Research Article
BibTex RIS Cite

Evaluation of Antioxidant Activity of Sour Cherry Stalk Extracts by in Vitro Methods

Year 2020, Volume: 10 Issue: 2, 290 - 301, 15.12.2020
https://doi.org/10.31466/kfbd.722885

Abstract

In this study, the antioxidant activities of sour cherry (Prunus cerasus L.) stalk extracts were investigated using β-caroten/linoleic acid, metal chelating, reducing power, DPPH radical scavenging, ABTS method and TEAC method. For this purpose the stalks were extracted separately by using distilled water, methanol, ethyl acetate and hexane solvents following dried and ground to fine powder. The antioxidant activities of extracts prepared at the different concentration (100-1000 μg/mL) were compared with α-tocopherol, ascorbic acid, BHT and BHA standards. The methanol extract of stalk had the highest yield (22%). Chelating activities (Fe2+) of methanol extract at 100-1000 μg/mL concentrations ranged between 18.45 and 67.75%. However, chelating activities of all test extracts were found lower than standards. The reducing power of all extracts except hexane increased depending upon the increase in concentration. DPPH radical scavenging activity of methanol extract varied in the range of 14.57 to 85.78%. The lowest EC50 value was determined as 0.494 µg/mL for methanol extract. But, the highest inhibition percentage of linoleic acid oxidation was found in hexane extract (57.22%). TEAC values of methanol extract ranged from 15.43 to 20.54 µM Trolox equivalent/10 g. It was determined that methanol extract showed a dose-dependent inhibition on the antioxidant activities.

Supporting Institution

Kilis 7 Aralık Üniversitesi BAP birimi

Project Number

11932

Thanks

This study was supported by Kilis 7 Aralık University Research Fund (Project number: 11932).

References

  • Apaydın, E. (2008). Nar Suyu Konsantresi Üretim Ve Depolama Sürecinde Antioksidan Akivitedeki Değişimler. Ankara Üniversitesi Fen bilimleri Enstüsü, Yüksek lisans tezi, Ankara.
  • Bastos, C., Barros, L., Dueñas, M., Calhelha, R.C., Queiroz, M.J.R, Santos-Buelga, C., and Ferreira, I.C. (2015). Chemical characterisation and bioactive properties of Prunus avium L.: the widely studied fruits and the unexplored stems. Food chemistry, 173:1045-1053.
  • Baydar, H. (2009). Tıbbi ve aromatik bitkiler bilimi ve teknolojisi. SDÜ Ziraat Fakültesi yayın no:51, ss.122-123.
  • Belibağli, K.B, and Dalgic, A.C. (2007). Rheological properties of sour‐cherry juice and concentrate. International journal of food science and technology, 42(6): 773-776.
  • Blois, M.S. (1958). Antioxidant determinations by the use of stable free radical. Nature, 1199-1200.
  • Bursal, E., Köksal, E., Gülçin, İ., Bilsel, G., and Gören, A.C. (2013). Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food research international, 51(1): 66-74.
  • Cao, J., Jiang, Q., Lin, J., Li, X., Sun, C. and Chen, K. (2015). Physicochemical characterisation of four cherry species (Prunus spp.) grown in China. Food chemistry, 173: 855-863.
  • Dinis, T.C.P., Madeira, V.I.M.C. and Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) assay inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1): 161-169.
  • FAOSTAT (2017). http://www.fao.org/faostat/en/?#data/QC, 04.02.2019.
  • Gülen, S. (2013). Asma ve Yonca Yapraklarının In Vitro Antioksidan Özellikleri. Trakya Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Edirne.
  • Hayouni, E.A., Abedrabba, M., Bouix, M. and Hamdi, M. (2007). The effects of solvent and extraction method on the phenolic contents and biological activities iv vitro of Tunisian Quercus coccifera and Juniperus phoenicea L. fruit extracts.” Food Chemistry 105(3): 1126-1134.
  • Heimler, D., Isolani, L., Vignolini, P., Tombelli, S. and Romani, A. (2007). Polyphenol content and antioxidative activity in some species of freshly consumed salads. Journal of Agricultural and Food Chemistry, 55: 1724-1729.
  • Hinneburg, I., Dorman, H.J.D. and Hı̇ltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97, 122-129.
  • Hooman, N., Mojab, F., Nickavar, B., and Pouryousefi-Kermani, P. (2009). Diuretic effect of powdered Cerasus avium (cherry) tails on healthy volunteers. Pak J Pharm Sci, 22(4): 381-3.
  • Isik, B.S., Altay, F. and Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry.
  • İsbilir, Ş.S. (2008). Yaprakları Salata-Baharat Olarak Tüketilen Bazı Bitkilerin Antioksidan Aktivitelerinin İncelenmesi. Trakya Üniversitesi Fen Bilimleri Enstitüsü, Doktora tezi, Edirne.
  • Jung, H.A., Kim, A.R., Chung, H.Y. and Choi, J.S. (2002). In vitro antioxidant activity of some selectedPrunus species in Korea. Archives of pharmacal research, 25(6): 865-872.
  • Juntachote, T. and Berghofer, E. (2005). Antioxidative properties and stability of ethanolic extracats of holy basil and galangal. Food Chemistry, 92: 193-202.
  • Kim, S.J. and Ishii, G. (2006). Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglcobrassicin. Soil Science and Plant Nutrition, 52: 394-400.
  • Kołodziejczyk, K., Sójka, M., Abadias, M., Viñas, I., Guyot, S. and Baron, A. (2013). Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Industrial crops and products, 51: 279-288.
  • Navruz, A., Türkyılmaz, M. and Özkan, M. (2016). Colour stabilities of sour cherry juice concentrates enhanced with gallic acid and various plant extracts during storage. Food chemistry, 197: 150-160.
  • Nowicka, P., Wojdyło, A., Lech, K. and Figiel, A. (2015). Chemical composition, antioxidant capacity, and sensory quality of dried sour cherry fruits pre-dehydrated in fruit concentrates. Food and bioprocess technology, 8(10): 2076-2095.
  • Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition, 44: 307-315.
  • Ozcan, M.M., Baydar, H., Sagdıç, O. and Ozkan, G. (2007). Türkiye’de ticari açıdan önemli Lamiaceae familyasına ait baharat veya çeşni olarak kullanılan bitkilerin fenolik bileşenleri ile antioksidan ve antimikrobiyal etkilerinin belirlenmesi.” TÜBİTAK Projesi, No:TOGTAG-3319, Konya.
  • Özçelik, B., Koca, U., Kaya, D.A. and Şekeroğlu, N. (2012). Evaluation of the in vitro bioactivities of mahaleb cherry (Prunus mahaleb L.). Romanian Biotechnological Letters, 17(6): 7863-7872.
  • Repajić, M., Kovačević, D.B., Putnik, P., Dragović-Uzelac, V., Kušt, J., Čošić, Z. and Levaj, B. (2015). Influence of cultivar and industrial processing on polyphenols in concentrated sour cherry (Prunus cerasus L.) juice. Food technology and biotechnology, 53(2): 215.
  • Şar, S. and Eriş, A. (1985). İç Anadolu Bölgesinde Böbrek Taşlarına Karşı Kullanılan Halk İlaçları. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 15(1): 58.
  • Toydemir, G., Capanoglu, E., Kamiloglu, S., Boyacioglu, D., De Vos, R.C., Hall, R.D. and Beekwilder, J. (2013). Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. Journal of Functional Foods, 5(3): 1402-1413.
  • Turan, M. (2016). Cyclamen alpinum ve Cyclamen parviflorum Ekstraktlarının Fenolik Bileşenleri ve Bazı Biyolojik Özelliklerinin Belirlenmesi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı. Denizli.
  • Wojdyło, A., Figiel, A., Lech, K., Nowicka, P. and Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3): 829-841.
  • Zengin, G. (2010). Bazı Centaurea Türlerinin Bazı Biyokimyasal Özelliklerinin Belirlenmesi. Biyoloji Anabilim Dalı, Konya.
  • Zin, Z.M., Abdul-Hamid, A. and Osman, A. (2002). Antioxidative activity of extracts from Mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food chemistry, 78(2): 227-231.

Vişne Sapı Ekstraktlarının in vitro Metotlarla Antioksidan Aktivitelerinin Belirlenmesi

Year 2020, Volume: 10 Issue: 2, 290 - 301, 15.12.2020
https://doi.org/10.31466/kfbd.722885

Abstract

Bu çalışmada, vişne (Prunus cerasus L.) sapı ekstrelerinin antioksidan aktiviteleri β-karoten/linoleik asit, metal şelatlama, güç azaltma, DPPH radikal süpürme, ABTS yöntemi ve TEAC metodu kullanılarak araştırılmıştır. Bu amaçla, saplar kurutulduktan sonra damıtılmış su, metanol, etil asetat ve hekzan çözücüleri kullanılarak ayrı ayrı özütlenmiş ve ince toz haline getirilmiştir. Farklı konsantrasyonlarda (100-1000 μg/mL) hazırlanan ekstrelerin antioksidan aktiviteleri a-tokoferol, askorbik asit, BHT ve BHA standartları ile karşılaştırılmıştır. Vişne sapı metanol ekstresininen yüksek verime (% 22) sahip olduğu belirlenmiştir. 100-1000 µg/mL konsantrasyonlarda metanol ekstresinin şelatlama aktiviteleri (Fe2+)%18.45 ile 67.75 arasında değişmektedir. Bununla birlikte, tüm test ekstrelerinin kenetleme aktiviteleri standartlardan daha düşük olmuştur. Hekzan hariç tüm ekstrelerin indirgeme gücü konsantrasyondaki artışa bağlı olarak artmıştır. Metanol ekstresinin DPPH radikal temizleme etkinliği,%14.57 ila85.78 arasında değişmiştir. En düşük EC50 değeri, metanol ekstresiiçin 0.494 µg/mL olarak belirlenmiştir. Ancak, linoleik asit oksidasyonunun en yüksek yüzde inhibisyonu, hekzan ekstresinde(% 57.22) bulunmuştur. Metanol ekstresinin Trolox eşdeğeri antioksidan kapasite değerleri 15.43 ila 20.54 µM Troloxeşdeğeri /10 g arasında değişmektedir. Metanol ekstresinin antioksidan aktiviteler üzerinde doza bağlı bir inhibisyon gösterdiği belirlenmiştir.

Project Number

11932

References

  • Apaydın, E. (2008). Nar Suyu Konsantresi Üretim Ve Depolama Sürecinde Antioksidan Akivitedeki Değişimler. Ankara Üniversitesi Fen bilimleri Enstüsü, Yüksek lisans tezi, Ankara.
  • Bastos, C., Barros, L., Dueñas, M., Calhelha, R.C., Queiroz, M.J.R, Santos-Buelga, C., and Ferreira, I.C. (2015). Chemical characterisation and bioactive properties of Prunus avium L.: the widely studied fruits and the unexplored stems. Food chemistry, 173:1045-1053.
  • Baydar, H. (2009). Tıbbi ve aromatik bitkiler bilimi ve teknolojisi. SDÜ Ziraat Fakültesi yayın no:51, ss.122-123.
  • Belibağli, K.B, and Dalgic, A.C. (2007). Rheological properties of sour‐cherry juice and concentrate. International journal of food science and technology, 42(6): 773-776.
  • Blois, M.S. (1958). Antioxidant determinations by the use of stable free radical. Nature, 1199-1200.
  • Bursal, E., Köksal, E., Gülçin, İ., Bilsel, G., and Gören, A.C. (2013). Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food research international, 51(1): 66-74.
  • Cao, J., Jiang, Q., Lin, J., Li, X., Sun, C. and Chen, K. (2015). Physicochemical characterisation of four cherry species (Prunus spp.) grown in China. Food chemistry, 173: 855-863.
  • Dinis, T.C.P., Madeira, V.I.M.C. and Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) assay inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1): 161-169.
  • FAOSTAT (2017). http://www.fao.org/faostat/en/?#data/QC, 04.02.2019.
  • Gülen, S. (2013). Asma ve Yonca Yapraklarının In Vitro Antioksidan Özellikleri. Trakya Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Edirne.
  • Hayouni, E.A., Abedrabba, M., Bouix, M. and Hamdi, M. (2007). The effects of solvent and extraction method on the phenolic contents and biological activities iv vitro of Tunisian Quercus coccifera and Juniperus phoenicea L. fruit extracts.” Food Chemistry 105(3): 1126-1134.
  • Heimler, D., Isolani, L., Vignolini, P., Tombelli, S. and Romani, A. (2007). Polyphenol content and antioxidative activity in some species of freshly consumed salads. Journal of Agricultural and Food Chemistry, 55: 1724-1729.
  • Hinneburg, I., Dorman, H.J.D. and Hı̇ltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97, 122-129.
  • Hooman, N., Mojab, F., Nickavar, B., and Pouryousefi-Kermani, P. (2009). Diuretic effect of powdered Cerasus avium (cherry) tails on healthy volunteers. Pak J Pharm Sci, 22(4): 381-3.
  • Isik, B.S., Altay, F. and Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry.
  • İsbilir, Ş.S. (2008). Yaprakları Salata-Baharat Olarak Tüketilen Bazı Bitkilerin Antioksidan Aktivitelerinin İncelenmesi. Trakya Üniversitesi Fen Bilimleri Enstitüsü, Doktora tezi, Edirne.
  • Jung, H.A., Kim, A.R., Chung, H.Y. and Choi, J.S. (2002). In vitro antioxidant activity of some selectedPrunus species in Korea. Archives of pharmacal research, 25(6): 865-872.
  • Juntachote, T. and Berghofer, E. (2005). Antioxidative properties and stability of ethanolic extracats of holy basil and galangal. Food Chemistry, 92: 193-202.
  • Kim, S.J. and Ishii, G. (2006). Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglcobrassicin. Soil Science and Plant Nutrition, 52: 394-400.
  • Kołodziejczyk, K., Sójka, M., Abadias, M., Viñas, I., Guyot, S. and Baron, A. (2013). Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Industrial crops and products, 51: 279-288.
  • Navruz, A., Türkyılmaz, M. and Özkan, M. (2016). Colour stabilities of sour cherry juice concentrates enhanced with gallic acid and various plant extracts during storage. Food chemistry, 197: 150-160.
  • Nowicka, P., Wojdyło, A., Lech, K. and Figiel, A. (2015). Chemical composition, antioxidant capacity, and sensory quality of dried sour cherry fruits pre-dehydrated in fruit concentrates. Food and bioprocess technology, 8(10): 2076-2095.
  • Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition, 44: 307-315.
  • Ozcan, M.M., Baydar, H., Sagdıç, O. and Ozkan, G. (2007). Türkiye’de ticari açıdan önemli Lamiaceae familyasına ait baharat veya çeşni olarak kullanılan bitkilerin fenolik bileşenleri ile antioksidan ve antimikrobiyal etkilerinin belirlenmesi.” TÜBİTAK Projesi, No:TOGTAG-3319, Konya.
  • Özçelik, B., Koca, U., Kaya, D.A. and Şekeroğlu, N. (2012). Evaluation of the in vitro bioactivities of mahaleb cherry (Prunus mahaleb L.). Romanian Biotechnological Letters, 17(6): 7863-7872.
  • Repajić, M., Kovačević, D.B., Putnik, P., Dragović-Uzelac, V., Kušt, J., Čošić, Z. and Levaj, B. (2015). Influence of cultivar and industrial processing on polyphenols in concentrated sour cherry (Prunus cerasus L.) juice. Food technology and biotechnology, 53(2): 215.
  • Şar, S. and Eriş, A. (1985). İç Anadolu Bölgesinde Böbrek Taşlarına Karşı Kullanılan Halk İlaçları. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 15(1): 58.
  • Toydemir, G., Capanoglu, E., Kamiloglu, S., Boyacioglu, D., De Vos, R.C., Hall, R.D. and Beekwilder, J. (2013). Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. Journal of Functional Foods, 5(3): 1402-1413.
  • Turan, M. (2016). Cyclamen alpinum ve Cyclamen parviflorum Ekstraktlarının Fenolik Bileşenleri ve Bazı Biyolojik Özelliklerinin Belirlenmesi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı. Denizli.
  • Wojdyło, A., Figiel, A., Lech, K., Nowicka, P. and Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3): 829-841.
  • Zengin, G. (2010). Bazı Centaurea Türlerinin Bazı Biyokimyasal Özelliklerinin Belirlenmesi. Biyoloji Anabilim Dalı, Konya.
  • Zin, Z.M., Abdul-Hamid, A. and Osman, A. (2002). Antioxidative activity of extracts from Mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food chemistry, 78(2): 227-231.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Filiz Uçan Türkmen 0000-0002-3653-9433

Hatice Aysun Mercimek Takcı 0000-0002-5394-4959

Fatma Esen Sarıgüllü Önalan 0000-0002-1374-4338

Project Number 11932
Publication Date December 15, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Uçan Türkmen, F., Mercimek Takcı, H. A., & Sarıgüllü Önalan, F. E. (2020). Evaluation of Antioxidant Activity of Sour Cherry Stalk Extracts by in Vitro Methods. Karadeniz Fen Bilimleri Dergisi, 10(2), 290-301. https://doi.org/10.31466/kfbd.722885