Research Article
BibTex RIS Cite

Hızlandırılmış Yaşlandırma Testi Sonrasında Aspir (Carthamus tinctorius L.) Tohumlarında Hidrojen Peroksit İçeriği ve Antioksidant Enzim Aktivitelerinin Belirlenmesi

Year 2020, Volume: 24 Issue: 3, 681 - 688, 25.12.2020
https://doi.org/10.19113/sdufenbed.793621

Abstract

Aspir dünyada önemli bir yağlı tohum bitkisidir. Yaşlandırma testleri, tohumların uzun süreli depolanması sırasında meydana gelen hücresel hasarın oluşturulmasını sağlayan testlerdir. Mevcut çalışmada hızlandırılmış yaşlandırma testi (AA) aspir tohumlarında antioksidant enzim aktivitelerinin incelenmesi için uygulanmıştır. Daha önceki çalışmada yaşlanmaya dirençli (Bayer-6 ve Bayer-12) yaşlanmaya hassas (Olas ve Linas) dört aspir genotipi tohum materyali olarak kullanılmıştır. AA, 43 °C 5 farklı zamanda (0, 48, 72, 96 ve 120 saat) gerçekleştirilmiştir. Sonuçlar varyans analizine tabi tutulmuş ve ortalamalar arasındaki önemlilik seviyeleri tespit edilmiştir. Ayrıca hidrojen peroksit (H2O2) içeriği ve katalaz (CAT) ve süperoksit dismutaz (SOD) aktiviteleri arasındaki korelasyon incelenmiştir. H2O2 içeriği, CAT, SOD ve peroksidaz (POD) aktiviteleri kontrol ve AA uygulanmış tohumlarda belirlenmiştir. Genotip, zaman ve genotip x zaman interaksiyonları önemli bulunmuştur. H2O2 içeriği ve SOD aktivitesi AA zamanına bağlı olarak artarken, CAT aktivitesi ise kullanılan tüm genotiplerde ise azalmıştır. POD aktivitesi düzenli bir şekilde artış veya azalış göstermemiş, aktivitedeki değişim genotip ve zamana göre farklılık göstermiştir. H2O2 içeriği ve CAT aktivitesi arasındaki korelasyon tüm genotiplerde önemli ve negatif olarak bulunurken; H2O2 içeriği ve SOD aktivitesi arasında AA uygulanmış tohumlarda pozitif korelasyon bulunmuştur.

References

  • [1] FAO,2020.http://www.fao.org/faostat/en/#data/QC (Erişim Tarihi: 10.08.2020)
  • [2] Verge, X. P. C., De Kimpe, C., Desjardins, R. L. 2007. Agricultural Production, Greenhouse Gas Emissions and Mitigation Potential. Agricultural and Forest Meteorology, 142(2-4), 255-269.
  • [3] Federico, G. 2010. Feeding the world: an economic history of agriculture, 1800-2000. Princeton University Press. Princeton, New Jersey, USA, 387p.
  • [4] Weiss, E. A. 2000. Oilseed crops. Blackwell Science. Oxford, 384p.
  • [5] Koç, H., Keleş, R., Ülker, R., Gümüşçü, G., Ercan, B., Göçmen Akçacık, A., Güneş, A., Özdemir, F., Özer, E., Uludağ, E. 2010. Bazı Aspir (Carthamus tinctorius L.) Hatlarının Verim, Verim Öğeleri ve Kalite Özellikleri İle Bu Özellikler Arasındaki İlişkilerin Belirlenmesi. Bitkisel Araştırma Dergisi, 2, 1-7.
  • [6] Delouche, J. C., Baskin, C. C. 2016. Accelerated Aging Techniques for Predicting the Relative Storability of Seed Lots. Seed Science and Technology, 1, 427-452.
  • [7] Suresh, A., Shah, N., Kotecha, M., Robin, P. 2019. Evaluation of Biochemical and Physiological Changes in Seeds of Jatropha curcas L. Under Natural Aging, Accelerated Aging and Saturated Salt Accelerated Aging. Scientia Horticulturae, 255, 21-29.
  • [8] Brar, N. S., Kaushik, P., Dudi, B. S. 2019. Assessment of Natural Ageing Related Physio-Biochemical Changes in Onion Seed. Agriculture, 9(8), 163.
  • [9] Probert, R., Adams, J., Coneybeer, J., Crawford, A., Hay, F. 2007. Seed Quality for Conservation is Critically Affected by Pre-Storage Factors. Australian Journal of Botany, 55(3), 326-335.
  • [10] Harrington, J. F. 1972. Seed storage and longevity (3nd). Academic Press, New York, 434p.
  • [11] Priestley, D. A. 1956. Seed aging. Cornell University Press, Ithaca, 304p.
  • [12] Goel, A., Goel, A. K., Sheoran, I. S. 2003. Changes in Oxidative Stress Enzymes During Artificial Ageing in Cotton (Gossypium hirsutum L.) Seeds. Journal of Plant Physiology, 160(9), 1093-1100.
  • [13] Bailly, C. 2004. Active Oxygen Species and Antioxidants in Seed Biology. Seed Science Research, 14(2), 93-107.
  • [14] Lehner, A., Mamadou, N., Poels, P., Come, D., Bailly, C., Corbineau, F. 2008. Changes in Soluble Carbohydrates, Lipid Peroxidation and Antioxidant Enzyme Activities in The Embryo During Ageing in Wheat Grains. Journal of Cereal Science, 47(3), 555-565.
  • [15] Parkhey, S., Naithani, S. C., Keshavkant, S. 2012. ROS Production and Lipid Catabolism in Desiccating Shorea robusta Seeds During Aging. Plant Physiology and Biochemistry, 57, 261-267.
  • [16] Sahu, B., Sahu, A. K., Thomas, V., Naithani, S. C. 2017. Reactive Oxygen Species, Lipid Peroxidation, Protein Oxidation and Antioxidative Enzymes in Dehydrating Karanj (Pongamia pinnata) Seeds During Storage. South African Journal of Botany, 112, 383-390.
  • [17] Bosco de Oliveira, A., Gomes-Filho, E., Enéas-Filho, J., Prisco, J. T., Alencar, N. L. M. 2012. Seed Priming Effects on Growth, Lipid Peroxidation, and Activity of ROS Scavenging Enzymes in NaCl-Stressed Sorghum Seedlings from Aged Seeds. Journal of Plant Interactions, 7(2), 151-159.
  • [18] Nazari, R., Parsa, S., Tavakkol Afshari, R., Mahmoodi, S., Seyyedi, S. M. 2020. Salicylic Acid Priming Before and After Accelerated Aging Process Increases Seedling Vigor in Aged Soybean Seed. Journal of Crop Improvement, 34(2), 218-237.
  • [19] Wang, F., Wang, R., Jing, W., Zhang, W. 2012. Quantitative Dissection of Lipid Degradation in Rice Seeds During Accelerated Aging. Plant Growth Regulation, 66(1), 49-58.
  • [20] Önder, S., Tonguç, M., Güvercin, D., Karakurt, Y. 2020. Biochemical Changes Stimulated by Accelerated Aging in Safflower Seeds (Carthamus tinctorius L.). Journal of Seed Science, 42, e202042015.
  • [21] Velikova, V., Yordanov, I., Edreva, A. 2000. Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Polyamines. Plant Science, 151(1), 59-66.
  • [22] Wang, Y. S., Tian, S. P., Xu, Y., 2005. Effects of High Oxygen Concentration on Pro- and Anti-Oxidant Enzymes in Peach Fruits During Postharvest Periods. Food Chemistry, 91(1), 99-104.
  • [23] Beers, R. F., Sizer, I. W. 1952. A Spectrophotometric Method for Measuring The Breakdown of Hydrogen Peroxide by Catalase. The Journal Biological Chemistry, 195(1), 133-140.
  • [24] Constantine, N. G., Stanley, K. R. 1977. Superoxide Dismutases. Plant Physiology, 59(2), 315-318.
  • [25] Jiang, A. L., Tian, S. P., Xu, Y. 2002. Effects of Controlled Atmospheres with High-O2 or High CO2 Concentrations on Postharvest Physiology and Storability of ‘‘Napoleon’’ Sweet Cherry. Journal of Integrative Plant Biology, 44(8), 925-930.
  • [26] Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Analytical Biochemistry, 72(1-2), 248-254.
  • [27] Bewley, J. D., Bradford, K., Hilhorst, H. 2012. Seeds: Physiology of Development, Germination and Dormancy. Springer Science & Business Media, New York, 392p.
  • [28] Parmoon, G., Moosavi, S. A., Siadat, S. A. 2019. Performance of Iranian Okra Ecotypes Under Various Accelerated Aging Conditions. Horticultural Plant Journal, 5(1), 17-23.
  • [29] Silva, P. P., Sekita, M. C., Dias, D. C. F. S., Nascimento, W. M. 2016. Biochemical and Physiological Analysis in Carrot Seeds from Different Orders of Umbels. Revista Ciência Agronômica, 47(2), 407-413.
  • [30] Chhabra, R., Singh, S. T. 2019. Seed Aging, Storage and Deterioration: An Irresistible Physiological Phenomenon. Agricultural Reviews, 40(3), 234-238.
  • [31] Wu, X., Ning, F., Hu, X., Wang, W. 2017. Genetic Modification for İmproving Seed Vigor is Transitioning from Model Plants to Crop Plants. Frontiers in Plant Science, 8(8), 1-7.
  • [32] Ratajczak, E., Małecka, A., Bagniewska-Zadworna, A., Kalemba, E. M. 2015. The Production, Localization and Spreading of Reactive Oxygen Species Contributes to The Low Vitality of Long-term Stored Common Beech (Fagus sylvatica L.) Seeds. Journal of Plant Physiology, 174, 147-156.
  • [33] Kibinza, S., Vinel, D., Côme, D., Bailly, C., Corbineau, F. 2006. Sunflower Seed Deterioration as Related to Moisture Content During Ageing, Energy Metabolism and Active Oxygen Species Scavenging. Physiologia Plantarum, 128(3), 496-506.
  • [34] Mahjabin, S. B., Abidi, A. B. 2015. Physiological and Biochemical Changes During Seed Deterioration: A Review. International Journal of Recent Scientific Research, 6(4), 3416-3422.
  • [35] Anjum, N. A., Sharma, P., Gill, S. S., Hasanuzzaman, M., Khan, E. A., Kachhap, K., Mohamed, A. A., Thangavel, P., Devi, G. D., Vasudhevan, P., Sofo, A., Khan, N. A., Misra, A. N., Lukatkin, A. S., Singh, H. P., Pereira, E., Tuteja, N. 2016. Catalase and Ascorbate Peroxidase-Representative H2O2-Detoxifying Heme Enzymes in Plants. Environmental Science and Pollution Research, 23(19), 19002-19029.
  • [36] Vashisth, A., Nagarajan, S. 2009. Germination Characteristics of Seeds of Maize (Zea mays L.) Exposed to Magnetic Fields under Accelerated Ageing Condition. Journal of Agricultural Physics, 9, 50-58.
  • [37] Demirkaya, M., Dietz, K. J., Sıvrıtepe, H. O. 2010. Changes in Antioxidant Enzymes During Ageing of Onion Seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 49-52.
  • [38] Sahu, A. K., Sahu, B., Soni, A., Naithani, S. C. 2017. Active Oxygen Species Metabolism in Neem (Azadirachta indica) Seeds Exposed to Natural Ageing and Controlled Deterioration. Acta Physiologiae Plantarum, 39(9), 197.
  • [39] Peng, Q. I. N., Zhiyou, K. O. N. G., Xiaohong, L. I. A. O., Yeju, L. I. U. 2011. Effects of Accelerated Aging on Physiological and Biochemical Characteristics of Waxy and Non-Waxy Wheat Seeds. Journal of Northeast Agricultural University, 18(2), 7-12.
  • [40] Barreto, L. C., Garcia, Q. S. 2017. Accelerated Ageing and Subsequent Imbibition Affect Seed Viability and The Efficiency of Antioxidant System in Macaw Palm Seeds. Acta Physiologiae Plantarum, 39(72), 1-8.
  • [41] Pallavi, M., Kumar, S. S., Dangi, K. S., Reddy, A. V. 2003. Effect of Seed Ageing on Physiological, Biochemical and Yield Attributes in Sunflower (Helianthus annuus L.) cv. Morden. Seed Research-New Delhı-, 31(2), 161-168.
  • [42] Scialabba, A., Bellani, L. M., Dell'Aquila, A. 2002. Effects of Ageing on Peroxidase Activity and Localization in Radish (Raphanus sativus L.) Seeds. European Journal of Histochemistry, 46(4), 351-358.
  • [43] Tabatabaei, S. A. 2015. The Changes of Germination Characteristics and Enzyme Activity of Barley Seeds Under Accelerated Aging. Cercetari Agronomice in Moldova, 48(2), 61-67.
  • [44] Zhu, F., Zhou, Y. K., Ji, Z. L., Chen, X. R. 2018. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense Against Pathogens and Insect Pest Attacks. Frontiers in Plant Science, 9(146), 1-14.

Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test

Year 2020, Volume: 24 Issue: 3, 681 - 688, 25.12.2020
https://doi.org/10.19113/sdufenbed.793621

Abstract

Safflower is an important oleiferous crop species in the world. Aging tests are used to simulate cell damage occurring during the long term storage of seeds. In the present study, accelerated aging (AA) test was employed to investigate response of antioxidant enzymes in safflower. Four genotypes of safflower, previously classified as aging resistant (Bayer-6 and Bayer-12) and sensitive (Olas and Linas) based on AA test, were used as seed materials and AA treatments at 43 °C consisted of 5 different times (0, 48, 72, 96 and 120 h). Variance analysis were used and means were separated according to significance levels, and correlations were calculated between hydrogen peroxide (H2O2) content, superoxide dismutase (SOD) and catalase (CAT) activities. The H2O2 content, CAT, SOD and peroxidase (POD) activities were measured in control and AA treated seeds. Genotype, time and genotype x time interactions were all significant. While H2O2 content and SOD activity increased with AA time, CAT activity decreased in all genotypes throughout the experiment. POD did not show regular increase or decrease, its activity was specific to genotypes and time. Correlations between CAT activity and H2O2 content were significant negative for all genotypes, but between SOD activity and H2O2 content was positively correlated in AA treated seeds.

References

  • [1] FAO,2020.http://www.fao.org/faostat/en/#data/QC (Erişim Tarihi: 10.08.2020)
  • [2] Verge, X. P. C., De Kimpe, C., Desjardins, R. L. 2007. Agricultural Production, Greenhouse Gas Emissions and Mitigation Potential. Agricultural and Forest Meteorology, 142(2-4), 255-269.
  • [3] Federico, G. 2010. Feeding the world: an economic history of agriculture, 1800-2000. Princeton University Press. Princeton, New Jersey, USA, 387p.
  • [4] Weiss, E. A. 2000. Oilseed crops. Blackwell Science. Oxford, 384p.
  • [5] Koç, H., Keleş, R., Ülker, R., Gümüşçü, G., Ercan, B., Göçmen Akçacık, A., Güneş, A., Özdemir, F., Özer, E., Uludağ, E. 2010. Bazı Aspir (Carthamus tinctorius L.) Hatlarının Verim, Verim Öğeleri ve Kalite Özellikleri İle Bu Özellikler Arasındaki İlişkilerin Belirlenmesi. Bitkisel Araştırma Dergisi, 2, 1-7.
  • [6] Delouche, J. C., Baskin, C. C. 2016. Accelerated Aging Techniques for Predicting the Relative Storability of Seed Lots. Seed Science and Technology, 1, 427-452.
  • [7] Suresh, A., Shah, N., Kotecha, M., Robin, P. 2019. Evaluation of Biochemical and Physiological Changes in Seeds of Jatropha curcas L. Under Natural Aging, Accelerated Aging and Saturated Salt Accelerated Aging. Scientia Horticulturae, 255, 21-29.
  • [8] Brar, N. S., Kaushik, P., Dudi, B. S. 2019. Assessment of Natural Ageing Related Physio-Biochemical Changes in Onion Seed. Agriculture, 9(8), 163.
  • [9] Probert, R., Adams, J., Coneybeer, J., Crawford, A., Hay, F. 2007. Seed Quality for Conservation is Critically Affected by Pre-Storage Factors. Australian Journal of Botany, 55(3), 326-335.
  • [10] Harrington, J. F. 1972. Seed storage and longevity (3nd). Academic Press, New York, 434p.
  • [11] Priestley, D. A. 1956. Seed aging. Cornell University Press, Ithaca, 304p.
  • [12] Goel, A., Goel, A. K., Sheoran, I. S. 2003. Changes in Oxidative Stress Enzymes During Artificial Ageing in Cotton (Gossypium hirsutum L.) Seeds. Journal of Plant Physiology, 160(9), 1093-1100.
  • [13] Bailly, C. 2004. Active Oxygen Species and Antioxidants in Seed Biology. Seed Science Research, 14(2), 93-107.
  • [14] Lehner, A., Mamadou, N., Poels, P., Come, D., Bailly, C., Corbineau, F. 2008. Changes in Soluble Carbohydrates, Lipid Peroxidation and Antioxidant Enzyme Activities in The Embryo During Ageing in Wheat Grains. Journal of Cereal Science, 47(3), 555-565.
  • [15] Parkhey, S., Naithani, S. C., Keshavkant, S. 2012. ROS Production and Lipid Catabolism in Desiccating Shorea robusta Seeds During Aging. Plant Physiology and Biochemistry, 57, 261-267.
  • [16] Sahu, B., Sahu, A. K., Thomas, V., Naithani, S. C. 2017. Reactive Oxygen Species, Lipid Peroxidation, Protein Oxidation and Antioxidative Enzymes in Dehydrating Karanj (Pongamia pinnata) Seeds During Storage. South African Journal of Botany, 112, 383-390.
  • [17] Bosco de Oliveira, A., Gomes-Filho, E., Enéas-Filho, J., Prisco, J. T., Alencar, N. L. M. 2012. Seed Priming Effects on Growth, Lipid Peroxidation, and Activity of ROS Scavenging Enzymes in NaCl-Stressed Sorghum Seedlings from Aged Seeds. Journal of Plant Interactions, 7(2), 151-159.
  • [18] Nazari, R., Parsa, S., Tavakkol Afshari, R., Mahmoodi, S., Seyyedi, S. M. 2020. Salicylic Acid Priming Before and After Accelerated Aging Process Increases Seedling Vigor in Aged Soybean Seed. Journal of Crop Improvement, 34(2), 218-237.
  • [19] Wang, F., Wang, R., Jing, W., Zhang, W. 2012. Quantitative Dissection of Lipid Degradation in Rice Seeds During Accelerated Aging. Plant Growth Regulation, 66(1), 49-58.
  • [20] Önder, S., Tonguç, M., Güvercin, D., Karakurt, Y. 2020. Biochemical Changes Stimulated by Accelerated Aging in Safflower Seeds (Carthamus tinctorius L.). Journal of Seed Science, 42, e202042015.
  • [21] Velikova, V., Yordanov, I., Edreva, A. 2000. Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Polyamines. Plant Science, 151(1), 59-66.
  • [22] Wang, Y. S., Tian, S. P., Xu, Y., 2005. Effects of High Oxygen Concentration on Pro- and Anti-Oxidant Enzymes in Peach Fruits During Postharvest Periods. Food Chemistry, 91(1), 99-104.
  • [23] Beers, R. F., Sizer, I. W. 1952. A Spectrophotometric Method for Measuring The Breakdown of Hydrogen Peroxide by Catalase. The Journal Biological Chemistry, 195(1), 133-140.
  • [24] Constantine, N. G., Stanley, K. R. 1977. Superoxide Dismutases. Plant Physiology, 59(2), 315-318.
  • [25] Jiang, A. L., Tian, S. P., Xu, Y. 2002. Effects of Controlled Atmospheres with High-O2 or High CO2 Concentrations on Postharvest Physiology and Storability of ‘‘Napoleon’’ Sweet Cherry. Journal of Integrative Plant Biology, 44(8), 925-930.
  • [26] Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Analytical Biochemistry, 72(1-2), 248-254.
  • [27] Bewley, J. D., Bradford, K., Hilhorst, H. 2012. Seeds: Physiology of Development, Germination and Dormancy. Springer Science & Business Media, New York, 392p.
  • [28] Parmoon, G., Moosavi, S. A., Siadat, S. A. 2019. Performance of Iranian Okra Ecotypes Under Various Accelerated Aging Conditions. Horticultural Plant Journal, 5(1), 17-23.
  • [29] Silva, P. P., Sekita, M. C., Dias, D. C. F. S., Nascimento, W. M. 2016. Biochemical and Physiological Analysis in Carrot Seeds from Different Orders of Umbels. Revista Ciência Agronômica, 47(2), 407-413.
  • [30] Chhabra, R., Singh, S. T. 2019. Seed Aging, Storage and Deterioration: An Irresistible Physiological Phenomenon. Agricultural Reviews, 40(3), 234-238.
  • [31] Wu, X., Ning, F., Hu, X., Wang, W. 2017. Genetic Modification for İmproving Seed Vigor is Transitioning from Model Plants to Crop Plants. Frontiers in Plant Science, 8(8), 1-7.
  • [32] Ratajczak, E., Małecka, A., Bagniewska-Zadworna, A., Kalemba, E. M. 2015. The Production, Localization and Spreading of Reactive Oxygen Species Contributes to The Low Vitality of Long-term Stored Common Beech (Fagus sylvatica L.) Seeds. Journal of Plant Physiology, 174, 147-156.
  • [33] Kibinza, S., Vinel, D., Côme, D., Bailly, C., Corbineau, F. 2006. Sunflower Seed Deterioration as Related to Moisture Content During Ageing, Energy Metabolism and Active Oxygen Species Scavenging. Physiologia Plantarum, 128(3), 496-506.
  • [34] Mahjabin, S. B., Abidi, A. B. 2015. Physiological and Biochemical Changes During Seed Deterioration: A Review. International Journal of Recent Scientific Research, 6(4), 3416-3422.
  • [35] Anjum, N. A., Sharma, P., Gill, S. S., Hasanuzzaman, M., Khan, E. A., Kachhap, K., Mohamed, A. A., Thangavel, P., Devi, G. D., Vasudhevan, P., Sofo, A., Khan, N. A., Misra, A. N., Lukatkin, A. S., Singh, H. P., Pereira, E., Tuteja, N. 2016. Catalase and Ascorbate Peroxidase-Representative H2O2-Detoxifying Heme Enzymes in Plants. Environmental Science and Pollution Research, 23(19), 19002-19029.
  • [36] Vashisth, A., Nagarajan, S. 2009. Germination Characteristics of Seeds of Maize (Zea mays L.) Exposed to Magnetic Fields under Accelerated Ageing Condition. Journal of Agricultural Physics, 9, 50-58.
  • [37] Demirkaya, M., Dietz, K. J., Sıvrıtepe, H. O. 2010. Changes in Antioxidant Enzymes During Ageing of Onion Seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 49-52.
  • [38] Sahu, A. K., Sahu, B., Soni, A., Naithani, S. C. 2017. Active Oxygen Species Metabolism in Neem (Azadirachta indica) Seeds Exposed to Natural Ageing and Controlled Deterioration. Acta Physiologiae Plantarum, 39(9), 197.
  • [39] Peng, Q. I. N., Zhiyou, K. O. N. G., Xiaohong, L. I. A. O., Yeju, L. I. U. 2011. Effects of Accelerated Aging on Physiological and Biochemical Characteristics of Waxy and Non-Waxy Wheat Seeds. Journal of Northeast Agricultural University, 18(2), 7-12.
  • [40] Barreto, L. C., Garcia, Q. S. 2017. Accelerated Ageing and Subsequent Imbibition Affect Seed Viability and The Efficiency of Antioxidant System in Macaw Palm Seeds. Acta Physiologiae Plantarum, 39(72), 1-8.
  • [41] Pallavi, M., Kumar, S. S., Dangi, K. S., Reddy, A. V. 2003. Effect of Seed Ageing on Physiological, Biochemical and Yield Attributes in Sunflower (Helianthus annuus L.) cv. Morden. Seed Research-New Delhı-, 31(2), 161-168.
  • [42] Scialabba, A., Bellani, L. M., Dell'Aquila, A. 2002. Effects of Ageing on Peroxidase Activity and Localization in Radish (Raphanus sativus L.) Seeds. European Journal of Histochemistry, 46(4), 351-358.
  • [43] Tabatabaei, S. A. 2015. The Changes of Germination Characteristics and Enzyme Activity of Barley Seeds Under Accelerated Aging. Cercetari Agronomice in Moldova, 48(2), 61-67.
  • [44] Zhu, F., Zhou, Y. K., Ji, Z. L., Chen, X. R. 2018. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense Against Pathogens and Insect Pest Attacks. Frontiers in Plant Science, 9(146), 1-14.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sercan Önder 0000-0002-8065-288X

Damla Güvercin 0000-0002-6639-3818

Muhammet Tonguç 0000-0003-1292-2910

Publication Date December 25, 2020
Published in Issue Year 2020 Volume: 24 Issue: 3

Cite

APA Önder, S., Güvercin, D., & Tonguç, M. (2020). Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 681-688. https://doi.org/10.19113/sdufenbed.793621
AMA Önder S, Güvercin D, Tonguç M. Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test. SDÜ Fen Bil Enst Der. December 2020;24(3):681-688. doi:10.19113/sdufenbed.793621
Chicago Önder, Sercan, Damla Güvercin, and Muhammet Tonguç. “Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus Tinctorius L.) Seeds After Accelerated Aging Test”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 3 (December 2020): 681-88. https://doi.org/10.19113/sdufenbed.793621.
EndNote Önder S, Güvercin D, Tonguç M (December 1, 2020) Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 3 681–688.
IEEE S. Önder, D. Güvercin, and M. Tonguç, “Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test”, SDÜ Fen Bil Enst Der, vol. 24, no. 3, pp. 681–688, 2020, doi: 10.19113/sdufenbed.793621.
ISNAD Önder, Sercan et al. “Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus Tinctorius L.) Seeds After Accelerated Aging Test”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/3 (December 2020), 681-688. https://doi.org/10.19113/sdufenbed.793621.
JAMA Önder S, Güvercin D, Tonguç M. Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test. SDÜ Fen Bil Enst Der. 2020;24:681–688.
MLA Önder, Sercan et al. “Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus Tinctorius L.) Seeds After Accelerated Aging Test”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 3, 2020, pp. 681-8, doi:10.19113/sdufenbed.793621.
Vancouver Önder S, Güvercin D, Tonguç M. Determination of Hydrogen Peroxide Content and Antioxidant Enzyme Activities in Safflower (Carthamus tinctorius L.) Seeds After Accelerated Aging Test. SDÜ Fen Bil Enst Der. 2020;24(3):681-8.

e-ISSN: 1308-6529