Research Article
BibTex RIS Cite

Investigation of N and P removal from aqueous solution by magnesium ammonium phosphate (MAP) precipitation

Year 2023, Volume: 29 Issue: 5, 537 - 545, 31.10.2023

Abstract

Precipitation of struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O, MAP) in wastewater treatment plants where nitrogen (N) and phosphorus (P) treatment is carried out causes very important operational problems. Also, since MAP has commercial value, its control and recovery is important. Therefore, batch experiments were conducted to examine the effects of pH, Magnesium (Mg): N and N:P molar ratio, different Mg2+ sources and the presence of calcium (Ca2+) on MAP crystallization. Experimental results showed that at a constant Mg:N:P=1:1:1 ratio, the optimum pH was 9, and the N and P removal efficiencies at this pH were 79.4% and 88.4% respectively. These removal efficiencies for N and P increased to 87.6% and 99.1%, respectively, by increasing the Mg:N ratio to 1.25:1. By increasing the N:P ratio to 1:1.15, the N removal efficiency increased to 96.4%, but the P removal efficiency decreased to 96.1%. The most effective source of Mg2+ was found to be MgCl2.6H2O, with N and P removal efficiencies of over 96%. It was found that the N removal efficiency was significantly reduced in the presence of Ca2+ in the solution. It was determined that the N removal efficiency, which was >96% in the absence of Ca2+ , decreased to 68.6% at 1000 mg/L Ca2+ concentration. In the XRD analysis performed on the sediment, it was determined that the formation was a MAP crystal, and in the addition of Ca2+, an amorphous structure rich in Ca2+ was formed instead of MAP.

References

  • [1] Kumari S, Jose S, Tyagi M, Jagadevan S. “A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater”. Journal of Cleaner Production, 254, 1-14, 2020.
  • [2] Yetilmezsoy K, Kocak E, Akbin HM, Özçimen D. “Utilization of struvite recovered from high-strength ammoniumcontaining simulated wastewater as slow-release fertilizer and fire-retardant barrier”. Environmental technology, 41(2), 153-170, 2020.
  • [3] Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL. “Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite”. Chemical Engineering Journal, 271, 204-213, 2015.
  • [4] Lee WPC, Mah SK, Leo CP, Wu T, Chai SP. “Performance studies of phosphorus removal using cross-flow nanofiltration”. Desalin Water Treat, 52(31-33), 5974-5982, 2014.
  • [5] Li S, Zeng W, Xu H, Jia Z, Peng Y. “Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide”. Environmental Science and Pollution Research, 27, 15463-15474, 2020.
  • [6] Oztekın M, Akgul V, Duyar A, Gocer S, Cırık, K. “Design of Ammonium Stripping Tower and Optimization of Ammonium Removal From Landfill Leachate”. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 188-196, 2020.
  • [7] Acelas NY, Martin BD, Lopez D, Jefferson B. “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media”. Chemosphere, 119, 1353-1360, 2015.
  • [8] Schuiling RD, Andrade A. “Recovery of struvite from calf manure”. Environmental Technology, 20, 767-768, 1999.
  • [9] Tünay O, Kabdaşlı I, Orhon D, Ateş E. “Characterization and Pollution Profile of Leather Tanning İndustry in Turkey”. Water Science Technology, 32(12), 1-9, 1995.
  • [10] Jaffer Y, Clark TA, Pearce P, Parsons SA. “Potential phosphorus recovery by struvite formation”. Water research, 36(7), 1834-1842, 2002.
  • [11] El Diwani G, El Rafie S, El Ibiari NN, & El-Aila HI. “Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer”. Desalination, 214(1-3), 200-214, 2007.
  • [12] Kim D, Ryu HD, Kim MS, Kim J, Lee, SI. “Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate”. Journal of Hazardous materials, 146(1-2), 81-85, 2007.
  • [13] Yetilmezsoy K, Sapci-Zengin Z. “Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer”. Journal of Hazardous materials, 166(1), 260-269, 2009.
  • [14] Rahman MM, Liu Y, Kwag JH, Ra C. “Recovery of struvite from animal wastewater and its nutrient leaching loss in soil”. Journal of hazardous materials, 186(2-3), 2026-2030, 2011.
  • [15] Barbosa SG, Peixoto L, Meulman B, Alves MM, Pereira MA. “A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources”. Chemical Engineering Journal, 298, 146-153, 2016.
  • [16] James DD. Simon AP. “Struvite Formation, Control and Recavery”. Water Research, No, 36, s. 3925-3940, 2002.
  • [17] Özcan P. “Mezbaha Endüstrisi Atıksularında Magnezyum Amonyum Fosfat Çöktürmesi İle Azot Giderimi”. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 53, 2001.
  • [18] Doyle JD, Parsons SA. “Struvite formation, control and recovery”. Water Research, 36, 3925-3940, 2002.
  • [19] Chirmuley DG. “Struvite precipitation in WWPTS, causes and solutions”. Water-Melbourne then Artarmon-, 21, 21-21, 1994.
  • [20] Liu Z, Zhao Q, Wei L, Wu D, & Ma L. “Effect of struvite seed crystal on MAP crystallization”. Journal of Chemical Technology & Biotechnology, 86(11), 1394-1398, 2011.
  • [21] Shin HS, Lee SM. “Removal of nutrients in wastewater by using magnesium salts”. Environmental Technology, 19, 283-290, 1997.
  • [22] Arnold DW, Wolfram WE. “Ammonia removal and recovery from fertilizer complex wastewaters”. 30th Purdue Industrial Waste Conference Proceedings, 760-767, 1975.
  • [23] Zydbiewska MW, Kula B. “Removal of ammonia nitrogen by the precipitation method on the example of some selected wastewaters”. Water Science Technology, 24(7), 229-234, 1991.
  • [24] Booker NA, Priestly AJ, Fraser IH. “Struvite formation in wastewater treatment plants, opportunities for nutrient recovery”. Environmental Technology, 20, 777-782, 1999.
  • [25] Zhang DM, Chen YX, Jilani G, Wu WX, Liu WL, Han ZY. “Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants”. Bioresource technology, 116, 386-395, 2012.
  • [26] Selçuk Kuşçu Ö, Celik V. “Recovery of nitrogen and phosphorus in sewage sludge by pulsed electrical field technique and struvite production”. Pamukkale Unıversity Journal of Engineering Sciences, 25(6), 700-704, 2019.
  • [27] Hu L, Yu J, Luo H, Wang H, Xu P, Zhang Y. “Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation”. Chemical Engineering Journal, 382, 1-12, 2020.
  • [28] Siegrist H. “Nitrogen removal from digester supernatant comparison of chemical and biological methods”. Water Science Technology, 34(1-2), 399-406, 1996.
  • [29] Huang H, Xu C, Zhang W. “Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology”. Bioresource technology, 102(3), 2523-2528, 2011.
  • [30] Li XZ, Zhao QL. “MAP precipitation from landfill leachate and seawater bittern waste”. Environmental Technology, 23(9), 989-1000, 2002.
  • [31] Wilsenach JA, Schuurbiers CAH, Van Loosdrecht MCM. “Phosphate and potassium recovery from source separated urine through struvite precipitation”. Water Research, 41(2), 458-466, 2007.
  • [32] Crutchik DGJM, Garrido JM. “Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater”. Water Science and Technology, 64(12), 2460-2467, 2011.
  • [33] Bayuseno AP, Schmahl WW. “Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions”. Chemosphere, 250, 1-10, 2020.
  • [34] Capdevielle A, Sýkorová E, Biscans B, Béline F, Daumer ML. “Optimization of struvite precipitation in synthetic biologically treated swine wastewater-Determination of the optimal process parameters”. Journal of hazardous materials, 244, 357-369, 2013.
  • [35] Yan H, Shih K. “Effects of calcium and ferric ions on struvite precipitation, A new assessment based on quantitative X-ray diffraction analysis”. Water Research, 95, 310-318, 2016.
  • [36] Parsons SA, Wall F, Doyle J, Oldring K, Churchley J. “Assesing the potential for struvite recovery at sewage treatment works”. Environmental Technology, 22(11), 1279-1286, 2001.
  • [37] Bouropoulos NC, Koutsoukos PG. “Spontaneous precipitation of struvite from aqueous solutions”. Journal of Crystal Growth, 213, 381-388, 2000.
  • [38] Le Corre KS. Understanding struvite crystallisation and recovery. PhD Thesis, Cranfield University, Cranfield, UK, 2006.
  • [39] Yünsel TY, Ersoy A, Ehsani A. “X-Işını Difraksiyonu Yöntemi ile Kantitatif Mineral İçeriği Tayini ve Çalışma Şartlarının Etkisi”. Artıbilim, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 2(2), 16-28, 2019.

Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması

Year 2023, Volume: 29 Issue: 5, 537 - 545, 31.10.2023

Abstract

Azot (N) ve fosfor (P) arıtımının gerçekleştirildiği atıksu arıtma tesislerinde struvite veya magnezyum amonyum fosfat (MgNH4PO4.6H2O, MAP) çökelmesi oldukça önemli işletme problemlerinin doğmasına neden olmaktadır. Aynı zamanda ticari bir değere sahip olması da MAP’ın kontrolü ve geri kazanımını önemli kılmaktadır. Bu kapsamda pH, Magnezyum (Mg): N ve N:P molar oranı, farklı Mg2+ kaynakları ve kalsiyum (Ca2+) varlığının MAP kristalizasyonu üzerindeki etkilerini incelemek amacıyla kesikli deneyler yapılmıştır. Deneysel sonuçlar sabit bir Mg:N:P=1:1:1 oranında, optimum pH’ın 9 olduğunu ve bu pH’da N ve P giderme verimlerinin sırasıyla %79.4 ve %88.4 olarak gerçekleştiğini göstermiştir. N ve P için bu arıtma verimleri Mg:N oranının 1.25:1’e çıkarılmasıyla sırasıyla %87.6 ve %99.1’e yükselmiştir. N:P oranının 1:1.15’e çıkarılması ile N giderme verimi %96.4’e yükselmiş ancak, P giderme verimi %96.1’e düşmüştür. %96’nın üzerinde N ve P giderme verimleriyle, en etkili Mg2+ kaynağının MgCl2.6H2O olduğu bulunmuştur. Çözelti içerisinde Ca2+ bulunması durumunda, N giderme veriminin önemli ölçüde azaldığı tespit edilmiştir. Ca2+ olmadığında >%96 olan N giderme veriminin, 1000 mg/L Ca2+ konsantrasyonunda %68.6’ya kadar düştüğü belirlenmiştir. Çökelti üzerinde yapılan XRD analizinde oluşumun MAP kristali olduğu, Ca2+ ilavesinde ise MAP’ın yerine Ca2+’ca zengin amorf bir yapının oluştuğu tespit edilmiştir.

References

  • [1] Kumari S, Jose S, Tyagi M, Jagadevan S. “A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater”. Journal of Cleaner Production, 254, 1-14, 2020.
  • [2] Yetilmezsoy K, Kocak E, Akbin HM, Özçimen D. “Utilization of struvite recovered from high-strength ammoniumcontaining simulated wastewater as slow-release fertilizer and fire-retardant barrier”. Environmental technology, 41(2), 153-170, 2020.
  • [3] Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL. “Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite”. Chemical Engineering Journal, 271, 204-213, 2015.
  • [4] Lee WPC, Mah SK, Leo CP, Wu T, Chai SP. “Performance studies of phosphorus removal using cross-flow nanofiltration”. Desalin Water Treat, 52(31-33), 5974-5982, 2014.
  • [5] Li S, Zeng W, Xu H, Jia Z, Peng Y. “Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide”. Environmental Science and Pollution Research, 27, 15463-15474, 2020.
  • [6] Oztekın M, Akgul V, Duyar A, Gocer S, Cırık, K. “Design of Ammonium Stripping Tower and Optimization of Ammonium Removal From Landfill Leachate”. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 188-196, 2020.
  • [7] Acelas NY, Martin BD, Lopez D, Jefferson B. “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media”. Chemosphere, 119, 1353-1360, 2015.
  • [8] Schuiling RD, Andrade A. “Recovery of struvite from calf manure”. Environmental Technology, 20, 767-768, 1999.
  • [9] Tünay O, Kabdaşlı I, Orhon D, Ateş E. “Characterization and Pollution Profile of Leather Tanning İndustry in Turkey”. Water Science Technology, 32(12), 1-9, 1995.
  • [10] Jaffer Y, Clark TA, Pearce P, Parsons SA. “Potential phosphorus recovery by struvite formation”. Water research, 36(7), 1834-1842, 2002.
  • [11] El Diwani G, El Rafie S, El Ibiari NN, & El-Aila HI. “Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer”. Desalination, 214(1-3), 200-214, 2007.
  • [12] Kim D, Ryu HD, Kim MS, Kim J, Lee, SI. “Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate”. Journal of Hazardous materials, 146(1-2), 81-85, 2007.
  • [13] Yetilmezsoy K, Sapci-Zengin Z. “Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer”. Journal of Hazardous materials, 166(1), 260-269, 2009.
  • [14] Rahman MM, Liu Y, Kwag JH, Ra C. “Recovery of struvite from animal wastewater and its nutrient leaching loss in soil”. Journal of hazardous materials, 186(2-3), 2026-2030, 2011.
  • [15] Barbosa SG, Peixoto L, Meulman B, Alves MM, Pereira MA. “A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources”. Chemical Engineering Journal, 298, 146-153, 2016.
  • [16] James DD. Simon AP. “Struvite Formation, Control and Recavery”. Water Research, No, 36, s. 3925-3940, 2002.
  • [17] Özcan P. “Mezbaha Endüstrisi Atıksularında Magnezyum Amonyum Fosfat Çöktürmesi İle Azot Giderimi”. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 53, 2001.
  • [18] Doyle JD, Parsons SA. “Struvite formation, control and recovery”. Water Research, 36, 3925-3940, 2002.
  • [19] Chirmuley DG. “Struvite precipitation in WWPTS, causes and solutions”. Water-Melbourne then Artarmon-, 21, 21-21, 1994.
  • [20] Liu Z, Zhao Q, Wei L, Wu D, & Ma L. “Effect of struvite seed crystal on MAP crystallization”. Journal of Chemical Technology & Biotechnology, 86(11), 1394-1398, 2011.
  • [21] Shin HS, Lee SM. “Removal of nutrients in wastewater by using magnesium salts”. Environmental Technology, 19, 283-290, 1997.
  • [22] Arnold DW, Wolfram WE. “Ammonia removal and recovery from fertilizer complex wastewaters”. 30th Purdue Industrial Waste Conference Proceedings, 760-767, 1975.
  • [23] Zydbiewska MW, Kula B. “Removal of ammonia nitrogen by the precipitation method on the example of some selected wastewaters”. Water Science Technology, 24(7), 229-234, 1991.
  • [24] Booker NA, Priestly AJ, Fraser IH. “Struvite formation in wastewater treatment plants, opportunities for nutrient recovery”. Environmental Technology, 20, 777-782, 1999.
  • [25] Zhang DM, Chen YX, Jilani G, Wu WX, Liu WL, Han ZY. “Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants”. Bioresource technology, 116, 386-395, 2012.
  • [26] Selçuk Kuşçu Ö, Celik V. “Recovery of nitrogen and phosphorus in sewage sludge by pulsed electrical field technique and struvite production”. Pamukkale Unıversity Journal of Engineering Sciences, 25(6), 700-704, 2019.
  • [27] Hu L, Yu J, Luo H, Wang H, Xu P, Zhang Y. “Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation”. Chemical Engineering Journal, 382, 1-12, 2020.
  • [28] Siegrist H. “Nitrogen removal from digester supernatant comparison of chemical and biological methods”. Water Science Technology, 34(1-2), 399-406, 1996.
  • [29] Huang H, Xu C, Zhang W. “Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology”. Bioresource technology, 102(3), 2523-2528, 2011.
  • [30] Li XZ, Zhao QL. “MAP precipitation from landfill leachate and seawater bittern waste”. Environmental Technology, 23(9), 989-1000, 2002.
  • [31] Wilsenach JA, Schuurbiers CAH, Van Loosdrecht MCM. “Phosphate and potassium recovery from source separated urine through struvite precipitation”. Water Research, 41(2), 458-466, 2007.
  • [32] Crutchik DGJM, Garrido JM. “Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater”. Water Science and Technology, 64(12), 2460-2467, 2011.
  • [33] Bayuseno AP, Schmahl WW. “Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions”. Chemosphere, 250, 1-10, 2020.
  • [34] Capdevielle A, Sýkorová E, Biscans B, Béline F, Daumer ML. “Optimization of struvite precipitation in synthetic biologically treated swine wastewater-Determination of the optimal process parameters”. Journal of hazardous materials, 244, 357-369, 2013.
  • [35] Yan H, Shih K. “Effects of calcium and ferric ions on struvite precipitation, A new assessment based on quantitative X-ray diffraction analysis”. Water Research, 95, 310-318, 2016.
  • [36] Parsons SA, Wall F, Doyle J, Oldring K, Churchley J. “Assesing the potential for struvite recovery at sewage treatment works”. Environmental Technology, 22(11), 1279-1286, 2001.
  • [37] Bouropoulos NC, Koutsoukos PG. “Spontaneous precipitation of struvite from aqueous solutions”. Journal of Crystal Growth, 213, 381-388, 2000.
  • [38] Le Corre KS. Understanding struvite crystallisation and recovery. PhD Thesis, Cranfield University, Cranfield, UK, 2006.
  • [39] Yünsel TY, Ersoy A, Ehsani A. “X-Işını Difraksiyonu Yöntemi ile Kantitatif Mineral İçeriği Tayini ve Çalışma Şartlarının Etkisi”. Artıbilim, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 2(2), 16-28, 2019.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering (Other)
Journal Section Research Article
Authors

Mustafa Öztürk

Ulusoy Bali This is me

Publication Date October 31, 2023
Published in Issue Year 2023 Volume: 29 Issue: 5

Cite

APA Öztürk, M., & Bali, U. (2023). Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(5), 537-545.
AMA Öztürk M, Bali U. Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2023;29(5):537-545.
Chicago Öztürk, Mustafa, and Ulusoy Bali. “Sulu çözeltiden Magnezyum Amonyum Fosfat (MAP) çöktürmesi Ile N Ve P Gideriminin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 5 (October 2023): 537-45.
EndNote Öztürk M, Bali U (October 1, 2023) Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 5 537–545.
IEEE M. Öztürk and U. Bali, “Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 5, pp. 537–545, 2023.
ISNAD Öztürk, Mustafa - Bali, Ulusoy. “Sulu çözeltiden Magnezyum Amonyum Fosfat (MAP) çöktürmesi Ile N Ve P Gideriminin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/5 (October 2023), 537-545.
JAMA Öztürk M, Bali U. Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:537–545.
MLA Öztürk, Mustafa and Ulusoy Bali. “Sulu çözeltiden Magnezyum Amonyum Fosfat (MAP) çöktürmesi Ile N Ve P Gideriminin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 5, 2023, pp. 537-45.
Vancouver Öztürk M, Bali U. Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(5):537-45.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif