Research Article
BibTex RIS Cite

R134a Yerine R513A ve R515B Soğutkanlarıyla Çalışan Buhar Sıkıştırmalı Soğutma Sisteminin Enerji, Ekserji Çevre ve Çevreekonomik Analizi

Year 2023, Volume: 13 Issue: 1, 34 - 40, 24.02.2023
https://doi.org/10.35354/tbed.1127021

Abstract

Buhar sıkıştırmalı soğutma sistemlerinin büyük bir kısmı yüksek küresel ısınma potansiyeline (GWP) sahip hidroflorokarbon (HFC) soğutucu akışkanlarla çalışmaktadır. Mevcut Avrupa F-gaz yönetmeliği, soğutma ve iklimlendirme uygulamalarında yüksek GWP değerlerine sahip florürlü soğutkanların kullanımında kısıtlamalar getirmektedir. Bu bağlamda, soğutma sistemlerinin çoğu, düşük GWP’li hidrofloroolefin (HFO) soğutkanları gibi çevre dostu alternatiflerle değiştirilmeye zorlanmaktadır.

Bu çalışmada, yüksek GWP’li R134a soğutkanına alternatif olarak düşünülen düşük GWP’li R513Ave R515B soğutkanlarıyla çalışan aşırı kızdırmalı ve aşırı soğutmalı buhar sıkıştırmalı soğutma sisteminin enerji, ekserji, çevre ve çevreekonomik analizleri yapılmıştır. R134a ve R515B soğutkanı kullanılan sistemde kompresör enerji tüketimlerinin yaklaşık eşit olduğu, R513A soğutkanı kullanılan sistemde ise enerji tüketiminin yaklaşık %3 oranında daha fazla olduğu görülmüştür. Sistemin COP değerinin 3.3 ile 6.6 arasında değiştiği, R513A soğutkanıyla çalışan sistemin COP değerinin diğer akışkanlarla çalışan sistemin COP değerinden yaklaşık %2 oranında daha düşük olduğu görülmüştür. Ayrıca R515B ve R134a soğutkanlarıyla çalışan sistemde ekserji verimlerinin 0.475 ile 0.52 aralığında değiştiği ve yaklaşık eşit olduğu görülmüştür. R513A soğutkanıyla çalışan sistemin ekserji veriminin diğer akışkanlarla çalışan sistemden daha düşük olduğu görülmüştür. Sonuç olarak R513A ve R515B soğutkanlarının R134a soğutkanına alternatif olarak kullanılabileceği görülmüştür.

References

  • [1] Yang, Z., Feng, B., Ma, H., Zhang, L., Duan, C., Liu, B., 2021. Analysis of lower GWP and flammable alternative refrigerants. International Journal of Refrigeration, 126, 12-22.
  • [2] SNAP. Regulations-proposal to prohibit certain high-GWP HFC alternatives. 2015.11.25. Available at: http://www.epa.gov/ozone/snap/Regulations.html
  • [3] SNAP. Transition to low-GWP alternatives in domestic refrigeration. 2016. Available at: https://www.epa.gov/snap/transitioning-low-gwp-alternatives-domestic-refrigeration
  • [4] Zhang, Z. H., Chen, J. L., Gao, Y., Liu, H. C., & Bai, J. W. 2017. Analysis on the influence of Kigali Amendment to Montreal Protocol to refrigeration and air-conditioning industry. Refrig. Air-cond, 17, 1-7.
  • [5] Ahamed, J. U., Saidur, R., Masjuki, H. H., Sattar, M. A. 2012. An analysis of energy, exergy, and sustainable development of a vapor compression refrigeration system using hydrocarbon. International journal of Green energy, 9(7), 702-717.
  • [6] Wantha, C. 2019. Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems. Applied Thermal Engineering, 157, 113747.
  • [7] Mateu-Royo, C., Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á. 2021. Comparative analysis of HFO-1234ze (E) and R-515B as low GWP alternatives to HFC-134a in moderately high temperature heat pumps. International Journal of Refrigeration, 124, 197-206.
  • [8] Kumar, R. 2018. Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system. Ain Shams Engineering Journal, 9(4), 3229-3237.
  • [9] Prabakaran, R., Lal, D. M., Devotta, S. 2021. Effect of thermostatic expansion valve tuning on the performance enhancement and environmental impact of a mobile air conditioning system. Journal of Thermal Analysis and Calorimetry, 143(1), 335-350.
  • [10] Bellos, E., Tzivanidis, C., Tsifis, G. 2017. Energetic, Exergetic, Economic and Environmental (4E) analysis of a solar assisted refrigeration system for various operating scenarios. Energy Conversion and Management, 148, 1055-1069.
  • [11] Belman-Flores, J. M., Rangel-Hernández, V. H., Usón, S., Rubio-Maya, C. 2017. Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy, 132, 116-125.
  • [12] Jemaa, R. B., Mansouri, R., Boukholda, I., Bellagi, A. 2017. Energy and exergy investigation of R1234ze as R134a replacement in vapor compression chillers. International Journal of Hydrogen Energy, 42(17), 12877-12887.
  • [13] Saravanakumar, R., Selladurai, V. 2014. Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. Journal of Thermal Analysis and Calorimetry, 115(1), 933-940.
  • [14] Yataganbaba, A., Kilicarslan, A., Kurtbaş, İ. 2015. Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system. International journal of refrigeration, 60, 26-37.
  • [15] Özgür, A. E., Kabul, A., Kizilkan, Ö. 2014. Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a. International Journal of Low-Carbon Technologies, 9(1), 56-62.
  • [16] Gill, J., Singh, J., Ohunakin, O. S., Adelekan, D. S. 2019. Exergy analysis of vapor compression refrigeration system using R450A as a replacement of R134a. Journal of Thermal Analysis and Calorimetry, 136(2), 857-872.
  • [17] Shaik, M. H., Kolla, S., Prasad Katuru, B. 2022. Exergy and energy analysis of low GWP refrigerants in the perspective of replacement of HFC-134a in a home refrigerator. International Journal of Ambient Energy, 43(1), 2339-2350.
  • [18] Kabul, A., Kizilkan, Ö., Yakut, A. K. 2008. Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a). International Journal of Energy Research, 32(9), 824-836.
  • [19] Mota-Babiloni, A., Makhnatch, P., Khodabandeh, R. 2017. Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. International Journal of Refrigeration, 82, 288-301.
  • [20]Pérez-García, V., Belman-Flores, J. M., Rodríguez-Muñoz, J. L., Rangel-Hernández, V., Gallegos-Muñoz, A. 2017. Second law analysis of a mobile air conditioning system with internal heat exchanger using low GWP refrigerants. Entropy, 19(4), 175.
  • [21] Golzari, S., Kasaeian, A., Daviran, S., Mahian, O., Wongwises, S., Sahin, A. Z. 2017. Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerant. International Journal of Refrigeration, 73, 134-143.
  • [22] Mishra, S., Khan, M. E. 2016. Theoretical Exergy Analysis of Actual Vapour Compression System with HFO-1234yf and HFO-1234ze as an Alternative Replacement of HFC-134a. Int. J. Sci. Res, 5, 1684-1689.
  • [23] Ansari, N. A., Yadav, B., Kumar, J. 2013. Theoretical exergy analysis of HFO-1234yf and HFO-1234ze as an alternative replacement of HFC-134a in simple vapour compression refrigeration system. International Journal of Scientific & Engineering Research, 4(8), 137.
  • [24]Yıldız, A., Yıldırım, R. 2021. Investigation of using R134a, R1234yf and R513A as refrigerant in a heat pump. Int. J. Environ. Sci. Technol. 18, 1201–1210. DOI:10.1007/s13762-020-02857-z
  • [25]Yıldız, A., Yıldırım, R. 2022. Experimental investigation of exergy, exergoenvironmental and exergoenviroeconomic analysis of the heat pump system. Int. J. Environ. Sci. Technol.19, 10737-10746. DOI: 10.1007/s13762-021-03890-2
  • [26] Yıldırım, R. 2021. Evaluation of The Use R450A as an Alternative to R134a in Low and Medium Temperature Heat Pump Systems: 4-E (Energy, Exergy, Environmental and Enviro-Economic) Analysis . Journal of Advanced Research in Natural and Applied Sciences, 7(4), 556-569.DOI: 10.28979/jarnas.939582
  • [27] Çengel Y. A., Boles M. A., 2008. Termodinamik: mühendislik yaklaşımıyla. İzmir: İzmir Güven Kitabevi.
  • [28] Yıldırım, R. , Şencan Şahin, A. Dikmen, E. 2022. Comparative Energetic, Exergetic, Environmental and Enviroeconomic Analysis of Vapour Compression Refrigeration Systems Using R515B as Substitute for R134a . International Journal of Thermodynamics , 25 (1) , 125-133.
  • [29] Yıldırım, R., Kumaş, K., Akyüz, A. Ö. 2021. Soğutma Sisteminde R404A Yerine R454C Soğutucu Akışkanın Kullanılmasının İncelenmesi: Enerji ve Çevresel Analizi. Teknik Bilimler Dergisi, 11(2), 47-51
Year 2023, Volume: 13 Issue: 1, 34 - 40, 24.02.2023
https://doi.org/10.35354/tbed.1127021

Abstract

References

  • [1] Yang, Z., Feng, B., Ma, H., Zhang, L., Duan, C., Liu, B., 2021. Analysis of lower GWP and flammable alternative refrigerants. International Journal of Refrigeration, 126, 12-22.
  • [2] SNAP. Regulations-proposal to prohibit certain high-GWP HFC alternatives. 2015.11.25. Available at: http://www.epa.gov/ozone/snap/Regulations.html
  • [3] SNAP. Transition to low-GWP alternatives in domestic refrigeration. 2016. Available at: https://www.epa.gov/snap/transitioning-low-gwp-alternatives-domestic-refrigeration
  • [4] Zhang, Z. H., Chen, J. L., Gao, Y., Liu, H. C., & Bai, J. W. 2017. Analysis on the influence of Kigali Amendment to Montreal Protocol to refrigeration and air-conditioning industry. Refrig. Air-cond, 17, 1-7.
  • [5] Ahamed, J. U., Saidur, R., Masjuki, H. H., Sattar, M. A. 2012. An analysis of energy, exergy, and sustainable development of a vapor compression refrigeration system using hydrocarbon. International journal of Green energy, 9(7), 702-717.
  • [6] Wantha, C. 2019. Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems. Applied Thermal Engineering, 157, 113747.
  • [7] Mateu-Royo, C., Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á. 2021. Comparative analysis of HFO-1234ze (E) and R-515B as low GWP alternatives to HFC-134a in moderately high temperature heat pumps. International Journal of Refrigeration, 124, 197-206.
  • [8] Kumar, R. 2018. Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system. Ain Shams Engineering Journal, 9(4), 3229-3237.
  • [9] Prabakaran, R., Lal, D. M., Devotta, S. 2021. Effect of thermostatic expansion valve tuning on the performance enhancement and environmental impact of a mobile air conditioning system. Journal of Thermal Analysis and Calorimetry, 143(1), 335-350.
  • [10] Bellos, E., Tzivanidis, C., Tsifis, G. 2017. Energetic, Exergetic, Economic and Environmental (4E) analysis of a solar assisted refrigeration system for various operating scenarios. Energy Conversion and Management, 148, 1055-1069.
  • [11] Belman-Flores, J. M., Rangel-Hernández, V. H., Usón, S., Rubio-Maya, C. 2017. Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy, 132, 116-125.
  • [12] Jemaa, R. B., Mansouri, R., Boukholda, I., Bellagi, A. 2017. Energy and exergy investigation of R1234ze as R134a replacement in vapor compression chillers. International Journal of Hydrogen Energy, 42(17), 12877-12887.
  • [13] Saravanakumar, R., Selladurai, V. 2014. Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. Journal of Thermal Analysis and Calorimetry, 115(1), 933-940.
  • [14] Yataganbaba, A., Kilicarslan, A., Kurtbaş, İ. 2015. Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system. International journal of refrigeration, 60, 26-37.
  • [15] Özgür, A. E., Kabul, A., Kizilkan, Ö. 2014. Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a. International Journal of Low-Carbon Technologies, 9(1), 56-62.
  • [16] Gill, J., Singh, J., Ohunakin, O. S., Adelekan, D. S. 2019. Exergy analysis of vapor compression refrigeration system using R450A as a replacement of R134a. Journal of Thermal Analysis and Calorimetry, 136(2), 857-872.
  • [17] Shaik, M. H., Kolla, S., Prasad Katuru, B. 2022. Exergy and energy analysis of low GWP refrigerants in the perspective of replacement of HFC-134a in a home refrigerator. International Journal of Ambient Energy, 43(1), 2339-2350.
  • [18] Kabul, A., Kizilkan, Ö., Yakut, A. K. 2008. Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a). International Journal of Energy Research, 32(9), 824-836.
  • [19] Mota-Babiloni, A., Makhnatch, P., Khodabandeh, R. 2017. Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. International Journal of Refrigeration, 82, 288-301.
  • [20]Pérez-García, V., Belman-Flores, J. M., Rodríguez-Muñoz, J. L., Rangel-Hernández, V., Gallegos-Muñoz, A. 2017. Second law analysis of a mobile air conditioning system with internal heat exchanger using low GWP refrigerants. Entropy, 19(4), 175.
  • [21] Golzari, S., Kasaeian, A., Daviran, S., Mahian, O., Wongwises, S., Sahin, A. Z. 2017. Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerant. International Journal of Refrigeration, 73, 134-143.
  • [22] Mishra, S., Khan, M. E. 2016. Theoretical Exergy Analysis of Actual Vapour Compression System with HFO-1234yf and HFO-1234ze as an Alternative Replacement of HFC-134a. Int. J. Sci. Res, 5, 1684-1689.
  • [23] Ansari, N. A., Yadav, B., Kumar, J. 2013. Theoretical exergy analysis of HFO-1234yf and HFO-1234ze as an alternative replacement of HFC-134a in simple vapour compression refrigeration system. International Journal of Scientific & Engineering Research, 4(8), 137.
  • [24]Yıldız, A., Yıldırım, R. 2021. Investigation of using R134a, R1234yf and R513A as refrigerant in a heat pump. Int. J. Environ. Sci. Technol. 18, 1201–1210. DOI:10.1007/s13762-020-02857-z
  • [25]Yıldız, A., Yıldırım, R. 2022. Experimental investigation of exergy, exergoenvironmental and exergoenviroeconomic analysis of the heat pump system. Int. J. Environ. Sci. Technol.19, 10737-10746. DOI: 10.1007/s13762-021-03890-2
  • [26] Yıldırım, R. 2021. Evaluation of The Use R450A as an Alternative to R134a in Low and Medium Temperature Heat Pump Systems: 4-E (Energy, Exergy, Environmental and Enviro-Economic) Analysis . Journal of Advanced Research in Natural and Applied Sciences, 7(4), 556-569.DOI: 10.28979/jarnas.939582
  • [27] Çengel Y. A., Boles M. A., 2008. Termodinamik: mühendislik yaklaşımıyla. İzmir: İzmir Güven Kitabevi.
  • [28] Yıldırım, R. , Şencan Şahin, A. Dikmen, E. 2022. Comparative Energetic, Exergetic, Environmental and Enviroeconomic Analysis of Vapour Compression Refrigeration Systems Using R515B as Substitute for R134a . International Journal of Thermodynamics , 25 (1) , 125-133.
  • [29] Yıldırım, R., Kumaş, K., Akyüz, A. Ö. 2021. Soğutma Sisteminde R404A Yerine R454C Soğutucu Akışkanın Kullanılmasının İncelenmesi: Enerji ve Çevresel Analizi. Teknik Bilimler Dergisi, 11(2), 47-51
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Fatma Kadriye Düden Örgen 0000-0002-8911-1641

Erkan Dikmen 0000-0002-6804-8612

Arzu Şencan Şahin 0000-0001-8519-4788

Publication Date February 24, 2023
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Düden Örgen, F. K., Dikmen, E., & Şencan Şahin, A. (2023). R134a Yerine R513A ve R515B Soğutkanlarıyla Çalışan Buhar Sıkıştırmalı Soğutma Sisteminin Enerji, Ekserji Çevre ve Çevreekonomik Analizi. Teknik Bilimler Dergisi, 13(1), 34-40. https://doi.org/10.35354/tbed.1127021