Review
BibTex RIS Cite

Glutamate, Excitotoxicity and Releated Diseases

Year 2023, Volume: 1 Issue: 1, 32 - 62, 30.04.2023

Abstract

Glutamate is an excitatory neurotransmitter that is abundant in many central and peripheral tissues and is essential for cell survival and body homeostasis. Although its existence has been known for many years, research still reveals that excitotoxicity plays a role in the development of new pathological conditions. For this reason, glutamate and glutamate excitotoxicity must be well understood, and glutamate-related circumstances must be clarified.

References

  • 1. Alberdi, E., et al. (2010). Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47(3), 264-272. https://doi.org/10.1016/j.ceca.2009.12.010
  • 2. Andreadou, E., et al. (2008). Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis. In vivo (Athens, Greece), 22(1), 137-141. https://www.ncbi.nlm.nih.gov/pubmed/18396796
  • 3. Bak, L. K., et al. (2006). The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 98(3), 641-653. https://doi.org/10.1111/j.1471-4159.2006.03913.x
  • 4. Barone, P. (2010). Neurotransmission in Parkinson's disease: beyond dopamine. Eur J Neurol, 17(3), 364-376. https://doi.org/10.1111/j.1468-1331.2009.02900.x
  • 5. Beal, M. F. (1992). Mechanisms of excitotoxicity in neurologic diseases. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 6(15), 3338-3344. https://www.ncbi.nlm.nih.gov/pubmed/1464368
  • 6. Beck, J., et al. (2003). Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(12), 5061-5068. https://doi.org/10.1523/jneurosci.23-12-05061.2003
  • 7. Berger, U. V., & Hediger, M. A. (2000). Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. The Journal of comparative neurology, 421(3), 385-399. https://doi.org/10.1002/(sici)1096-9861(20000605)421:3<385::aid-cne7>3.0.co;2-s
  • 8. Bjørn-Yoshimoto, W. E., & Underhill, S. M. (2016). The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochemistry International, 98, 4-18. https://doi.org/https://doi.org/10.1016/j.neuint.2016.05.007
  • 9. Blandini, F. (2010). An update on the potential role of excitotoxicity in the pathogenesis of Parkinson's disease. Functional neurology, 25(2), 65-71. https://www.ncbi.nlm.nih.gov/pubmed/20923603 10. https://www.functionalneurology.com/common/php/portiere.php? ID=76365fcd56feb7343fc6eace436ef022
  • 11. Blandini, F., et al. (1996). Glutamate and Parkinson's disease. Mol Neurobiol, 12(1), 73-94. https://doi.org/10.1007/BF02740748
  • 12. Bleich, S., et al. (2003). Glutamate and the glutamate receptor system: a target for drug action. International journal of geriatric psychiatry, 18(Suppl 1), S33-40. https://doi.org/10.1002/gps.933
  • 13. Bonnet, A.-M. (2000). Involvement of Non-Dopaminergic Pathways in Parkinson???s Disease. CNS Drugs, 13(5), 351-364. https://doi.org/10.2165/00023210-200013050-00005
  • 14. Bortolotto, Z. A., et al. (1999). Kainate receptors are involved in synaptic plasticity. Nature, 402(6759), 297-301. https://doi.org/10.1038/46290
  • 15. Cartmell, J., & Schoepp, D. D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 75(3), 889-907. https://doi.org/10.1046/j.1471-4159.2000.0750889.x
  • 16. Chang, P. K., et al. (2012). AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook. The European journal of neuroscience, 35(12), 1908-1916. https://doi.org/10.1111/j.1460-9568.2012.08165.x
  • 17. Choi, D. W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neuroscience letters, 58(3), 293-297. https://doi.org/10.1016/0304-3940(85)90069-2
  • 18. Choi, D. W., & Rothman, S. M. (1990). The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annual review of neuroscience, 13, 171-182. https://doi.org/10.1146/annurev.ne.13.030190.001131
  • 19. Cieri, D., et al. (2017). Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness. Biochemical and biophysical research communications, 483(4), 1020-1030. https://doi.org/10.1016/j.bbrc.2016.08.153
  • 20. Danbolt, N. C. (2001). Glutamate uptake. Prog Neurobiol, 65(1), 1-105. https://doi.org/10.1016/s0301-0082(00)00067-8
  • 21. De Pablo-Fernandez, E., et al. (2019). Prognosis and Neuropathologic Correlation of Clinical Subtypes of Parkinson Disease. JAMA neurology, 76(4), 470-479. https://doi.org/10.1001/jamaneurol.2018.4377
  • 22. Dickson, D. W. (2018). Neuropathology of Parkinson disease. Parkinsonism Relat Disord, 46 Suppl 1, S30-S33. https://doi.org/10.1016/j.parkreldis.2017.07.033
  • 23. Diering, G. H., & Huganir, R. L. (2018). The AMPA Receptor Code of Synaptic Plasticity. Neuron, 100(2), 314-329. https://doi.org/https://doi.org/10.1016/j.neuron.2018.10.018
  • 24. Duchen, M. R. (2004). Roles of mitochondria in health and disease. Diabetes, 53 Suppl 1, S96-102. https://doi.org/10.2337/diabetes.53.2007.s96
  • 25. Eulenburg, V., & Gomeza, J. (2010). Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Research Reviews, 63(1), 103-112. https://doi.org/https://doi.org/10.1016/j.brainresrev.2010.01.003
  • 26. Farooqui, T., & Farooqui, A. A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mechanisms of ageing and development, 130(4), 203-215.
  • 27. Featherstone, D. E. (2010). Intercellular glutamate signaling in the nervous system and beyond. ACS chemical neuroscience, 1(1), 4-12. https://doi.org/10.1021/cn900006n
  • 28. Fernandez-Tome, P., et al. (2004). Beta-amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis, 15(3), 580-589. https://doi.org/10.1016/j.nbd.2003.12.006
  • 29. Furness, D. N., & Lehre, K. P. (1997). Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. The European journal of neuroscience, 9(9), 1961-1969. https://doi.org/10.1111/j.1460-9568.1997.tb00763.x
  • 30. Ganor, Y., & Levite, M. (2014). The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J Neural Transm (Vienna), 121(8), 983-1006. https://doi.org/10.1007/s00702-014-1167-5
  • 31. Garcia-Esparcia, P., et al. (2018). Glutamate Transporter GLT1 Expression in Alzheimer Disease and Dementia With Lewy Bodies. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00122
  • 32. Gasbarri, A., & Pompili, A. (2014). 4 - Involvement of Glutamate in Learning and Memory. In A. Meneses (Ed.), Identification of Neural Markers Accompanying Memory (pp. 63-77). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-408139-0.00004-3
  • 33. Gill, S. S., & Pulido, O. M. (2001). Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol, 29(2), 208-223. https://doi.org/10.1080/019262301317052486
  • 34. Han, D., et al. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. The Biochemical journal, 353(Pt 2), 411-416. https://doi.org/10.1042/0264-6021:3530411
  • 35. Hardingham, G. E. (2006). Pro-survival signalling from the NMDA receptor. Biochem Soc Trans, 34(Pt 5), 936-938. https://doi.org/10.1042/BST0340936
  • 36. Hardingham, G. E., & Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature reviews. Neuroscience, 11(10), 682-696. https://doi.org/10.1038/nrn2911
  • 37. Hardingham, G. E., & Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature reviews. Neuroscience, 11(10), 682-696. https://doi.org/10.1038/nrn2911
  • 38. Hediger, M. A. (1999). Glutamate transporters in kidney and brain. American Journal of Physiology-Renal Physiology, 277(4), F487-F492. https://doi.org/10.1152/ajprenal.1999.277.4.F487
  • 39. Henley, J. M., & Wilkinson, K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nature reviews. Neuroscience, 17(6), 337-350. https://doi.org/10.1038/nrn.2016.37
  • 40. Hetman, M., & Kharebava, G. (2006). Survival signaling pathways activated by NMDA receptors. Current topics in medicinal chemistry, 6(8), 787-799. https://doi.org/10.2174/156802606777057553
  • 41. Heuss, C., et al. (1999). G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci, 2(12), 1070-1077. https://doi.org/10.1038/15996
  • 42. Hinoi, E., et al. (2004). Glutamate signaling in peripheral tissues. Eur J Biochem, 271(1), 1-13. https://doi.org/10.1046/j.1432-1033.2003.03907.x
  • 43. Hsieh, H., et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52(5), 831-843. https://doi.org/10.1016/j.neuron.2006.10.035
  • 44. Huettner, J. E. (2003). Kainate receptors and synaptic transmission. Prog Neurobiol, 70(5), 387-407. https://doi.org/10.1016/s0301-0082(03)00122-9
  • 45. Johnson, J. W., & Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325(6104), 529-531. https://doi.org/10.1038/325529a0
  • 46. Kamat, P. K., et al. (2016). Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies. Mol Neurobiol, 53(1), 648-661. https://doi.org/10.1007/s12035-014-9053-6
  • 47. Kanai, Y., et al. (2013). The SLC1 high-affinity glutamate and neutral amino acid transporter family. Molecular aspects of medicine, 34(2-3), 108-120. https://doi.org/10.1016/j.mam.2013.01.001
  • 48. Katsuta, K., et al. (1995). The neuroprotective effect of the novel noncompetitive NMDA antagonist, FR115427 in focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 15(2), 345-348. https://doi.org/10.1038/jcbfm.1995.40
  • 49. Komuro, H., & Rakic, P. (1993). Modulation of neuronal migration by NMDA receptors. Science, 260(5104), 95-97. https://doi.org/10.1126/science.8096653
  • 50. Koutsilieri, E., & Riederer, P. (2007). Excitotoxicity and new antiglutamatergic strategies in Parkinson's disease and Alzheimer's disease. Parkinsonism Relat Disord, 13 Suppl 3, S329-331. https://doi.org/10.1016/S1353-8020(08)70025-7
  • 51. Krebs, H. A. (1935). Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. The Biochemical journal, 29(8), 1951-1969. https://doi.org/10.1042/bj0291951
  • 52. Kuchibhotla, K. V., et al. (2008). Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron, 59(2), 214-225. https://doi.org/10.1016/j.neuron.2008.06.008
  • 53. Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch, 460(2), 525-542. https://doi.org/10.1007/s00424-010-0809-1
  • 54. Lehre, K. P., & Danbolt, N. C. (1998). The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain. The Journal of Neuroscience, 18(21), 8751-8757. https://doi.org/10.1523/jneurosci.18-21-08751.1998
  • 55. Lehre, K. P., & Danbolt, N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(21), 8751-8757. https://doi.org/10.1523/JNEUROSCI.18-21-08751.1998
  • 56. Lerma, J. (2006). Kainate receptor physiology. Current opinion in pharmacology, 6(1), 89-97. https://doi.org/10.1016/j.coph.2005.08.004
  • 57. Leveille, F., et al. (2008). Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 22(12), 4258-4271. https://doi.org/10.1096/fj.08-107268
  • 58. Li, F., & Tsien, J. Z. (2009). Memory and the NMDA receptors. The New England journal of medicine, 361(3), 302-303. https://doi.org/10.1056/NEJMcibr0902052
  • 59. Li, G., et al. (2015). Characterization and Regulation of the Amino Acid Transporter SNAT2 in the Small Intestine of Piglets. PLOS ONE, 10(6), e0128207. https://doi.org/10.1371/journal.pone.0128207
  • 60. Li, S., et al. (1997). Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol, 56(8), 901-911. https://doi.org/10.1097/00005072-199708000-00008
  • 61. Lin, C. L., et al. (1998). Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron, 20(3), 589-602. https://doi.org/10.1016/s0896-6273(00)80997-6
  • 62. Liu, L., et al. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304(5673), 1021-1024. https://doi.org/10.1126/science.1096615
  • 63. Liu, Y., et al. (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(11), 2846-2857. https://doi.org/10.1523/jneurosci.0116-07.2007
  • 64. Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual review of neuroscience, 25, 103-126. https://doi.org/10.1146/annurev.neuro.25.112701.142758
  • 65. Maragakis, N. J., & Rothstein, J. D. (2001). Glutamate transporters in neurologic disease. Archives of neurology, 58(3), 365-370. https://doi.org/10.1001/archneur.58.3.365
  • 66. Marmiroli, P., & Cavaletti, G. (2012). The glutamatergic neurotransmission in the central nervous system. Current medicinal chemistry, 19(9), 1269-1276. https://doi.org/10.2174/092986712799462711
  • 67. Mathis, S., et al. (2017). Current view and perspectives in amyotrophic lateral sclerosis. Neural Regeneration Research, 12(2), 181. https://doi.org/10.4103/1673-5374.200794
  • 68. Mayer, M. L. (2011). Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Current opinion in neurobiology, 21(2), 283-290. https://doi.org/10.1016/j.conb.2011.02.001
  • 69. Mayer, M. L., & Armstrong, N. (2004). Structure and function of glutamate receptor ion channels. Annu Rev Physiol, 66(1), 161-181. https://doi.org/10.1146/annurev.physiol.66.050802.084104
  • 70. Mayer, M. L., & Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol, 28(3), 197-276. https://doi.org/10.1016/0301-0082(87)90011-6
  • 71. Meldrum, B., & Garthwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci, 11(9), 379-387. https://doi.org/10.1016/0165-6147(90)90184-a
  • 72. Meldrum, B. S. (1994). The role of glutamate in epilepsy and other CNS disorders. Neurology, 44(11 Suppl 8), S14-23. https://www.ncbi.nlm.nih.gov/pubmed/7970002
  • 73. Mennerick, S., et al. (1998). Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(12), 4490-4499. https://doi.org/10.1523/JNEUROSCI.18-12-04490.1998
  • 74. Mercier, M. S., & Lodge, D. (2014). Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res, 39(10), 1876-1894. https://doi.org/10.1007/s11064-014-1415-y
  • 75. Muller, F. (2000). The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J Am Aging Assoc, 23(4), 227-253. https://doi.org/10.1007/s11357-000-0022-9
  • 76. Nicholls, D. (2004). Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Current molecular medicine, 4(2), 149-177.
  • 77. Niciu, M. J., et al. (2012). Overview of glutamatergic neurotransmission in the nervous system. Pharmacology, biochemistry, and behavior, 100(4), 656-664. https://doi.org/10.1016/j.pbb.2011.08.008
  • 78. Novelli, A., et al. (1988). Glutamate Becomes Neurotoxic Via the N-Methyl-D-Aspartate Receptor When Intracellular Energy-Levels Are Reduced. Brain Research, 451(1-2), 205-212. https://doi.org/Doi 10.1016/0006-8993(88)90765-2
  • 79. O'Shea, R. D. (2002). Roles and regulation of glutamate transporters in the central nervous system. Clinical and experimental pharmacology & physiology, 29(11), 1018-1023. https://doi.org/10.1046/j.1440-1681.2002.03770.x
  • 80. Ohishi, H., et al. (1994). Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron, 13(1), 55-66. https://doi.org/10.1016/0896-6273(94)90459-6
  • 81. Orrenius, S. (2004). Mitochondrial regulation of apoptotic cell death. Toxicology letters, 149(1-3), 19-23. https://doi.org/10.1016/j.toxlet.2003.12.017
  • 82. Ottersen, O. P. (1989). Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol (Berl), 180(1), 1-15. https://doi.org/10.1007/bf00321895
  • 83. Ottersen, O. P., et al. (1992). Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience, 46(3), 519-534. https://doi.org/10.1016/0306-4522(92)90141-n
  • 84. Owe, S. G., et al. (2006). The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. The Journal of physiology, 577(Pt 2), 591-599. https://doi.org/10.1113/jphysiol.2006.116830
  • 85. Pajarillo, E., et al. (2019). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 161, 107559. https://doi.org/10.1016/j.neuropharm.2019.03.002
  • 86. Pallo, S. P., et al. (2016). Mechanisms of tau and Abeta-induced excitotoxicity. Brain Res, 1634, 119-131. https://doi.org/10.1016/j.brainres.2015.12.048
  • 87. Palmer, C. L., et al. (2005). The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacological reviews, 57(2), 253-277. https://doi.org/10.1124/pr.57.2.7
  • 88. Park, C. K., et al. (1988). The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Annals of neurology, 24(4), 543-551. https://doi.org/10.1002/ana.410240411
  • 89. Parsons, Matthew P., & Raymond, Lynn A. (2014). Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 82(2), 279-293. https://doi.org/https://doi.org/10.1016/j.neuron.2014.03.030
  • 90. Peng, T. I., & Jou, M. J. (2010). Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci, 1201(1), 183-188. https://doi.org/10.1111/j.1749-6632.2010.05634.x
  • 91. Perkins, E. M., et al. (2018). Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 27(15), 2614-2627. https://doi.org/10.1093/hmg/ddy169
  • 92. Perry, T. L., et al. (1971). Free amino acids and related compounds in biopsies of human brain. J Neurochem, 18(3), 521-528. https://doi.org/10.1111/j.1471-4159.1971.tb11980.x
  • 93. Plaitakis, A., & Constantakakis, E. (1993). Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartylglutamate in amyotrophic lateral sclerosis. Brain Research Bulletin, 30(3-4), 381-386. https://doi.org/10.1016/0361-9230(93)90269-h
  • 94. Poewe, W., et al. (2017). Parkinson disease. Nature reviews. Disease primers, 3, 17013. https://doi.org/10.1038/nrdp.2017.13
  • 95. Pow, D. V., & Barnett, N. L. (2000). Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neuroscience letters, 280(1), 21-24. https://doi.org/https://doi.org/10.1016/S0304-3940(99)00988-X
  • 96. Quintanilla, R. A., et al. (2012). Truncated tau and Abeta cooperatively impair mitochondria in primary neurons. Neurobiol Aging, 33(3), 619 e625-635. https://doi.org/10.1016/j.neurobiolaging.2011.02.007
  • 97. Radi, R., et al. (1991a). Peroxynitrite Oxidation of Sulfhydryls - the Cytotoxic Potential of Superoxide and Nitric-Oxide. Journal of Biological Chemistry, 266(7), 4244-4250. <Go to ISI>://WOS:A1991FA69400037
  • 98. Radi, R., et al. (1991b). Peroxynitrite-Induced Membrane Lipid-Peroxidation - the Cytotoxic Potential of Superoxide and Nitric-Oxide. Archives of biochemistry and biophysics, 288(2), 481-487. https://doi.org/Doi 10.1016/0003-9861(91)90224-7
  • 99. Rao, V. K., et al. (2014). Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochimica et biophysica acta, 1842(8), 1267-1272. https://doi.org/10.1016/j.bbadis.2013.09.003
  • 100. Rauen, T., et al. (1996). Differential expression of three glutamate transporter subtypes in the rat retina. Cell and tissue research, 286(3), 325-336. https://doi.org/10.1007/s004410050702
  • 101. Rhein, V., et al. (2009). Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20057-20062. https://doi.org/10.1073/pnas.0905529106
  • 102. Riedel, G., et al. (2003). Glutamate receptor function in learning and memory. Behavioural brain research, 140(1-2), 1-47. https://doi.org/10.1016/s0166-4328(02)00272-3
  • 103. Robberecht, W., & Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nature reviews. Neuroscience, 14(4), 248-264. https://doi.org/10.1038/nrn3430
  • 104. Rothstein, J. D., et al. (1994). Localization of neuronal and glial glutamate transporters. Neuron, 13(3), 713-725. https://doi.org/10.1016/0896-6273(94)90038-8
  • 105. Salgo, M. G., et al. (1995). Peroxynitrite Causes DNA Nicks in Plasmid Pbr322. Biochemical and biophysical research communications, 210(3), 1025-1030. https://doi.org/DOI 10.1006/bbrc.1995.1759
  • 106. Saroff, D., et al. (2000). Selective vulnerability of spinal cord motor neurons to non-NMDA toxicity. Neuroreport, 11(5), 1117-1121. https://doi.org/10.1097/00001756-200004070-00041
  • 107. Sasaki, Y. F., et al. (2002). Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. Journal of neurophysiology, 87(4), 2052-2063.
  • 108. Sattler, R., et al. (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284(5421), 1845-1848. https://doi.org/DOI 10.1126/science.284.5421.1845
  • 109. Sattler, R., et al. (2000). Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(1), 22-33. https://doi.org/10.1523/JNEUROSCI.20-01-00022.2000
  • 110. Scott, H. A., et al. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging, 32(3), 553 e551-511. https://doi.org/10.1016/j.neurobiolaging.2010.03.008
  • 111. Sheng, M., et al. (2012). Synapses and Alzheimer's disease. Cold Spring Harb Perspect Biol, 4(5), a005777-a005777. https://doi.org/10.1101/cshperspect.a005777
  • 112. Small, S. A., & Duff, K. (2008). Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron, 60(4), 534-542. https://doi.org/10.1016/j.neuron.2008.11.007
  • 113. Song, I., & Huganir, R. L. (2002). Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences, 25(11), 578-588. https://doi.org/https://doi.org/10.1016/S0166-2236(02)02270-1
  • 114. Surmeier, D. J., & Schumacker, P. T. (2013). Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. The Journal of biological chemistry, 288(15), 10736-10741. https://doi.org/10.1074/jbc.R112.410530
  • 115. Surmeier, D. J., et al. (2017). Calcium and Parkinson's disease. Biochemical and biophysical research communications, 483(4), 1013-1019. https://doi.org/10.1016/j.bbrc.2016.08.168
  • 116. Talantova, M., et al. (2013). Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proceedings of the National Academy of Sciences of the United States of America, 110(27), E2518-2527. https://doi.org/10.1073/pnas.1306832110
  • 117. Terasaki, Y., et al. (2010). Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab, 30(8), 1441-1449. https://doi.org/10.1038/jcbfm.2010.18
  • 118. Texido, L., et al. (2011). Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium, 49(3), 184-190. https://doi.org/10.1016/j.ceca.2011.02.001
  • 119. Thayer, S. A., & Wang, G. J. (1995). Glutamate-induced calcium loads: effects on energy metabolism and neuronal viability. Clinical and experimental pharmacology & physiology, 22(4), 303-304. https://doi.org/10.1111/j.1440-1681.1995.tb02004.x
  • 120. Trotti, D., et al. (1999). SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature neuroscience, 2(5), 427-433. https://doi.org/10.1038/8091
  • 121. Tse, D. Y., et al. (2014). Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses. Vision Research, 103, 63-74. https://doi.org/https://doi.org/10.1016/j.visres.2014.06.005
  • 122. Vandenberg, R. J., & Ryan, R. M. (2013). Mechanisms of glutamate transport. Physiological reviews, 93(4), 1621-1657. https://doi.org/10.1152/physrev.00007.2013
  • 123. Vandenberghe, W., et al. (2000). AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(1), 123-132. https://doi.org/10.1523/JNEUROSCI.20-01-00123.2000
  • 124. Wang, G. J., & Thayer, S. A. (1996). Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. Journal of neurophysiology, 76(3), 1611-1621. https://doi.org/10.1152/jn.1996.76.3.1611
  • 125. Wang, K. K. W. (2000). Calpain and caspase: can you tell the difference? Trends in Neurosciences, 23(1), 20-26. https://doi.org/10.1016/s0166-2236(99)01479-4
  • 126. Wang, R., & Reddy, P. H. (2017). Role of Glutamate and NMDA Receptors in Alzheimer's Disease. J Alzheimers Dis, 57(4), 1041-1048. https://doi.org/10.3233/JAD-160763
  • 127. Weiss, J. H. (2011). Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci, 4, 42. https://doi.org/10.3389/fnmol.2011.00042
  • 128. Yadav, R., et al. (2017). AMPA Receptors: Molecular Biology and Pharmacology☆. In Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809324-5.02325-7
  • 129. Yang, J. L., et al. (2011). The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mech Ageing Dev, 132(8-9), 405-411. https://doi.org/10.1016/j.mad.2011.06.005
  • 130. Zerangue, N., & Kavanaugh, M. P. (1996). Flux coupling in a neuronal glutamate transporter. Nature, 383(6601), 634-637. https://doi.org/10.1038/383634a0
  • 131. Zhang, Z., et al. (2019). Roles of Glutamate Receptors in Parkinson's Disease. Int J Mol Sci, 20(18), 4391. https://doi.org/10.3390/ijms20184391
  • 132. Zhu, S., & Paoletti, P. (2015). Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Current opinion in pharmacology, 20, 14-23. https://doi.org/10.1016/j.coph.2014.10.009
  • 133. Zou, J., et al. (2017). Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca2+. International Journal of Molecular Sciences, 18(3), 672. https://doi.org/10.3390/ijms18030672
  • 134. Zumkehr, J., et al. (2015). Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol Aging, 36(7), 2260-2271.
Year 2023, Volume: 1 Issue: 1, 32 - 62, 30.04.2023

Abstract

References

  • 1. Alberdi, E., et al. (2010). Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47(3), 264-272. https://doi.org/10.1016/j.ceca.2009.12.010
  • 2. Andreadou, E., et al. (2008). Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis. In vivo (Athens, Greece), 22(1), 137-141. https://www.ncbi.nlm.nih.gov/pubmed/18396796
  • 3. Bak, L. K., et al. (2006). The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 98(3), 641-653. https://doi.org/10.1111/j.1471-4159.2006.03913.x
  • 4. Barone, P. (2010). Neurotransmission in Parkinson's disease: beyond dopamine. Eur J Neurol, 17(3), 364-376. https://doi.org/10.1111/j.1468-1331.2009.02900.x
  • 5. Beal, M. F. (1992). Mechanisms of excitotoxicity in neurologic diseases. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 6(15), 3338-3344. https://www.ncbi.nlm.nih.gov/pubmed/1464368
  • 6. Beck, J., et al. (2003). Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(12), 5061-5068. https://doi.org/10.1523/jneurosci.23-12-05061.2003
  • 7. Berger, U. V., & Hediger, M. A. (2000). Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. The Journal of comparative neurology, 421(3), 385-399. https://doi.org/10.1002/(sici)1096-9861(20000605)421:3<385::aid-cne7>3.0.co;2-s
  • 8. Bjørn-Yoshimoto, W. E., & Underhill, S. M. (2016). The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochemistry International, 98, 4-18. https://doi.org/https://doi.org/10.1016/j.neuint.2016.05.007
  • 9. Blandini, F. (2010). An update on the potential role of excitotoxicity in the pathogenesis of Parkinson's disease. Functional neurology, 25(2), 65-71. https://www.ncbi.nlm.nih.gov/pubmed/20923603 10. https://www.functionalneurology.com/common/php/portiere.php? ID=76365fcd56feb7343fc6eace436ef022
  • 11. Blandini, F., et al. (1996). Glutamate and Parkinson's disease. Mol Neurobiol, 12(1), 73-94. https://doi.org/10.1007/BF02740748
  • 12. Bleich, S., et al. (2003). Glutamate and the glutamate receptor system: a target for drug action. International journal of geriatric psychiatry, 18(Suppl 1), S33-40. https://doi.org/10.1002/gps.933
  • 13. Bonnet, A.-M. (2000). Involvement of Non-Dopaminergic Pathways in Parkinson???s Disease. CNS Drugs, 13(5), 351-364. https://doi.org/10.2165/00023210-200013050-00005
  • 14. Bortolotto, Z. A., et al. (1999). Kainate receptors are involved in synaptic plasticity. Nature, 402(6759), 297-301. https://doi.org/10.1038/46290
  • 15. Cartmell, J., & Schoepp, D. D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 75(3), 889-907. https://doi.org/10.1046/j.1471-4159.2000.0750889.x
  • 16. Chang, P. K., et al. (2012). AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook. The European journal of neuroscience, 35(12), 1908-1916. https://doi.org/10.1111/j.1460-9568.2012.08165.x
  • 17. Choi, D. W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neuroscience letters, 58(3), 293-297. https://doi.org/10.1016/0304-3940(85)90069-2
  • 18. Choi, D. W., & Rothman, S. M. (1990). The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annual review of neuroscience, 13, 171-182. https://doi.org/10.1146/annurev.ne.13.030190.001131
  • 19. Cieri, D., et al. (2017). Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness. Biochemical and biophysical research communications, 483(4), 1020-1030. https://doi.org/10.1016/j.bbrc.2016.08.153
  • 20. Danbolt, N. C. (2001). Glutamate uptake. Prog Neurobiol, 65(1), 1-105. https://doi.org/10.1016/s0301-0082(00)00067-8
  • 21. De Pablo-Fernandez, E., et al. (2019). Prognosis and Neuropathologic Correlation of Clinical Subtypes of Parkinson Disease. JAMA neurology, 76(4), 470-479. https://doi.org/10.1001/jamaneurol.2018.4377
  • 22. Dickson, D. W. (2018). Neuropathology of Parkinson disease. Parkinsonism Relat Disord, 46 Suppl 1, S30-S33. https://doi.org/10.1016/j.parkreldis.2017.07.033
  • 23. Diering, G. H., & Huganir, R. L. (2018). The AMPA Receptor Code of Synaptic Plasticity. Neuron, 100(2), 314-329. https://doi.org/https://doi.org/10.1016/j.neuron.2018.10.018
  • 24. Duchen, M. R. (2004). Roles of mitochondria in health and disease. Diabetes, 53 Suppl 1, S96-102. https://doi.org/10.2337/diabetes.53.2007.s96
  • 25. Eulenburg, V., & Gomeza, J. (2010). Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Research Reviews, 63(1), 103-112. https://doi.org/https://doi.org/10.1016/j.brainresrev.2010.01.003
  • 26. Farooqui, T., & Farooqui, A. A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mechanisms of ageing and development, 130(4), 203-215.
  • 27. Featherstone, D. E. (2010). Intercellular glutamate signaling in the nervous system and beyond. ACS chemical neuroscience, 1(1), 4-12. https://doi.org/10.1021/cn900006n
  • 28. Fernandez-Tome, P., et al. (2004). Beta-amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis, 15(3), 580-589. https://doi.org/10.1016/j.nbd.2003.12.006
  • 29. Furness, D. N., & Lehre, K. P. (1997). Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. The European journal of neuroscience, 9(9), 1961-1969. https://doi.org/10.1111/j.1460-9568.1997.tb00763.x
  • 30. Ganor, Y., & Levite, M. (2014). The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J Neural Transm (Vienna), 121(8), 983-1006. https://doi.org/10.1007/s00702-014-1167-5
  • 31. Garcia-Esparcia, P., et al. (2018). Glutamate Transporter GLT1 Expression in Alzheimer Disease and Dementia With Lewy Bodies. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00122
  • 32. Gasbarri, A., & Pompili, A. (2014). 4 - Involvement of Glutamate in Learning and Memory. In A. Meneses (Ed.), Identification of Neural Markers Accompanying Memory (pp. 63-77). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-408139-0.00004-3
  • 33. Gill, S. S., & Pulido, O. M. (2001). Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol, 29(2), 208-223. https://doi.org/10.1080/019262301317052486
  • 34. Han, D., et al. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. The Biochemical journal, 353(Pt 2), 411-416. https://doi.org/10.1042/0264-6021:3530411
  • 35. Hardingham, G. E. (2006). Pro-survival signalling from the NMDA receptor. Biochem Soc Trans, 34(Pt 5), 936-938. https://doi.org/10.1042/BST0340936
  • 36. Hardingham, G. E., & Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature reviews. Neuroscience, 11(10), 682-696. https://doi.org/10.1038/nrn2911
  • 37. Hardingham, G. E., & Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature reviews. Neuroscience, 11(10), 682-696. https://doi.org/10.1038/nrn2911
  • 38. Hediger, M. A. (1999). Glutamate transporters in kidney and brain. American Journal of Physiology-Renal Physiology, 277(4), F487-F492. https://doi.org/10.1152/ajprenal.1999.277.4.F487
  • 39. Henley, J. M., & Wilkinson, K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nature reviews. Neuroscience, 17(6), 337-350. https://doi.org/10.1038/nrn.2016.37
  • 40. Hetman, M., & Kharebava, G. (2006). Survival signaling pathways activated by NMDA receptors. Current topics in medicinal chemistry, 6(8), 787-799. https://doi.org/10.2174/156802606777057553
  • 41. Heuss, C., et al. (1999). G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci, 2(12), 1070-1077. https://doi.org/10.1038/15996
  • 42. Hinoi, E., et al. (2004). Glutamate signaling in peripheral tissues. Eur J Biochem, 271(1), 1-13. https://doi.org/10.1046/j.1432-1033.2003.03907.x
  • 43. Hsieh, H., et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52(5), 831-843. https://doi.org/10.1016/j.neuron.2006.10.035
  • 44. Huettner, J. E. (2003). Kainate receptors and synaptic transmission. Prog Neurobiol, 70(5), 387-407. https://doi.org/10.1016/s0301-0082(03)00122-9
  • 45. Johnson, J. W., & Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325(6104), 529-531. https://doi.org/10.1038/325529a0
  • 46. Kamat, P. K., et al. (2016). Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies. Mol Neurobiol, 53(1), 648-661. https://doi.org/10.1007/s12035-014-9053-6
  • 47. Kanai, Y., et al. (2013). The SLC1 high-affinity glutamate and neutral amino acid transporter family. Molecular aspects of medicine, 34(2-3), 108-120. https://doi.org/10.1016/j.mam.2013.01.001
  • 48. Katsuta, K., et al. (1995). The neuroprotective effect of the novel noncompetitive NMDA antagonist, FR115427 in focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 15(2), 345-348. https://doi.org/10.1038/jcbfm.1995.40
  • 49. Komuro, H., & Rakic, P. (1993). Modulation of neuronal migration by NMDA receptors. Science, 260(5104), 95-97. https://doi.org/10.1126/science.8096653
  • 50. Koutsilieri, E., & Riederer, P. (2007). Excitotoxicity and new antiglutamatergic strategies in Parkinson's disease and Alzheimer's disease. Parkinsonism Relat Disord, 13 Suppl 3, S329-331. https://doi.org/10.1016/S1353-8020(08)70025-7
  • 51. Krebs, H. A. (1935). Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. The Biochemical journal, 29(8), 1951-1969. https://doi.org/10.1042/bj0291951
  • 52. Kuchibhotla, K. V., et al. (2008). Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron, 59(2), 214-225. https://doi.org/10.1016/j.neuron.2008.06.008
  • 53. Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch, 460(2), 525-542. https://doi.org/10.1007/s00424-010-0809-1
  • 54. Lehre, K. P., & Danbolt, N. C. (1998). The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain. The Journal of Neuroscience, 18(21), 8751-8757. https://doi.org/10.1523/jneurosci.18-21-08751.1998
  • 55. Lehre, K. P., & Danbolt, N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(21), 8751-8757. https://doi.org/10.1523/JNEUROSCI.18-21-08751.1998
  • 56. Lerma, J. (2006). Kainate receptor physiology. Current opinion in pharmacology, 6(1), 89-97. https://doi.org/10.1016/j.coph.2005.08.004
  • 57. Leveille, F., et al. (2008). Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 22(12), 4258-4271. https://doi.org/10.1096/fj.08-107268
  • 58. Li, F., & Tsien, J. Z. (2009). Memory and the NMDA receptors. The New England journal of medicine, 361(3), 302-303. https://doi.org/10.1056/NEJMcibr0902052
  • 59. Li, G., et al. (2015). Characterization and Regulation of the Amino Acid Transporter SNAT2 in the Small Intestine of Piglets. PLOS ONE, 10(6), e0128207. https://doi.org/10.1371/journal.pone.0128207
  • 60. Li, S., et al. (1997). Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol, 56(8), 901-911. https://doi.org/10.1097/00005072-199708000-00008
  • 61. Lin, C. L., et al. (1998). Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron, 20(3), 589-602. https://doi.org/10.1016/s0896-6273(00)80997-6
  • 62. Liu, L., et al. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304(5673), 1021-1024. https://doi.org/10.1126/science.1096615
  • 63. Liu, Y., et al. (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(11), 2846-2857. https://doi.org/10.1523/jneurosci.0116-07.2007
  • 64. Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual review of neuroscience, 25, 103-126. https://doi.org/10.1146/annurev.neuro.25.112701.142758
  • 65. Maragakis, N. J., & Rothstein, J. D. (2001). Glutamate transporters in neurologic disease. Archives of neurology, 58(3), 365-370. https://doi.org/10.1001/archneur.58.3.365
  • 66. Marmiroli, P., & Cavaletti, G. (2012). The glutamatergic neurotransmission in the central nervous system. Current medicinal chemistry, 19(9), 1269-1276. https://doi.org/10.2174/092986712799462711
  • 67. Mathis, S., et al. (2017). Current view and perspectives in amyotrophic lateral sclerosis. Neural Regeneration Research, 12(2), 181. https://doi.org/10.4103/1673-5374.200794
  • 68. Mayer, M. L. (2011). Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Current opinion in neurobiology, 21(2), 283-290. https://doi.org/10.1016/j.conb.2011.02.001
  • 69. Mayer, M. L., & Armstrong, N. (2004). Structure and function of glutamate receptor ion channels. Annu Rev Physiol, 66(1), 161-181. https://doi.org/10.1146/annurev.physiol.66.050802.084104
  • 70. Mayer, M. L., & Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol, 28(3), 197-276. https://doi.org/10.1016/0301-0082(87)90011-6
  • 71. Meldrum, B., & Garthwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci, 11(9), 379-387. https://doi.org/10.1016/0165-6147(90)90184-a
  • 72. Meldrum, B. S. (1994). The role of glutamate in epilepsy and other CNS disorders. Neurology, 44(11 Suppl 8), S14-23. https://www.ncbi.nlm.nih.gov/pubmed/7970002
  • 73. Mennerick, S., et al. (1998). Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(12), 4490-4499. https://doi.org/10.1523/JNEUROSCI.18-12-04490.1998
  • 74. Mercier, M. S., & Lodge, D. (2014). Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res, 39(10), 1876-1894. https://doi.org/10.1007/s11064-014-1415-y
  • 75. Muller, F. (2000). The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J Am Aging Assoc, 23(4), 227-253. https://doi.org/10.1007/s11357-000-0022-9
  • 76. Nicholls, D. (2004). Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Current molecular medicine, 4(2), 149-177.
  • 77. Niciu, M. J., et al. (2012). Overview of glutamatergic neurotransmission in the nervous system. Pharmacology, biochemistry, and behavior, 100(4), 656-664. https://doi.org/10.1016/j.pbb.2011.08.008
  • 78. Novelli, A., et al. (1988). Glutamate Becomes Neurotoxic Via the N-Methyl-D-Aspartate Receptor When Intracellular Energy-Levels Are Reduced. Brain Research, 451(1-2), 205-212. https://doi.org/Doi 10.1016/0006-8993(88)90765-2
  • 79. O'Shea, R. D. (2002). Roles and regulation of glutamate transporters in the central nervous system. Clinical and experimental pharmacology & physiology, 29(11), 1018-1023. https://doi.org/10.1046/j.1440-1681.2002.03770.x
  • 80. Ohishi, H., et al. (1994). Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron, 13(1), 55-66. https://doi.org/10.1016/0896-6273(94)90459-6
  • 81. Orrenius, S. (2004). Mitochondrial regulation of apoptotic cell death. Toxicology letters, 149(1-3), 19-23. https://doi.org/10.1016/j.toxlet.2003.12.017
  • 82. Ottersen, O. P. (1989). Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol (Berl), 180(1), 1-15. https://doi.org/10.1007/bf00321895
  • 83. Ottersen, O. P., et al. (1992). Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience, 46(3), 519-534. https://doi.org/10.1016/0306-4522(92)90141-n
  • 84. Owe, S. G., et al. (2006). The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. The Journal of physiology, 577(Pt 2), 591-599. https://doi.org/10.1113/jphysiol.2006.116830
  • 85. Pajarillo, E., et al. (2019). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 161, 107559. https://doi.org/10.1016/j.neuropharm.2019.03.002
  • 86. Pallo, S. P., et al. (2016). Mechanisms of tau and Abeta-induced excitotoxicity. Brain Res, 1634, 119-131. https://doi.org/10.1016/j.brainres.2015.12.048
  • 87. Palmer, C. L., et al. (2005). The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacological reviews, 57(2), 253-277. https://doi.org/10.1124/pr.57.2.7
  • 88. Park, C. K., et al. (1988). The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Annals of neurology, 24(4), 543-551. https://doi.org/10.1002/ana.410240411
  • 89. Parsons, Matthew P., & Raymond, Lynn A. (2014). Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 82(2), 279-293. https://doi.org/https://doi.org/10.1016/j.neuron.2014.03.030
  • 90. Peng, T. I., & Jou, M. J. (2010). Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci, 1201(1), 183-188. https://doi.org/10.1111/j.1749-6632.2010.05634.x
  • 91. Perkins, E. M., et al. (2018). Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 27(15), 2614-2627. https://doi.org/10.1093/hmg/ddy169
  • 92. Perry, T. L., et al. (1971). Free amino acids and related compounds in biopsies of human brain. J Neurochem, 18(3), 521-528. https://doi.org/10.1111/j.1471-4159.1971.tb11980.x
  • 93. Plaitakis, A., & Constantakakis, E. (1993). Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartylglutamate in amyotrophic lateral sclerosis. Brain Research Bulletin, 30(3-4), 381-386. https://doi.org/10.1016/0361-9230(93)90269-h
  • 94. Poewe, W., et al. (2017). Parkinson disease. Nature reviews. Disease primers, 3, 17013. https://doi.org/10.1038/nrdp.2017.13
  • 95. Pow, D. V., & Barnett, N. L. (2000). Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neuroscience letters, 280(1), 21-24. https://doi.org/https://doi.org/10.1016/S0304-3940(99)00988-X
  • 96. Quintanilla, R. A., et al. (2012). Truncated tau and Abeta cooperatively impair mitochondria in primary neurons. Neurobiol Aging, 33(3), 619 e625-635. https://doi.org/10.1016/j.neurobiolaging.2011.02.007
  • 97. Radi, R., et al. (1991a). Peroxynitrite Oxidation of Sulfhydryls - the Cytotoxic Potential of Superoxide and Nitric-Oxide. Journal of Biological Chemistry, 266(7), 4244-4250. <Go to ISI>://WOS:A1991FA69400037
  • 98. Radi, R., et al. (1991b). Peroxynitrite-Induced Membrane Lipid-Peroxidation - the Cytotoxic Potential of Superoxide and Nitric-Oxide. Archives of biochemistry and biophysics, 288(2), 481-487. https://doi.org/Doi 10.1016/0003-9861(91)90224-7
  • 99. Rao, V. K., et al. (2014). Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochimica et biophysica acta, 1842(8), 1267-1272. https://doi.org/10.1016/j.bbadis.2013.09.003
  • 100. Rauen, T., et al. (1996). Differential expression of three glutamate transporter subtypes in the rat retina. Cell and tissue research, 286(3), 325-336. https://doi.org/10.1007/s004410050702
  • 101. Rhein, V., et al. (2009). Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20057-20062. https://doi.org/10.1073/pnas.0905529106
  • 102. Riedel, G., et al. (2003). Glutamate receptor function in learning and memory. Behavioural brain research, 140(1-2), 1-47. https://doi.org/10.1016/s0166-4328(02)00272-3
  • 103. Robberecht, W., & Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nature reviews. Neuroscience, 14(4), 248-264. https://doi.org/10.1038/nrn3430
  • 104. Rothstein, J. D., et al. (1994). Localization of neuronal and glial glutamate transporters. Neuron, 13(3), 713-725. https://doi.org/10.1016/0896-6273(94)90038-8
  • 105. Salgo, M. G., et al. (1995). Peroxynitrite Causes DNA Nicks in Plasmid Pbr322. Biochemical and biophysical research communications, 210(3), 1025-1030. https://doi.org/DOI 10.1006/bbrc.1995.1759
  • 106. Saroff, D., et al. (2000). Selective vulnerability of spinal cord motor neurons to non-NMDA toxicity. Neuroreport, 11(5), 1117-1121. https://doi.org/10.1097/00001756-200004070-00041
  • 107. Sasaki, Y. F., et al. (2002). Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. Journal of neurophysiology, 87(4), 2052-2063.
  • 108. Sattler, R., et al. (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284(5421), 1845-1848. https://doi.org/DOI 10.1126/science.284.5421.1845
  • 109. Sattler, R., et al. (2000). Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(1), 22-33. https://doi.org/10.1523/JNEUROSCI.20-01-00022.2000
  • 110. Scott, H. A., et al. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging, 32(3), 553 e551-511. https://doi.org/10.1016/j.neurobiolaging.2010.03.008
  • 111. Sheng, M., et al. (2012). Synapses and Alzheimer's disease. Cold Spring Harb Perspect Biol, 4(5), a005777-a005777. https://doi.org/10.1101/cshperspect.a005777
  • 112. Small, S. A., & Duff, K. (2008). Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron, 60(4), 534-542. https://doi.org/10.1016/j.neuron.2008.11.007
  • 113. Song, I., & Huganir, R. L. (2002). Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences, 25(11), 578-588. https://doi.org/https://doi.org/10.1016/S0166-2236(02)02270-1
  • 114. Surmeier, D. J., & Schumacker, P. T. (2013). Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. The Journal of biological chemistry, 288(15), 10736-10741. https://doi.org/10.1074/jbc.R112.410530
  • 115. Surmeier, D. J., et al. (2017). Calcium and Parkinson's disease. Biochemical and biophysical research communications, 483(4), 1013-1019. https://doi.org/10.1016/j.bbrc.2016.08.168
  • 116. Talantova, M., et al. (2013). Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proceedings of the National Academy of Sciences of the United States of America, 110(27), E2518-2527. https://doi.org/10.1073/pnas.1306832110
  • 117. Terasaki, Y., et al. (2010). Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab, 30(8), 1441-1449. https://doi.org/10.1038/jcbfm.2010.18
  • 118. Texido, L., et al. (2011). Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium, 49(3), 184-190. https://doi.org/10.1016/j.ceca.2011.02.001
  • 119. Thayer, S. A., & Wang, G. J. (1995). Glutamate-induced calcium loads: effects on energy metabolism and neuronal viability. Clinical and experimental pharmacology & physiology, 22(4), 303-304. https://doi.org/10.1111/j.1440-1681.1995.tb02004.x
  • 120. Trotti, D., et al. (1999). SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature neuroscience, 2(5), 427-433. https://doi.org/10.1038/8091
  • 121. Tse, D. Y., et al. (2014). Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses. Vision Research, 103, 63-74. https://doi.org/https://doi.org/10.1016/j.visres.2014.06.005
  • 122. Vandenberg, R. J., & Ryan, R. M. (2013). Mechanisms of glutamate transport. Physiological reviews, 93(4), 1621-1657. https://doi.org/10.1152/physrev.00007.2013
  • 123. Vandenberghe, W., et al. (2000). AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(1), 123-132. https://doi.org/10.1523/JNEUROSCI.20-01-00123.2000
  • 124. Wang, G. J., & Thayer, S. A. (1996). Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. Journal of neurophysiology, 76(3), 1611-1621. https://doi.org/10.1152/jn.1996.76.3.1611
  • 125. Wang, K. K. W. (2000). Calpain and caspase: can you tell the difference? Trends in Neurosciences, 23(1), 20-26. https://doi.org/10.1016/s0166-2236(99)01479-4
  • 126. Wang, R., & Reddy, P. H. (2017). Role of Glutamate and NMDA Receptors in Alzheimer's Disease. J Alzheimers Dis, 57(4), 1041-1048. https://doi.org/10.3233/JAD-160763
  • 127. Weiss, J. H. (2011). Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci, 4, 42. https://doi.org/10.3389/fnmol.2011.00042
  • 128. Yadav, R., et al. (2017). AMPA Receptors: Molecular Biology and Pharmacology☆. In Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809324-5.02325-7
  • 129. Yang, J. L., et al. (2011). The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mech Ageing Dev, 132(8-9), 405-411. https://doi.org/10.1016/j.mad.2011.06.005
  • 130. Zerangue, N., & Kavanaugh, M. P. (1996). Flux coupling in a neuronal glutamate transporter. Nature, 383(6601), 634-637. https://doi.org/10.1038/383634a0
  • 131. Zhang, Z., et al. (2019). Roles of Glutamate Receptors in Parkinson's Disease. Int J Mol Sci, 20(18), 4391. https://doi.org/10.3390/ijms20184391
  • 132. Zhu, S., & Paoletti, P. (2015). Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Current opinion in pharmacology, 20, 14-23. https://doi.org/10.1016/j.coph.2014.10.009
  • 133. Zou, J., et al. (2017). Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca2+. International Journal of Molecular Sciences, 18(3), 672. https://doi.org/10.3390/ijms18030672
  • 134. Zumkehr, J., et al. (2015). Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol Aging, 36(7), 2260-2271.
There are 133 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Reviews
Authors

Ayşenur Budak Savaş 0000-0002-9104-0213

Mehmet Ali Yörük 0000-0002-2526-856X

Cemil Bayram 0000-0001-8940-8560

Selma Sezen 0000-0001-6575-6149

Publication Date April 30, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

APA Budak Savaş, A., Yörük, M. A., Bayram, C., Sezen, S. (2023). Glutamate, Excitotoxicity and Releated Diseases. Recent Trends in Pharmacology, 1(1), 32-62.