021, doi: 10.1016/j.cej.2021.131311.
  • [87] C. Ma, M. Svärd, and K. Forsberg, “Recycling Cathode Material Lico1/3Ni1/3Mn1/3O2 By Leaching With A Deep Eutectic Solvent And Metal Recovery With Antisolvent Crystallization.,” Resour. Conserv. Recycl., vol. 186, no. August, 2022, doi: 10.1016/j.resconrec.2022.106579.
  • [88] X.-H. Yue and F.-S. Zhang, “Recycling Spent Lifepo4 Battery For Fabricating Visible-Light Photocatalyst With Adsorption-Photocatalytic Synergistic Performance And Simultaneous Recovery Of Lithium And Phosphorus.,” Chem. Eng. J., vol. 450, p. 138388, Dec. 2022, doi: 10.1016/j.cej.2022.138388.
  • [89] H. Chu, C. Qian, B. Tian, S. Qi, J. Wang, and B. Xin, “Pyrometallurgy Coupling Bioleaching For Recycling Of Waste Printed Circuit Boards.,” Resour. Conserv. Recycl., vol. 178, p. 106018, Mar. 2022, doi: 10.1016/j.resconrec.2021.106018.
  • [90] B. Zhang et al., “A Sodium Salt-Assisted Roasting Approach Followed By Leaching For Recovering Spent Lifepo4 Batteries.,” J. Hazard. Mater., vol. 424, p. 127586, Feb. 2022, doi: 10.1016/j.jhazmat.2021.127586.
  • [91] J. Kumar, X. Shen, B. Li, H. Liu, and J. Zhao, “Selective Recovery Of Li And Fepo4 From Spent Lifepo4 Cathode Scraps By Organic Acids And The Properties Of The Regenerated Lifepo4.,” Waste Manag., vol. 113, pp. 32–40, Jul. 2020, doi: 10.1016/j.wasman.2020.05.046.
  • [92] Y. Zhao et al., “Regeneration And Reutilization Of Cathode Materials From Spent Lithium-İon Batteries.,” Chem. Eng. J., vol. 383, p. 123089, Mar. 2020, doi: 10.1016/j.cej.2019.123089.
  • [93] M. Fan et al., “In Situ Electrochemical Regeneration of Degraded LiFePO 4 Electrode with Functionalized Prelithiation Separator,” Adv. Energy Mater., vol. 12, no. 18, May 2022, doi: 10.1002/aenm.202103630.
  • [94] W. Zhang, D. Wang, and W. Zheng, “A Semiconductor-Electrochemistry Model For Design Of High-Rate Li İon Battery.,” J. Energy Chem., vol. 41, pp. 100–106, Feb. 2020, doi: 10.1016/j.jechem.2019.04.018.
  • [95] S. S. Zhang, “Identifying Rate Limitation And A Guide To Design Of Fast‐Charging Li‐İon Battery.,” InfoMat, vol. 2, no. 5, pp. 942–949, Sep. 2020, doi: 10.1002/inf2.12058.
  • [96] J. Wang et al., “Electrochemical technologies for lithium recovery from liquid resources: A Rewiew,” Renew. Sustain. Energy Rev., vol. 154, p. 111813, Feb. 2022, doi: 10.1016/j.rser.2021.111813.
  • [97] P. Xu et al., “Materials For Lithium Recovery From Salt Lake Brine.,” J. Mater. Sci., vol. 56, no. 1, pp. 16–63, Jan. 2021, doi: 10.1007/s10853-020-05019-1.
  • [98] Z. Wang, Y. Huang, X. Wang, D. Wu, and X. Wu, “Advanced Solid-State Electrolysis for Green and Efficient Spent LiFePO 4 Cathode Material Recycling: Prototype Reactor Tests,” Ind. Eng. Chem. Res., vol. 61, no. 34, pp. 12318–12328, Aug. 2022, doi: 10.1021/acs.iecr.2c02266.
  • [99] H. Gao et al., “Efficient Direct Recycling of Degraded LiMn 2 O 4 Cathodes by One-Step Hydrothermal Relithiation,” ACS Appl. Mater. Interfaces, vol. 12, no. 46, pp. 51546–51554, Nov. 2020, doi: 10.1021/acsami.0c15704.
  • [100] M. Sarkar, R. Hossain, and V. Sahajwalla, “Sustainable Recovery And Resynthesis Of Electroactive Materials From Spent Li-İon Batteries To Ensure Material Sustainability.,” Resour. Conserv. Recycl., vol. 200, p. 107292, Jan. 2024, doi: 10.1016/j.resconrec.2023.107292.
  • [101] D. Liu, Z. Su, and L. Wang, “Pyrometallurgically Regenerated Limn2o4 Cathode Scrap Material And İts Electrochemical Properties.,” Ceram. Int., vol. 47, no. 1, pp. 42–47, Jan. 2021, doi: 10.1016/j.ceramint.2020.06.037.
  • [102] T. Zhao et al., “Direct Selective Leaching Of Lithium From İndustrial-Grade Black Mass Of Waste Lithium-İon Batteries Containing Lifepo4 Cathodes.,” Waste Manag., vol. 171, pp. 134–142, Nov. 2023, doi: 10.1016/j.wasman.2023.08.030.
  • [103] M. He et al., “Sustainable And Facile Process For Li2co3 And Mn2o3 Recovery From Spent Limn2o4 Batteries Via Selective Sulfation With Waste Copperas.,” J. Environ. Chem. Eng., vol. 11, no. 3, p. 110222, Jun. 2023, doi: 10.1016/j.jece.2023.110222.
  • [104] Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, and S. Yang, “Thermal Treatment And Ammoniacal Leaching For The Recovery Of Valuable Metals From Spent Lithium-İon Batteries.,” Waste Manag., vol. 75, pp. 469–476, May 2018, doi: 10.1016/j.wasman.2018.02.024.
  • [105] C. Wu et al., “Cost-Effective Recycling Of Spent Limn2o4 Cathode Via A Chemical Lithiation Strategy.,” Energy Storage Mater., vol. 55, pp. 154–165, Jan. 2023, doi: 10.1016/j.ensm.2022.11.043.
  • [106] J. Wang et al., “A Green Process For Recycling And Synthesis Of Cathode Materials Limn 2 O 4 From Spent Lithium-İon Batteries Using Citric Acid.,” RSC Adv., vol. 12, no. 36, pp. 23683–23691, 2022, doi: 10.1039/D2RA04391B.
  • [107] J. Zhou, J. Bing, J. Ni, X. Wang, and X. Guan, “Recycling The Waste Limn2o4 Of Spent Li-İon Batteries By Ph Gradient İn Neutral Water Electrolyser,” Mater. Today Sustain., vol. 20, p. 100205, Dec. 2022, doi: 10.1016/j.mtsust.2022.100205.
  • [108] A. Mohanty, L. B. Sukla, S. Nayak, and N. Devi, “Selective Recovery And İntensification Of Mn From Spent Limn 2 O 4 Using Sulfuric Acid As Lixiviant And Na-D2ehpa As Extractant.,” Geosystem Eng., vol. 25, no. 5–6, pp. 246–255, Nov. 2022, doi: 10.1080/12269328.2022.2127426.
  • [109] L. Yao, Y. Xi, H. Han, W. Li, C. Wang, and Y. Feng, “Limn2o4 Prepared From Waste Lithium İon Batteries Through Sol-Gel Process,” J. Alloys Compd., vol. 868, p. 159222, Jul. 2021, doi: 10.1016/j.jallcom.2021.159222.
  • [110] O. Dolotko, N. Gehrke, M. Knapp, and H. Ehrenberg, “Mechanochemically İnduced Hydrometallurgical Method For Recycling D-Elements From Li-İon Battery Cathodes.,” J. Alloys Compd., p. 172884, Nov. 2023, doi: 10.1016/j.jallcom.2023.172884.
  • [111] R. Tao, P. Xing, H. Li, Z. Cun, Z. Sun, and Y. Wu, “In Situ Reduction Of Cathode Material By Organics And Anode Graphite Without Additive To Recycle Spent Electric Vehicle Limn2o4 Batteries.,” J. Power Sources, vol. 520, p. 230827, Feb. 2022, doi: 10.1016/j.jpowsour.2021.230827.
  • [112] Z. Liu, H. Chen, D. Wang, X. Zhou, and P. Hu, “Metal Recovery from Spent LiMn2O4 Cathode Material Based on Sulfating Roasting with NaHSO4·H2O and Water Leaching,” J. Sustain. Metal., vol. 8, no. 2, pp. 684–699, Jun. 2022, doi: 10.1007/s40831-022-00519-7.
  • [113] J. Han, L. Chen, X. Zhong, X. Wei, and W. Qin, “A Promising Method For Recovery Of Limn2o4 And Graphite From Waste Lithium-İon Batteries: Roasting Enhanced Flotation.,” J. Cent. South Univ., vol. 29, no. 9, pp. 2873–2887, Sep. 2022, doi: 10.1007/s11771-022-5127-1.
  • [114] S. He and Z. Liu, “Efficient Process For Recovery Of Waste Limn2o4 Cathode Material: Low-Temperature (NH4)2SO4 Calcination Mechanisms And Water-Leaching Characteristics.,” Waste Manag., vol. 108, pp. 28–40, May 2020, doi: 10.1016/j.wasman.2020.04.030.
  • [115] S. Pindar and N. Dhawan, “Recycling Of Discarded Coin Cells For Recovery Of Metal Values.,” Miner. Eng., vol. 159, p. 106650, Dec. 2020, doi: 10.1016/j.mineng.2020.106650.
  • [116] J. Shi et al., “Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere,” JOM, vol. 71, no. 12, pp. 4473–4482, Dec. 2019, doi: 10.1007/s11837-019-03800-5.
  • [117] M. He et al., “Combined Pyro-Hydrometallurgical Technology For Recovering Valuable Metal Elements From Spent Lithium-İon Batteries: A Review Of Recent Developments.,” Green Chem., vol. 25, no. 17, pp. 6561–6580, 2023, doi: 10.1039/D3GC01077E.
  • [118] J. Liang, D. Wang, L. Wang, H. Li, W. Cao, and H. Yan, “Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts,” Int. J. Miner. Metal. Mater., vol. 29, no. 3, pp. 473–478, Mar. 2022, doi: 10.1007/s12613-020-2144-7.
  • [119] Ö. F. Özcan, T. Karadağ, M. Altuğ, and Ö. F. Özgüven, “A Review Study On The Characteristics And Advantages Of Battery Chemicals Used İn Electric Vehicles.,” Gazi Univ. J. Sci., vol. 8, no. 2, pp. 276–298, 2021.
  • [120] S. Tez, “Fen Bilimleri Enstitüsü Lityum İyon Piller İçin NMC / Karbon Hibrit Kompozitlerin Sentezi ve Elektrokimyasal Karakterizasyonu,” pp. 10–30, 2018.
  • [121] W. Y. Wang, C. H. Yen, J. L. Lin, and R. Bin Xu, “Recovery Of High-Purity Metallic Cobalt From Lithium Nickel Manganese Cobalt Oxide (NMC)-Type Li-İon Battery.,” J. Mater. Cycles Waste Manag., vol. 21, no. 2, pp. 300–307, 2019, doi: 10.1007/s10163-018-0790-x.
  • [122] G. Destekl and V. E. Elektrok, “Doktora tezi̇,” 2022.
  • [123] R. H. Balcı and M. Sertsöz, “Farklı tip anot ve katot bazlı Li-iyon pillerinin küresel ısınma etkisinin ( GWI ) hesaplanması Calculating the global warming impact ( GWI ) of different types of anode and cathode based Li-ion batteries”.
  • [124] O. Celep, E. Y. Yazici, H. Deveci, and C. Dorfling, “Recovery Of Lithium, Cobalt And Other Metals From Lithium-İon Batteries.,” Pamukkale Univ. J. Eng. Sci., vol. 29, no. 4, pp. 384–400, 2023, doi: 10.5505/pajes.2022.98793.
  • [125] P. Halil and İ. Zeybek, “International Online Conferences on Full Texts Book,” pp. 30–40, 2021.
  • [126] S. Ilyas, R. Ranjan Srivastava, V. K. Singh, R. Chi, and H. Kim, “Recovery Of Critical Metals From Spent Li-İon Batteries: Sequential Leaching, Precipitation, And Cobalt–Nickel Separation Using Cyphos Il104.,” Waste Manag., vol. 154, no. October, pp. 175–186, 2022, doi: 10.1016/j.wasman.2022.10.005.
  • [127] H. Wang et al., “Green and Low-Cost Approach for Recovering Valuable Metals from Spent Lithium-Ion Batteries,” Ind. Eng. Chem. Res., vol. 62, no. 9, pp. 3973–3984, 2023, doi: 10.1021/acs.iecr.2c02802.
  • [128] W. Xuan, A. Chagnes, X. Xiao, R. T. Olsson, and K. Forsberg, “Antisolvent Precipitation for Metal Recovery from Citric Acid Solution in Recycling of NMC Cathode Materials,” Metals (Basel)., vol. 12, no. 4, pp. 1–14, 2022, doi: 10.3390/met12040607.
  • [129] P. M. Guarango, “Çinkur Atıklarından Metal Kazanımında Kolin Klorür - Üre Derin Ötektik Çözücüsünün Kullanımı,” no. 8.5.2017, pp. 2003–2005, 2022.
  • [130] M. A. Topçu and A. Rüşen, “Investigation of Use of Deep Eutetic Solvent on Copper Recovery from Copper Anode Slag,” J. Eng. Archit. Fac. Eskişehir Osmangazi Univ., vol. 28, no. 3, pp. 308–320, 2020.
  • [131] Y. Luo, L. Ou, and C. Yin, “High-Efficiency Recycling Of Spent Lithium-İon Batteries: A Double Closed-Loop Process.,” Sci. Total Environ., vol. 875, no. February, p. 162567, 2023, doi: 10.1016/j.scitotenv.2023.162567.
  • [132] T. Yang et al., “An Effective Relithiation Process for Recycling Lithium-Ion Battery Cathode Materials,” Adv. Sustain. Syst., vol. 4, no. 1, pp. 4–9, 2020, doi: 10.1002/adsu.201900088.
  • [133] S. Windisch-Kern, A. Holzer, C. Ponak, T. Hochsteiner, and H. Raupenstrauch, “Thermal Analysis Of Lithium İon Battery Cathode Materials For The Development Of A Novel Pyrometallurgical Recycling Approach.,” Carbon Resour. Convers., vol. 4, no. December 2020, pp. 184–189, 2021, doi: 10.1016/j.crcon.2021.04.005.
  • [134] G. Zhang, X. Yuan, C. Y. Tay, Y. He, H. Wang, and C. Duan, “Selective Recycling Of Lithium From Spent Lithium-İon Batteries By Carbothermal Reduction Combined With Multistage Leaching.,” Sep. Purif. Technol., vol. 314, no. 1, p. 123555, 2023, doi: 10.1016/j.seppur.2023.123555.
  • [135] Z. Yan, A. Sattar, and Z. Li, “Priority Lithium Recovery From Spent Li-İon Batteries Via Carbothermal Reduction With Water Leaching.,” Resour. Conserv. Recycl., vol. 192, no. February, p. 106937, 2023, doi: 10.1016/j.resconrec.2023.106937.
  • [136] G. S. Bhandari and N. Dhawan, “Gaseous Reduction Of NMC-Type Cathode Materials Using Hydrogen For Metal Recovery.,” Process Saf. Environ. Prot., vol. 172, no. August 2022, pp. 523–534, 2023, doi: 10.1016/j.psep.2023.02.053.
  • [137] Z. Liang et al., “Mechanochemically Assisted Persulfate Activation For The Facile Recovery Of Metals From Spent Lithium İon Batteries,” Waste Manag., vol. 150, no. July, pp. 290–300, 2022, doi: 10.1016/j.wasman.2022.07.014.
  • [138] İ. E. Çuhadar, F. Mennik, N. İ. Dinç, A. Gül, and F. Burat, “Characterization And Recycling Of Lithium Nickel Manganese Cobalt Oxide Type Spent Mobile Phone Batteries Based On Mineral Processing Technology,”,” J. Mater. Cycles Waste Manag., vol. 25, no. 3, pp. 1746–1759, 2023, doi: 10.1007/s10163-023-01652-5.
  • [139] H. Qiu, C. Peschel, M. Winter, S. Nowak, J. Köthe, and D. Goldmann, “Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique,” Metals (Basel)., vol. 12, no. 4, 2022, doi: 10.3390/met12040677.
  • [140] J. Liu et al., “Efficient Liberation Of Electrode Materials İn Spent Lithium-İon Batteries Using A Cryogenic Ball Mill,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106017, 2021, doi: 10.1016/j.jece.2021.106017.
  • [141] J. Neumann et al., “Recycling of Lithium‐Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling,” Adv. Energy Mater., vol. 12, no. 17, May 2022, doi: 10.1002/aenm.202102917.
  • [142] T. Ercan, N. C. Onat, N. Keya, O. Tatari, N. Eluru, and M. Kucukvar, “Autonomous Electric Vehicles Can Reduce Carbon Emissions And Air Pollution İn Cities,” Transp. Res. Part D Transp. Environ., vol. 112, p. 103472, Nov. 2022, doi: 10.1016/j.trd.2022.103472.
  • [143] Y. Qiao et al., “Recycling Of Graphite Anode From Spent Lithium‐İon Batteries: Advances And Perspectives,” EcoMat, vol. 5, no. 4, Apr. 2023, doi: 10.1002/eom2.12321.
  • [144] R. P. Sheth, N. S. Ranawat, A. Chakraborty, R. P. Mishra, and M. Khandelwal, “The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective—A Review and Future Directions,” Energies, vol. 16, no. 7, p. 3228, Apr. 2023, doi: 10.3390/en16073228.
  • [145] M. Bhar, S. Ghosh, S. Krishnamurthy, K. Yalamanchili, and S. K. Martha, “Electrochemical Compatibility of Graphite Anode from Spent Li-Ion Batteries: Recycled via a Greener and Sustainable Approach,” ACS Sustain. Chem. Eng., vol. 10, no. 23, pp. 7515–7525, Jun. 2022, doi: 10.1021/acssuschemeng.2c00554.
There are 145 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Electrical Energy Storage
Journal Section Reviews
Authors

Teslime Kozak 0009-0006-9446-8449

Hatice Kars 0009-0002-1107-0605

Mert Gül 0009-0005-7215-541X

Gülsade Şahin 0000-0003-2149-2158

Ceyda Atagün 0009-0002-2724-143X

Cagla Aydin 0009-0003-5292-3720

İrem Hamarat 0009-0008-2412-7619

Ebru Halvacı 0009-0003-6062-7622

Ramazan Bayat 0000-0002-9763-1591

Merve Akın 0000-0001-6003-0613

Muhammed Bekmezci 0000-0003-3965-6333

Publication Date April 30, 2024
Submission Date December 26, 2023
Acceptance Date March 13, 2024
Published in Issue Year 2024 Issue: 006

Cite

APA Kozak, T., Kars, H., Gül, M., Şahin, G., et al. (2024). Recycling of valuable elements contained in waste lithium ion batteries. Journal of Scientific Reports-C(006), 19-36.
AMA Kozak T, Kars H, Gül M, Şahin G, Atagün C, Aydin C, Hamarat İ, Halvacı E, Bayat R, Akın M, Bekmezci M. Recycling of valuable elements contained in waste lithium ion batteries. JSR-C. April 2024;(006):19-36.
Chicago Kozak, Teslime, Hatice Kars, Mert Gül, Gülsade Şahin, Ceyda Atagün, Cagla Aydin, İrem Hamarat, Ebru Halvacı, Ramazan Bayat, Merve Akın, and Muhammed Bekmezci. “Recycling of Valuable Elements Contained in Waste Lithium Ion Batteries”. Journal of Scientific Reports-C, no. 006 (April 2024): 19-36.
EndNote Kozak T, Kars H, Gül M, Şahin G, Atagün C, Aydin C, Hamarat İ, Halvacı E, Bayat R, Akın M, Bekmezci M (April 1, 2024) Recycling of valuable elements contained in waste lithium ion batteries. Journal of Scientific Reports-C 006 19–36.
IEEE T. Kozak, “Recycling of valuable elements contained in waste lithium ion batteries”, JSR-C, no. 006, pp. 19–36, April 2024.
ISNAD Kozak, Teslime et al. “Recycling of Valuable Elements Contained in Waste Lithium Ion Batteries”. Journal of Scientific Reports-C 006 (April 2024), 19-36.
JAMA Kozak T, Kars H, Gül M, Şahin G, Atagün C, Aydin C, Hamarat İ, Halvacı E, Bayat R, Akın M, Bekmezci M. Recycling of valuable elements contained in waste lithium ion batteries. JSR-C. 2024;:19–36.
MLA Kozak, Teslime et al. “Recycling of Valuable Elements Contained in Waste Lithium Ion Batteries”. Journal of Scientific Reports-C, no. 006, 2024, pp. 19-36.
Vancouver Kozak T, Kars H, Gül M, Şahin G, Atagün C, Aydin C, Hamarat İ, Halvacı E, Bayat R, Akın M, Bekmezci M. Recycling of valuable elements contained in waste lithium ion batteries. JSR-C. 2024(006):19-36.