Research Article
BibTex RIS Cite

Maydanoz bakteriyel yaprak leke hastalığı (Pseudomonas syringae pv. apii) ile biyolojik mücadelede antagonist bakterilerin kullanım olanaklarının araştırılması

Year 2021, Volume: 26 Issue: 3, 649 - 660, 07.12.2021
https://doi.org/10.37908/mkutbd.917150

Abstract

Amaç: Bu çalışmanın amacı, maydanoz köklerinden izole edilen epifit bakterilerin in vitro ve in vivo koşullarda Maydanoz Bakteriyel Yaprak Leke Hastalığı etmeni Pseudomonas syringae pv apii (Psa)’ ye karşı biyolojik mücadele potansiyellerinin belirlenmesidir.

Yöntem ve Bulgular: Sağlıklı maydanoz bitkilerinin kök bölgelerinden 48 adet aday antagonist bakteri izolatı izole edilmiştir. Bakteri izolatlarının tanısı MALDI-TOF ile yapılmıştır. İzole edilen ve tanısı yapılan 40 bakteri izolatının in vitro koşullarda hastalık etmenine karşı antagonistik etkilerinin yanı sıra siderofor, indol asetik asit (IAA), proteaz, amonyak üretimi ve fosfor çözme potansiyelleri gibi etki mekanizmaları belirlenmiştir. Antagonistik etkinin belirlendiği antibiyosis testinde en yüksek indeks değeri Pseudomonas thivervalensis PANT107 (5.08) izolatında belirlenmiş olup bunu Pseudomonas brassicacearum PANT83 (4.17) ve Bacillus simplex PANT91 (2.94) izolatı izlemiştir. İn vivo etkinlik denemelerinde bakteri izolatları farklı (tohum kaplama, tohum kaplama+yaprak püskürtme ve yaprak püskürtme uygulamaları) şekillerde uygulandıkları bitkilerde hastalık gelişimini % 16-58 oranında engellemiş olup, en etkili izolatın. Bacillus simplex PANT91 olduğu belirlenmiştir. Uygulamalar karşılaştırıldığında genel olarak tohum+yaprak uygulamalarının hastalık çıkışını engelleme açısından diğer uygulamalara göre daha etkili olduğu belirlenmiştir.

Genel Yorum: Yapılan bu çalışmada elde edilen sonuçlar Maydanoz Bakteriyel Leke Hastalığı etmenine (Psa) karşı mücadelede antagonist bakteriler ile biyolojik mücadelenin etkili olabileceği tespit edilmiştir.

Çalışmanın Önemi ve Etkisi: Hastalık etmenine karşı bilinen etkili bir kimyasal mücadelesi olmaması ve antibiyotik kullanımının birçok ülkede yasak olması sebebiyle alternatif biyolojik mücadele yöntemleri araştırılması kaçınılmazdır. Yapılacak çalışmalar sonucunda bu izolatların maydanoz bakteriyel leke hastalığına karşı etkili olabileceği ve biyolojik mücadele elemanı olarak kullanılabileceği düşünülmektedir.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi

Project Number

MKU BAP-17.YL.023

References

  • Anonim (2019) https://www.foodelphi.com/tag/proteaz/ (Erişim Tarihi: 15 Ocak 2019) (İngilizce hazırlanan yayınlarda).
  • Anonim (2020) http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul (Erişim Tarihi: 8 Şubat 2020) (Türkçe hazırlanan yayınlarda).
  • Achouak W, Sutra L,Heulin T, Meyer JM, Fromin N, Degraeva S, Christen R, Gardan L (2000) Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. Nov., two root-associated bacteriai solated from Brassica napu and Arapidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50, 9-18.
  • Aktan ZC (2018) Badem ağaçlarında sorun olan toprak kökenli fungal hastalık etmenlerine karşı antagonist ve bitki gelişimini teşvik eden bakterilerin in vitro etkinliklerinin belirlemesi. Yüksek Lisans Tezi, Hatay Mustafa Kemal Üniversitesi, Fen Bilimleri Ens, Bitki Koruma ABD, 103 s. (Türkçe yayınlarda).
  • Bozkurt İA (2009) Fasulye bakteriyel yanıklık hastalığına (Xanthomonas axonopodis pv. phaseoli) karşı antogonist bakterilerle mücadele olanakları. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Ens., Bitki Koruma ABD, 152 s. (Türkçe yayınlarda).
  • Bozkurt IA, Horuz S, Aysan Y, Soylu S (2016) First report of bacterial leaf spot of parsley caused by Pseudomonas syringae pv. apii in Turkey. Journal of Phytopathology, 3, 207-211.
  • Bull CT, Clarke CR, Cai R, Vinatzer BA, Jardini TM, Koike ST (2011) Multilocus sequence typing of Pseudomonas syringae Sensu Lato confirms previously described genomospecies and permits rapid ıdentification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytopathology, 101, 847-858.
  • Callan NW, Mathre DE, Miller JB, Vavrina CS (1997) Biological seed treatments: Factors involved in efficacy. Hort-Science, 32, 179-183.
  • Campos VP, de Pinho S.C, Freire ES (2010) Volatiles produced by ınteracting microorganisms potentially useful for the control of plant pathogens. Ciênc. Agrotec. Lavras Rewiev, 34 (3), 525-535.
  • Cazorla FM, Vazoquez MA, Rosales J, Arrebola E, Navarro J, Perez-Garcia A, de Vicente A (2005) First report of bacterial leaf spot (Pseudomonas syringae pv. coriandricola) of coriander in Spain. J. Phytopathology 153, 181–184.
  • Cerkauskas RF (2009) Bacterial leaf spot of cilantro (Coriandrum sativum) in Ontario. Can. J. Plant. Pathol. 31, 16-21.
  • Ceylan A (1987) Tıbbi Bitkiler II. Ege Üniversitesi, Ziraat Fakültesi yayınları. No:169, cilt:II, 429s, İzmir.
  • Chung BS, Aslam Z, Kim SW, Kim GG, Kang HS, Ahn JW, Ryun Y (2008) A bacteria endophyte, Pseudomonas brassicacearum YC5480, ısolated from rootof Artemisia sp. producing antifungaland phytotoxic compound. Plant Pathol. J. 24(4), 461-468.
  • Glickman E, Dessaux Y (1995) A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793–796.
  • Gupta M ,Bharat N, Chauhan A, Vikram A (2013) First report of bacterial leaf spot of coriander caused by Pseudomonas syringae pv. coriandricola in India. Plant diseases, 97(3), 418.
  • Hallmann J, Quadt HA, Rodrguez R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cottonand cucumber. Soil Biology and Biochemistry, 30: 925–937.
  • Hickey M, King C (1997) Common Families of Flowering Plants. Cambridge University Press, Cambridge, United Kingdom.
  • Holliday P (1989) A dictionary of plant pathology. Cambridge University Press, No: 2: Cambridge.
  • İmriz G, Özdemir F, Topal İ, Ercan B, Taş MN, Yakışır E, Okur O (2014) Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12 (2), 1-19.
  • Karaman MR (2012) Bitki Besleme Belemenin Temel İlkeleri Bitki Besleme. 1066s, Ankara.
  • Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang SM, Kim KM, Jan R, Lee IJ (2019) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis, 77(1), 9-21.
  • Kızılaslan HÇ (2017) Apıaceae Familyası Meyve Anatomisindeki “Vitta” Terimi ve Yerleşimleri. Avrasya Terim Dergisi, 5 (2), 19-24.
  • Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lojkowska E, Jafra S (2012) Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dıckeya spp. strains. Journal of Plant Pathology, 94(2), 367-378.
  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167: 493–499.
  • Kurt S, Tok FM (2006) Influence of inoculum concentration, leaf age, temperature and duration of leaf wetness on Septoria blight of parsley. Crop Production, 25(6), 556-551.
  • Kurt S, Uysal A, Kara M, Soylu S, Soylu EM (2017) First report of stem rot disease of parsley caused by Sclerotinia sclerotiorum in Turkey. Journal of Plant Pathology, 99(1), 301.
  • Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J (2018) Indole-3-Acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int. J. Mol. Sci.,19(2), 443.
  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology, 119, 265–278.
  • Minchinton E, Auer D, Martin H, Tesoriero L (2006) Bacterial Leaf Spot. Guide to Common Diseases and Disorders of Parsley, 9.
  • Özyılmaz Ö, Benlioğlu K (2012) Fosfat çözen bakterilerin pamuk bitkisinin gelişimine ve Verticillum solgunluğuna etkileri. Türk. Biyo. Müc. Derg., 3(1), 47-62.
  • Pavlovic M, Konrad R, Iwobi AN, Sing A, Busch U, Huber I (2012) A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328: 46–53.
  • Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers LM, De Vos P, Höfte M (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology,103(4),1007-20.
  • Pernezyn K, Raid RN, Jones JB (1997) Bacterial leaf spot of cilntro in Florida. Diseases Notes, 81 (2), 232. Raid R, Roberts P (2004) Plant Diseases Management Guide, 3,43.
  • Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov widespreas plantprotecting bacteria producing the biocontrol compounds 2,4 diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34 (3), 180-188.
  • Ross IL, Alamı Y, Harvey PR, Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species of closely related pseudomonads ısolated from wheat field soils in south australia. Applied and Environmental Microbiology, 66 (4), 1609-1616.
  • Samuel S, Muthukkaruppan, SM (2011) Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil. Current Botany, 2(3), 22-25.
  • Schulz B, Boyle C (2006) What are endopytes? (Schulz, B., Boyle, C., & N., T., Editör). In: Microbial Root Endophytes. Springer-Verlang, No: 1-13, Berlin.
  • Schwartz AR, Ortiz I, Maymon M, Herbold CW, Fuiishige NN,Vijanderan JA, Villella W, Hanamoto K, Diener A, Sanders ER, DeMason DA, Hirsch AM (2013) Bacillus simplex-A little known pgpr with anti-fungal activity-alters pea legume root architureand nodule morphology when coinoculated with Rhizobium leguminosarum by viciae. Argonomy, 3(4), 595-620.
  • Schwyn B, Neilands J.B (1997) Universal chemical assay forthed etection and determination of siderophores, Anal. Biochem., 160, 46-56.
  • Soylu S, Soylu EM, Kurt S (2010) Downy mildew outbreak on parsley caused by Plasmopara petroselini in Turkey. Plant Pathology, 59(4), 799.
  • Soleimani R, Alikhani HA; Towfighi H, Pourbabaei AA, Khavazi K (2018) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria alleviate sodium stress and promote wheat growth. Iranian Journal of Science and Technology Transaction A-Science, 42(A3), 1037-1048.
  • Ullah , Musthag H, Fahad S, Shah A, Chaudhary HJ (2017) Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology, 86 (1), 119-127.
  • Zhou TT, Chen D, Li CY, Sun Q, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearunJ12 as an antagonist against Ralstonia solanacearum an identification of its anti microbial components. Microbiological Research, 167(7), 388-394.
  • Xu X, Miller SA (2013) First Report Of Bacterial Spot of Parsleycaused by Pseudomonas syringae pv. coriandricola in Ohio. Plant Diseases, 97 (7), 988.
  • Xu XH, Xu M, Zhao QM, Xia Y, Chen C, Shen ZG (2018) Complete genome sequence of cd(ıı)-resistant Arthrobacter sp PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Current Microbiology, 75(9), 1231-1239.

Investigation on the possible use of antagonistic bacteria in biological control of parsley bacterial leaf spot disease (Pseudomonas syringae pv. apii)

Year 2021, Volume: 26 Issue: 3, 649 - 660, 07.12.2021
https://doi.org/10.37908/mkutbd.917150

Abstract

Aims: The aim of this study was to determine the potentials of biological control efficacies of epiphytic bacteria isolated from parsley roots against parsley bacterial leaf spot disease agent Pseudomonas syringae pv apii (Psa) in in vitro and in vivo conditions.

Methods and Results: 48 candidate bacterial isolates were isolated from the root areas of healthy parsley plants. The diagnosis of bacterial isolates was made with MALDI-TOF. In addition to the antagonistic effects of 40 isolated and diagnosed bacterial isolates against the disease agent in vitro conditions, antagonistic and plant growth-promoting mechanisms such as siderophore, indole acetic acid (IAA), protease, ammonia production and phosphorus dissolution potentials were determined.
In in vivo efficacy trials, bacterial isolates prevented disease development by 16-58 % in plants that were applied in different ways (seed coating, seed coating + leaf spraying and leaf spraying applications) and the most effective isolate was determined to be Bacillus simplex PANT91. When different applications are compared, it is determined that seed coating + leaf applications were found generally more effective than other applications in terms of preventing disease outflow.

Conclusions: In this study, it was determined that biological control with antagonist bacteria may be effective against parsley bacterial spot disease (Psa).

Significance and Impact of the Study: Since there is no known effective chemical control against the disease and antibiotic use is prohibited in many countries, It is inevitable to investigate alternative biological control methods against this disease. It is believed that these isolates can be effective against parsley bacterial spot disease and can be used as a biological control agent.

Project Number

MKU BAP-17.YL.023

References

  • Anonim (2019) https://www.foodelphi.com/tag/proteaz/ (Erişim Tarihi: 15 Ocak 2019) (İngilizce hazırlanan yayınlarda).
  • Anonim (2020) http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul (Erişim Tarihi: 8 Şubat 2020) (Türkçe hazırlanan yayınlarda).
  • Achouak W, Sutra L,Heulin T, Meyer JM, Fromin N, Degraeva S, Christen R, Gardan L (2000) Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. Nov., two root-associated bacteriai solated from Brassica napu and Arapidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50, 9-18.
  • Aktan ZC (2018) Badem ağaçlarında sorun olan toprak kökenli fungal hastalık etmenlerine karşı antagonist ve bitki gelişimini teşvik eden bakterilerin in vitro etkinliklerinin belirlemesi. Yüksek Lisans Tezi, Hatay Mustafa Kemal Üniversitesi, Fen Bilimleri Ens, Bitki Koruma ABD, 103 s. (Türkçe yayınlarda).
  • Bozkurt İA (2009) Fasulye bakteriyel yanıklık hastalığına (Xanthomonas axonopodis pv. phaseoli) karşı antogonist bakterilerle mücadele olanakları. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Ens., Bitki Koruma ABD, 152 s. (Türkçe yayınlarda).
  • Bozkurt IA, Horuz S, Aysan Y, Soylu S (2016) First report of bacterial leaf spot of parsley caused by Pseudomonas syringae pv. apii in Turkey. Journal of Phytopathology, 3, 207-211.
  • Bull CT, Clarke CR, Cai R, Vinatzer BA, Jardini TM, Koike ST (2011) Multilocus sequence typing of Pseudomonas syringae Sensu Lato confirms previously described genomospecies and permits rapid ıdentification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytopathology, 101, 847-858.
  • Callan NW, Mathre DE, Miller JB, Vavrina CS (1997) Biological seed treatments: Factors involved in efficacy. Hort-Science, 32, 179-183.
  • Campos VP, de Pinho S.C, Freire ES (2010) Volatiles produced by ınteracting microorganisms potentially useful for the control of plant pathogens. Ciênc. Agrotec. Lavras Rewiev, 34 (3), 525-535.
  • Cazorla FM, Vazoquez MA, Rosales J, Arrebola E, Navarro J, Perez-Garcia A, de Vicente A (2005) First report of bacterial leaf spot (Pseudomonas syringae pv. coriandricola) of coriander in Spain. J. Phytopathology 153, 181–184.
  • Cerkauskas RF (2009) Bacterial leaf spot of cilantro (Coriandrum sativum) in Ontario. Can. J. Plant. Pathol. 31, 16-21.
  • Ceylan A (1987) Tıbbi Bitkiler II. Ege Üniversitesi, Ziraat Fakültesi yayınları. No:169, cilt:II, 429s, İzmir.
  • Chung BS, Aslam Z, Kim SW, Kim GG, Kang HS, Ahn JW, Ryun Y (2008) A bacteria endophyte, Pseudomonas brassicacearum YC5480, ısolated from rootof Artemisia sp. producing antifungaland phytotoxic compound. Plant Pathol. J. 24(4), 461-468.
  • Glickman E, Dessaux Y (1995) A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793–796.
  • Gupta M ,Bharat N, Chauhan A, Vikram A (2013) First report of bacterial leaf spot of coriander caused by Pseudomonas syringae pv. coriandricola in India. Plant diseases, 97(3), 418.
  • Hallmann J, Quadt HA, Rodrguez R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cottonand cucumber. Soil Biology and Biochemistry, 30: 925–937.
  • Hickey M, King C (1997) Common Families of Flowering Plants. Cambridge University Press, Cambridge, United Kingdom.
  • Holliday P (1989) A dictionary of plant pathology. Cambridge University Press, No: 2: Cambridge.
  • İmriz G, Özdemir F, Topal İ, Ercan B, Taş MN, Yakışır E, Okur O (2014) Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12 (2), 1-19.
  • Karaman MR (2012) Bitki Besleme Belemenin Temel İlkeleri Bitki Besleme. 1066s, Ankara.
  • Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang SM, Kim KM, Jan R, Lee IJ (2019) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis, 77(1), 9-21.
  • Kızılaslan HÇ (2017) Apıaceae Familyası Meyve Anatomisindeki “Vitta” Terimi ve Yerleşimleri. Avrasya Terim Dergisi, 5 (2), 19-24.
  • Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lojkowska E, Jafra S (2012) Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dıckeya spp. strains. Journal of Plant Pathology, 94(2), 367-378.
  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167: 493–499.
  • Kurt S, Tok FM (2006) Influence of inoculum concentration, leaf age, temperature and duration of leaf wetness on Septoria blight of parsley. Crop Production, 25(6), 556-551.
  • Kurt S, Uysal A, Kara M, Soylu S, Soylu EM (2017) First report of stem rot disease of parsley caused by Sclerotinia sclerotiorum in Turkey. Journal of Plant Pathology, 99(1), 301.
  • Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J (2018) Indole-3-Acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int. J. Mol. Sci.,19(2), 443.
  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology, 119, 265–278.
  • Minchinton E, Auer D, Martin H, Tesoriero L (2006) Bacterial Leaf Spot. Guide to Common Diseases and Disorders of Parsley, 9.
  • Özyılmaz Ö, Benlioğlu K (2012) Fosfat çözen bakterilerin pamuk bitkisinin gelişimine ve Verticillum solgunluğuna etkileri. Türk. Biyo. Müc. Derg., 3(1), 47-62.
  • Pavlovic M, Konrad R, Iwobi AN, Sing A, Busch U, Huber I (2012) A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328: 46–53.
  • Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers LM, De Vos P, Höfte M (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology,103(4),1007-20.
  • Pernezyn K, Raid RN, Jones JB (1997) Bacterial leaf spot of cilntro in Florida. Diseases Notes, 81 (2), 232. Raid R, Roberts P (2004) Plant Diseases Management Guide, 3,43.
  • Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov widespreas plantprotecting bacteria producing the biocontrol compounds 2,4 diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34 (3), 180-188.
  • Ross IL, Alamı Y, Harvey PR, Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species of closely related pseudomonads ısolated from wheat field soils in south australia. Applied and Environmental Microbiology, 66 (4), 1609-1616.
  • Samuel S, Muthukkaruppan, SM (2011) Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil. Current Botany, 2(3), 22-25.
  • Schulz B, Boyle C (2006) What are endopytes? (Schulz, B., Boyle, C., & N., T., Editör). In: Microbial Root Endophytes. Springer-Verlang, No: 1-13, Berlin.
  • Schwartz AR, Ortiz I, Maymon M, Herbold CW, Fuiishige NN,Vijanderan JA, Villella W, Hanamoto K, Diener A, Sanders ER, DeMason DA, Hirsch AM (2013) Bacillus simplex-A little known pgpr with anti-fungal activity-alters pea legume root architureand nodule morphology when coinoculated with Rhizobium leguminosarum by viciae. Argonomy, 3(4), 595-620.
  • Schwyn B, Neilands J.B (1997) Universal chemical assay forthed etection and determination of siderophores, Anal. Biochem., 160, 46-56.
  • Soylu S, Soylu EM, Kurt S (2010) Downy mildew outbreak on parsley caused by Plasmopara petroselini in Turkey. Plant Pathology, 59(4), 799.
  • Soleimani R, Alikhani HA; Towfighi H, Pourbabaei AA, Khavazi K (2018) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria alleviate sodium stress and promote wheat growth. Iranian Journal of Science and Technology Transaction A-Science, 42(A3), 1037-1048.
  • Ullah , Musthag H, Fahad S, Shah A, Chaudhary HJ (2017) Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withania coagulans. Microbiology, 86 (1), 119-127.
  • Zhou TT, Chen D, Li CY, Sun Q, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearunJ12 as an antagonist against Ralstonia solanacearum an identification of its anti microbial components. Microbiological Research, 167(7), 388-394.
  • Xu X, Miller SA (2013) First Report Of Bacterial Spot of Parsleycaused by Pseudomonas syringae pv. coriandricola in Ohio. Plant Diseases, 97 (7), 988.
  • Xu XH, Xu M, Zhao QM, Xia Y, Chen C, Shen ZG (2018) Complete genome sequence of cd(ıı)-resistant Arthrobacter sp PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Current Microbiology, 75(9), 1231-1239.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Araştırma Makalesi
Authors

Resul Varhan 0000-0001-5536-5638

İmam Adem Bozkurt 0000-0002-4826-0317

Project Number MKU BAP-17.YL.023
Publication Date December 7, 2021
Submission Date April 16, 2021
Acceptance Date August 24, 2021
Published in Issue Year 2021 Volume: 26 Issue: 3

Cite

APA Varhan, R., & Bozkurt, İ. A. (2021). Maydanoz bakteriyel yaprak leke hastalığı (Pseudomonas syringae pv. apii) ile biyolojik mücadelede antagonist bakterilerin kullanım olanaklarının araştırılması. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26(3), 649-660. https://doi.org/10.37908/mkutbd.917150

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download