Research Article
BibTex RIS Cite

Ni2ZnAl BİLEŞİĞİNİN İLK PRENSİPLER YÖNTEMİ İLE İNCELENMESİ

Year 2023, Volume: 11 Issue: 2, 379 - 390, 01.06.2023
https://doi.org/10.36306/konjes.1171749

Abstract

Bu çalışmada, Heusler ailesinden Ni2ZnAl bileşiğinin temel durumdaki yapısal parametreleri optimize edildi. Optimize parametreler kullanılarak elastik sabitleri hesaplandı. Hesaplanan elastik sabitler kullanılarak malzemenin elastik modülü, Vicker sertliği, anizotropik doğası, erime sıcaklığı gibi bir takım mekanik ve termodinamik özellikleri hesaplandı. Toplam enerji hesaplamalarının tamamında açık kaynak kodlu Quantum Espresso yazılımı tercih edildi.

Supporting Institution

Osmaniye Korkut Ata Üniversitesi BAP Koordinasyon Birimi

Project Number

OKÜBAP-2022-PT1-007

Thanks

Bu çalışmada kullanılan hesaplama kaynakları Ulusal Yüksek Başarımlı Hesaplama Merkezi’nin (UHeM), #1012332022 # numaralı desteğiyle, sağlanmıştır. Ayrıca yapılan bu çalışma, “Ni2XAl (X=Ni, Zn, Ti, Cu, V, Sc) Bileşiklerinin Yapısal ve Mekanik Özelliklerinin İlk Prensipler Yöntemi ile İncelenmesi” isimli “OKÜBAP-2022-PT1-007” numaralı proje ile Osmaniye Korkut Ata Üniversitesi BAP Koordinasyon Birimi tarafından desteklenmiştir.

References

  • [1] Z. Bai, L. Shen, G. Han, ve Y. P. Feng, “Data Storage: Review of Heusler Compounds”, SPIN, vol. 02, no. 04, pp. 1230006, 2012.
  • [2] T. Graf, C. Felser, ve S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds”, Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011.
  • [3] T. Graf, C. Felser, ve S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds”, Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011.
  • [4] M. Gilleßen, “Maßgeschneidertes und Analytik-Ersatz”, RWTH Aachen University, Aachen, 2009.
  • [5] A. Kokalj, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale”, içinde Computational Materials Science, vol. 28, no. 2, pp. 155–168, 2003.
  • [6] P. Giannozzi vd., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter, vol. 21, no. 39, 2009.
  • [7] M. Methfessel ve A. T. Paxton, “High-precision sampling for Brillouin-zone integration in metals”, Phys. Rev. B, vol. 40, no. 6, pp. 3616, 1989.
  • [8] O. Örnek, A. İyigör, ve N. Arıkan, “L12 yapıdaki Co3Al ve Co3Ta alaşımlarının mekanik ve dinamik özellikleri”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 32, no. 2, 2017.
  • [9] M. Özduran, K. Turgut, N. Arikan, A. İyigör, ve A. Candan, “The first principle study of Ni2ScGa and Ni2TiGa”, AIP Conference Proceedings 2014, 1618, pp. 178–181.
  • [10] S. Kirklin vd., “The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies”, npj Comput. Mater., vol. 1, no. 1, pp. 15010, 2015.
  • [11] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, ve C. Wolverton, “Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)”, JOM, vol. 65, no. 11, pp. 1501–1509, 2013.
  • [12] N. Arıkan vd., “Electronic and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc): a density functional theory study”, J. Mater. Sci., vol. 49, no. 12, pp. 4180–4190, 2014.
  • [13] S. Al, N. Arikan, S. Demir, ve A. Iyigör, “Lattice dynamic properties of Rh 2 XAl (X=Fe and Y) alloys”, Phys. B Condens. Matter, vol. 531, pp. 16–20, 2018.
  • [14] N. Arikan, G. Dikici Yildiz, Y. G. Yildiz, ve A. İyigör, “Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation”, J. Electron. Mater., vol. 49, no. 5, pp. 3052–3062, 2020.
  • [15] O. Örnek, A. İyigör, A. S. Meriç, M. Çanlı, M. Özduran, ve N. Arıkan, “First-Principle Investigations of (Ti1 – xVx)2FeGa Аlloys. A Study on Structural, Мagnetic, Еlectronic, and Еlastic Рroperties”, Russ. J. Phys. Chem. A, vol. 95, no. 13, pp. 2592–2599, 2021.
  • [16] T. Ozer ve S. Cabuk, “First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals”, J. Mol. Model., vol. 24, no. 3, s. 66, 2018.
  • [17] Y. Tian, B. Xu, ve Z. Zhao, “Microscopic theory of hardness and design of novel superhard crystals”, Int. J. Refract. Met. Hard Mater., vol. 33, pp. 93–106, 2012.
  • [18] W. Liu, Y. Niu, ve W. Li, “Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations”, Ceram. Int., vol. 46, no. 16, pp. 25359–25365, 2020.
  • [19] S. Al, N. Arikan, ve A. Iyigör, “Investigations of Structural, Elastic, Electronic and Thermodynamic Properties of X 2 TiAl Alloys: A Computational Study”, Zeitschrift für Naturforsch. A, vol. 73, no. 9, pp. 859–867, 2018.
  • [20] J. Haines, J. Léger, ve G. Bocquillon, “Synthesis and Design of Superhard Materials”, Annu. Rev. Mater. Res., vol. 31, no. 1, pp. 1–23, 2001.
  • [21] S. I. Ranganathan ve M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index”, APS, vol. 101, no. 5, 2008.
  • [22] R. Gaillac, P. Pullumbi, ve F.-X. Coudert, “ELATE: an open-source online application for analysis and visualization of elastic tensors”, J. Phys. Condens. Matter, vol. 28, no. 27, s. 275201, 2016.
  • [23] A. M. Sarpkaya ve N. Arıkan, “Kübik perovskit LaZnO3 bileşiğinin yapısal, elektronik, elastik ve termodinamik özelliklerini araştırmak için ab initio hesaplamaları”, Osmaniye Korkut Ata Üniversitesi Fen Edeb. Fakültesi Derg., 2022.
  • [24] M. Çanlı, E. İlhan, ve N. Arıkan, “First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full-Heusler alloys X2ScGa (X = Ir and Rh)”, Mater. Today Commun., vol. 26, s. 101855, 2021.
  • [25] A. T. Petit ve P. L. Dulong, “Recherches sur quelques points importans de la théorie de la chaleur.”, Annales de chimie et de physique, Paris, 1819, pp. 395–413.
  • [26] T. Özer, “Determination of melting temperature”, 2018, pp. 87–99.
  • [27] D. G. Cahill, S. K. Watson, ve R. O. Pohl, “Lower limit to the thermal conductivity of disordered crystals”, Phys. Rev. B, vol. 46, no. 10, s. 6131, 1992.
  • [28] J. Long, C. Shu, L. Yang, ve M. Yang, “Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation”, J. Alloys Compd., vol. 644, pp. 638–644, 2015.
  • [29] H. Adin, “Mardin ve Midyat’ta Kullanılan Bina Yapı Taşlarının Bazı Fiziksel Özellikleri”, Mühendis ve Makina, vol. 48, no. 570, pp. 13–17, 2007.

Examination of The Ni2ZnAl Alloy by First Principles Method

Year 2023, Volume: 11 Issue: 2, 379 - 390, 01.06.2023
https://doi.org/10.36306/konjes.1171749

Abstract

In this study, ground state properties of Ni2ZnAl alloy in L21 phase from Heusler family were optimized. The calculated parameters are in harmony with the available literature data. Elastic constants were calculated using optimized parameters. The calculated elastic constants were found to meet the Born mechanical stability criteria. By using these constants, some mechanical and thermodynamic properties of the material such as elastic modulus, Vicker hardness, anisotropic nature, melting temperature were investigated in detail. Calculations showed that the Ni2ZnAl alloy is ductile, soft, and anisotropic. As such, it is a candidate material for applications that do not require hardness. The free energy, vibrational energy, entropy, and heat capacity of the Ni2ZnAl alloy were investigated using a semi- harmonic approach in the range of 0-800 K. All the total energy calculations were performed using the open-source Quantum Espresso software and ab-initio pseudopotential method based on the density functional theory (DFT) scheme within a generalized gradient approximation (GGA). According to the data obtained because of the study, Ni2ZnAl alloy is a potential candidate for industrial use.

Project Number

OKÜBAP-2022-PT1-007

References

  • [1] Z. Bai, L. Shen, G. Han, ve Y. P. Feng, “Data Storage: Review of Heusler Compounds”, SPIN, vol. 02, no. 04, pp. 1230006, 2012.
  • [2] T. Graf, C. Felser, ve S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds”, Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011.
  • [3] T. Graf, C. Felser, ve S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds”, Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011.
  • [4] M. Gilleßen, “Maßgeschneidertes und Analytik-Ersatz”, RWTH Aachen University, Aachen, 2009.
  • [5] A. Kokalj, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale”, içinde Computational Materials Science, vol. 28, no. 2, pp. 155–168, 2003.
  • [6] P. Giannozzi vd., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter, vol. 21, no. 39, 2009.
  • [7] M. Methfessel ve A. T. Paxton, “High-precision sampling for Brillouin-zone integration in metals”, Phys. Rev. B, vol. 40, no. 6, pp. 3616, 1989.
  • [8] O. Örnek, A. İyigör, ve N. Arıkan, “L12 yapıdaki Co3Al ve Co3Ta alaşımlarının mekanik ve dinamik özellikleri”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 32, no. 2, 2017.
  • [9] M. Özduran, K. Turgut, N. Arikan, A. İyigör, ve A. Candan, “The first principle study of Ni2ScGa and Ni2TiGa”, AIP Conference Proceedings 2014, 1618, pp. 178–181.
  • [10] S. Kirklin vd., “The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies”, npj Comput. Mater., vol. 1, no. 1, pp. 15010, 2015.
  • [11] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, ve C. Wolverton, “Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)”, JOM, vol. 65, no. 11, pp. 1501–1509, 2013.
  • [12] N. Arıkan vd., “Electronic and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc): a density functional theory study”, J. Mater. Sci., vol. 49, no. 12, pp. 4180–4190, 2014.
  • [13] S. Al, N. Arikan, S. Demir, ve A. Iyigör, “Lattice dynamic properties of Rh 2 XAl (X=Fe and Y) alloys”, Phys. B Condens. Matter, vol. 531, pp. 16–20, 2018.
  • [14] N. Arikan, G. Dikici Yildiz, Y. G. Yildiz, ve A. İyigör, “Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation”, J. Electron. Mater., vol. 49, no. 5, pp. 3052–3062, 2020.
  • [15] O. Örnek, A. İyigör, A. S. Meriç, M. Çanlı, M. Özduran, ve N. Arıkan, “First-Principle Investigations of (Ti1 – xVx)2FeGa Аlloys. A Study on Structural, Мagnetic, Еlectronic, and Еlastic Рroperties”, Russ. J. Phys. Chem. A, vol. 95, no. 13, pp. 2592–2599, 2021.
  • [16] T. Ozer ve S. Cabuk, “First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals”, J. Mol. Model., vol. 24, no. 3, s. 66, 2018.
  • [17] Y. Tian, B. Xu, ve Z. Zhao, “Microscopic theory of hardness and design of novel superhard crystals”, Int. J. Refract. Met. Hard Mater., vol. 33, pp. 93–106, 2012.
  • [18] W. Liu, Y. Niu, ve W. Li, “Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations”, Ceram. Int., vol. 46, no. 16, pp. 25359–25365, 2020.
  • [19] S. Al, N. Arikan, ve A. Iyigör, “Investigations of Structural, Elastic, Electronic and Thermodynamic Properties of X 2 TiAl Alloys: A Computational Study”, Zeitschrift für Naturforsch. A, vol. 73, no. 9, pp. 859–867, 2018.
  • [20] J. Haines, J. Léger, ve G. Bocquillon, “Synthesis and Design of Superhard Materials”, Annu. Rev. Mater. Res., vol. 31, no. 1, pp. 1–23, 2001.
  • [21] S. I. Ranganathan ve M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index”, APS, vol. 101, no. 5, 2008.
  • [22] R. Gaillac, P. Pullumbi, ve F.-X. Coudert, “ELATE: an open-source online application for analysis and visualization of elastic tensors”, J. Phys. Condens. Matter, vol. 28, no. 27, s. 275201, 2016.
  • [23] A. M. Sarpkaya ve N. Arıkan, “Kübik perovskit LaZnO3 bileşiğinin yapısal, elektronik, elastik ve termodinamik özelliklerini araştırmak için ab initio hesaplamaları”, Osmaniye Korkut Ata Üniversitesi Fen Edeb. Fakültesi Derg., 2022.
  • [24] M. Çanlı, E. İlhan, ve N. Arıkan, “First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full-Heusler alloys X2ScGa (X = Ir and Rh)”, Mater. Today Commun., vol. 26, s. 101855, 2021.
  • [25] A. T. Petit ve P. L. Dulong, “Recherches sur quelques points importans de la théorie de la chaleur.”, Annales de chimie et de physique, Paris, 1819, pp. 395–413.
  • [26] T. Özer, “Determination of melting temperature”, 2018, pp. 87–99.
  • [27] D. G. Cahill, S. K. Watson, ve R. O. Pohl, “Lower limit to the thermal conductivity of disordered crystals”, Phys. Rev. B, vol. 46, no. 10, s. 6131, 1992.
  • [28] J. Long, C. Shu, L. Yang, ve M. Yang, “Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation”, J. Alloys Compd., vol. 644, pp. 638–644, 2015.
  • [29] H. Adin, “Mardin ve Midyat’ta Kullanılan Bina Yapı Taşlarının Bazı Fiziksel Özellikleri”, Mühendis ve Makina, vol. 48, no. 570, pp. 13–17, 2007.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Tahsin Özer 0000-0003-0344-7118

Project Number OKÜBAP-2022-PT1-007
Publication Date June 1, 2023
Submission Date September 6, 2022
Acceptance Date February 11, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

IEEE T. Özer, “Examination of The Ni2ZnAl Alloy by First Principles Method”, KONJES, vol. 11, no. 2, pp. 379–390, 2023, doi: 10.36306/konjes.1171749.