Research Article
BibTex RIS Cite

GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES

Year 2018, Volume: 23 Issue: 2, 173 - 179, 15.12.2018
https://doi.org/10.17557/tjfc.485605

Abstract

The purpose of the study was to investigate genetic variability, heritability and genetic advance for grain yield and quality characters in the M2, M3 and M4 populations of bread wheat (Triticum aestivum L.) in a Randomized Complete Block Design with 3 replicates during the 2011-12, 2012-13 and 2013-14 periods. Analysis of variance indicated that the mean squares for treatments were significant for all the characters except harvest index in the M2; plant height, grain weight per spike, harvest index and gluten index in the M3; sedimentation value and gluten index in the M4. For the genotype, mean squares were also were significant for all the characters except gluten content in the M3. The M2 and M3 showed a response to selection for grain yield and its components in bread wheat, while the M4 generation was a response to selection for quality traits. Moderate phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) estimated for the grain yield, the number of grains per spike, the grain weight per spike, the gluten index and the sedimentation value in three mutant generations indicated that the genotype could be reflected by the phenotype and the effectiveness of selection based on the phenotypic performance for these characters in the early mutant generations. Heritability for the plant height, the number of grains per spike and the sedimentation value could be due to additive gene effects, and selection might be effective for these characters due to high heritability with high genetic advance. The harvest index, the gluten content and the gluten index could be used in the early generation stages with their high to medium values of heritability estimates associated with moderate expected gain, but would be more effective if postponed to late generations.

References

  • AACC, 2000. Approved Methods of the American Association of Cereal Chemists. Methods 38-12 and 46-13, tenth ed. American Association of Cereal Chemists, St. Paul, MN.
  • Ali, A., S. Khan and M.A. Asad. 2012. Drought tolerance in wheat : Genetic variation and heritability for growth and ion relations. Asian J. Plant Sci. 1: 420-422.
  • Allard, R.W. 1999. Principals of Plant Breeding. 2. ed. New York: John Wiley & Sons.
  • Amer, I.M., R. Shabana, A.A.H. Allah and C.R. Azzam. 2001. Evaluation of sunflower irradiated populations in M4 and M5 generations. Second Plant Breeding Conference, Agronomy Dep. Faculty of Agric. Assuit University. 41-60.
  • Baloch, M.J., E. Baloch, W.A. Jatoi and N.F. Veesar. 2013. Correlations and heritability estimates of yield and yield attributing traits in wheat (Triticum aestivum L.). Pak. J. Agri. Eng. Vet. Sci. 29(2): 96-105.
  • Birhanu, M., A. Sentayehu, A. Alemayehu, A. Ermias and D. Dargicho. 2016. Genetic variability, heritability and genetic advance for yield and yield related traits in bread wheat (Triticum aestivum L.) genotypes. Glob. J. Sci. Front. Res. 16(7):12-15.
  • Borojevic, S. 1990. Mutations in Plant Breeding. In: Borojevic, S. (Eds.), Principles and Methods of Plant Breeding. Elsevier Science Publishing Co. Inc. New York, 252-262.
  • Brock, R.D. 1970. Mutations in quantitatively inherited traits induced by neutron irradiation. Radiation Botany 7: 193-203.
  • Brunner, H. 1991. Methods of Induction of Mutations. In: Mandal, A. K., Ganguli, P. K., Banerjee, S.P. (Eds.), Advances in Plant Breeding. CBS Publishers and Distributors, Delhi, 187-220.
  • Budak, N. 2000. Heritability, correlation and genotype x year interactions of grain yield, test weight and protein content in durum wheat. Turk J Field Crops 5(2): 35-40.
  • Chakrabarthi, S.N. 1975. Effects of combined X-rays and dES treatments on mutation frequencies in rice (Oryza sativa L.). Radiation Botany 15: 417-421.
  • Czyczyło-Mysza, I., I. Marcińska, J. Jankowicz-Cieślak and F. Dubert. 2013. The effect of ionizing radiation on vernalization, growth and development of winter wheat. Acta Biologica Cracoviensia Series Botanica 55(1):1-6.
  • Deshmukh, S.N., M.S. Basu and P.S. Reddy. 1986. Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J. Agric. Sci. 56: 816-821.
  • Frey, K.J. 1969. Release of mutagen-induced genetic variablity in oats by outcrossing. Japan J. Genet. 44: 396-403.
  • Gençtan, T. 1988. Buğdayda başlıca verim komponentlerinde F1 melez gücünün (Heterosis) saptanması. Trakya Üniv. Tekirdağ Ziraat Fakültesi Yayın No:59, Araştırma No:14, 53s.
  • Hanson, G.H., H.F. Robinson and R.E. Comstock. 1956. Biometrical studies on yield in segregating populations of Korean Lespidiza. Agorn. J. 48:268-272.
  • Ibrahim, A.F. and A.N. Sharaan. 1974. Studies on certain early barley mutants in M3 and M4 generations after seed irradiation with gamma rays. Plant Breeding 73: 44-57.
  • ICC, 1972. ICC standart Method 166/1: Determination of the Sedimentation Value (according to Zeleny) as an approximate measure of baking quality.
  • ICC, 1994. ICC Standard No 155: Determination of wet gluten quantity and quality (Gluten Index ac. To Perten) of whole wheat meal and wheat flour.
  • ICC, 1995. ICC Standard No 159: Determination of protein by near infrared reflectance (NIR) spectroscopy. International Atomic Energy Agency (IAEA). 2018. Mutant Varieties Database. https://mvd.iaea.org (Accessed 6 April 2018)
  • Jankowicz-Cieslak, J., C. Mba and B.J. Till. 2017. Mutagenesis for Crop Breeding and Functional Genomics. In: Biotechnologies for Plant Mutation Breeding, ed. Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J. and Till, B. J., 3-18, Springer, New York.
  • Johnson, H.W., H.F. Robinson and R.E. Comstock. 1955. Estimation of genetic and environmental variability in soybean. Agron. J. 47:314-318.
  • Kashif, M. and I. Khaliq. 2004. Heritability, correlation and path coefficient analysis for some metric traits in wheat. Int. J. Agri. Biol. 6 (1):138-142.
  • Khan, I.A. 1984. Mutations induced by gamma irradiation, ethylmethane sulphonate and hydrazine hydrate in mungbean (Phaseolus aureus Roxb.). Botanical Bulletin of Academia Sinica 25(1): 103-110.
  • Konzak, C.F. 1987. Mutations and Mutation Breeding. In: E.G. Heyne (ed.), Wheat and Wheat Improvement, Second Edition, 428-443, ASA. CSSA. SSSA. Inc. Press, Madison, WI, USA.
  • Kozgar, M.I., S. Khan and N. Jabeeen. 2009. Mitotic studies in chickpea raised in lead nitrate supplemented Murashige and Skoogs basal media. D.I.E. Journal of Science and Engineering Research 15 (1&2): 9-12.
  • Kumar, D., R.K. Srivastava, P.K. Yadav, A. Kumar and R.S. Yadav. 2017. Studies on variability, heritability and genetic advance in some quantitative characters in bread wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. App. Sci. 6(7): 873-877.
  • Laghari, K.A., M.A. Sial, M.A. Arain, A.A. Mirbahar, A.J. Pirzada, M.U. Dahot and S.M. Mangrio. 2010. Heritability studies of yield and yield associated traits in bread wheat. Pak. J. Bot. 42(1): 111-115.
  • MacKay, T.F.C. 2011. Mutations and quantitative genetic variation: lessons from Drosophila. Philosophical Transactions of the Royal Society B. 365: 1229-1239.
  • MacKey, J. 1984. Selection Problems and Objectives in Mutation Breeding. Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria). Panel proceedings series. 35-48.
  • Mba, C. 2013. Induced mutations unleash the potentials of plane genetic resources for food and agriculture. Agronomy 3: 200-231.
  • Naik, V.R., S.S. Biradar, A. Yadawad, S.A. Desai and B.A. Veeresha. 2015. Study of genetic variability parameters in bread wheat (Triticum aestivum L.) genotypes. Res. J. Agric. Sci. 6(1): 123-125.
  • Najeeb, S., A.G. Rather, A.G. Parray, F.A. Sheikh and S.M. Razvi. 2009. Studies on genetic variability, genotypic correlation and path coefficient analysis in maize under the high altitude temperate conditions of Kashmir. Maize Genet. Cooperation News l: 83-46.
  • Poehlman, J.M. and D.A. Sleper. 1995. Breeding Field Crops. 4th Iowa State University Press, Ames, USA. Rahman, M.A., M.L. Kabir, M. Hasanuzzaman, R.H. Rumi and M. Afrose. 2016. Study of variability in bread wheat (Triticum aestivum L.). Int. J. Agric. Res. 8: 66-76.
  • Rao, D.M., T.P. Reddy and T. Kinoshita. 1988. Characterization of induced polygenic variability in pigeonpea (Cajanus cajan L). J. Faculty Agric. Hokkaido University 63(4): 387-395.
  • Rao, G.M. and E.A. Siddiq. 1977. Induced variation for yield and its components in rice. Indian J. Genet. Plant Breed. 37: 12-21.
  • Roychowdhury, R. and J. Tah. 2013. Mutagenesis A Potential Approach For Crop Improvement. In: Crop improvement: New Approaches and Modern Techniques, ed. Hakeem, K.R., P. Ahmad and M. Ozturk, 149-187, Springer, New York.
  • Salman, S., S.J. Khan and R. Ullah. 2014. Genetic variability studies in bread wheat (Triticum aestivum L.) accessions. Pak. J. Agric. Res. 27 (1): 2-6.
  • Scossiroli, R.E. 1964. Wheat mutagenesis in quantitative traits. In Proceedings of the 2nd. Wheat Genetics Symposium, pp. 85-101, Lund.
  • Scossiroli, R.E. 1977. Mutations in Characters With Continuous Variation. In: Manual On Mutation Breeding. 2nd ed., IAEA, Tech. Rep. Ser. No: 119, 118-123, Vienna.
  • Shabana, R., I.M. Amer, R.S. Taha and C.R. Azzam. 1994. Variability, heritability and expected genetic advance in irradiated and non-irradiated populations of sunflower after two cycles of mass selection for short stature. Annals Agric. Sci. 39 (1): 249-256.
  • Siddiqui, S.A. and S. Singh. 2010. Induced genetic variability for yield and yield traits in basmati rice. World Journal of Agricultural Sciences 6(3): 331-337.
  • Singh, B.D. 2001. Plant Breeding: Principles and Methods, 1-896, Kalyani Publishers, New Delhi, India. Singh, R.K. and B.D. Chaudhary. 1999. Biometrical methods in quantitive genetics analysis, 1-318, Kalyani Publishers, New Delhi, India.
  • Subramaniam, S. and M. Menon. 1973. Inheritance of short stature in rice. Madras Agriculture Journal 60: 1129-1133.
  • Tammam, A.M., S.A. Ali and E.A.M. El-Sayed. 2000. Phenotypic, genotypic correlation and path coefficient analysis in some bread wheat crosses. Assiut. J. Agric. Sci. 31(3): 73-85.
  • Tickoo, J.L. and N. Chandra. 1999. Mutagen induced polygenic variability in mungbean (Vigna radiata (L.) Wilczek). Indian Journal of Genetics and Plant Breeding 59(2): 193-201.
Year 2018, Volume: 23 Issue: 2, 173 - 179, 15.12.2018
https://doi.org/10.17557/tjfc.485605

Abstract

References

  • AACC, 2000. Approved Methods of the American Association of Cereal Chemists. Methods 38-12 and 46-13, tenth ed. American Association of Cereal Chemists, St. Paul, MN.
  • Ali, A., S. Khan and M.A. Asad. 2012. Drought tolerance in wheat : Genetic variation and heritability for growth and ion relations. Asian J. Plant Sci. 1: 420-422.
  • Allard, R.W. 1999. Principals of Plant Breeding. 2. ed. New York: John Wiley & Sons.
  • Amer, I.M., R. Shabana, A.A.H. Allah and C.R. Azzam. 2001. Evaluation of sunflower irradiated populations in M4 and M5 generations. Second Plant Breeding Conference, Agronomy Dep. Faculty of Agric. Assuit University. 41-60.
  • Baloch, M.J., E. Baloch, W.A. Jatoi and N.F. Veesar. 2013. Correlations and heritability estimates of yield and yield attributing traits in wheat (Triticum aestivum L.). Pak. J. Agri. Eng. Vet. Sci. 29(2): 96-105.
  • Birhanu, M., A. Sentayehu, A. Alemayehu, A. Ermias and D. Dargicho. 2016. Genetic variability, heritability and genetic advance for yield and yield related traits in bread wheat (Triticum aestivum L.) genotypes. Glob. J. Sci. Front. Res. 16(7):12-15.
  • Borojevic, S. 1990. Mutations in Plant Breeding. In: Borojevic, S. (Eds.), Principles and Methods of Plant Breeding. Elsevier Science Publishing Co. Inc. New York, 252-262.
  • Brock, R.D. 1970. Mutations in quantitatively inherited traits induced by neutron irradiation. Radiation Botany 7: 193-203.
  • Brunner, H. 1991. Methods of Induction of Mutations. In: Mandal, A. K., Ganguli, P. K., Banerjee, S.P. (Eds.), Advances in Plant Breeding. CBS Publishers and Distributors, Delhi, 187-220.
  • Budak, N. 2000. Heritability, correlation and genotype x year interactions of grain yield, test weight and protein content in durum wheat. Turk J Field Crops 5(2): 35-40.
  • Chakrabarthi, S.N. 1975. Effects of combined X-rays and dES treatments on mutation frequencies in rice (Oryza sativa L.). Radiation Botany 15: 417-421.
  • Czyczyło-Mysza, I., I. Marcińska, J. Jankowicz-Cieślak and F. Dubert. 2013. The effect of ionizing radiation on vernalization, growth and development of winter wheat. Acta Biologica Cracoviensia Series Botanica 55(1):1-6.
  • Deshmukh, S.N., M.S. Basu and P.S. Reddy. 1986. Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J. Agric. Sci. 56: 816-821.
  • Frey, K.J. 1969. Release of mutagen-induced genetic variablity in oats by outcrossing. Japan J. Genet. 44: 396-403.
  • Gençtan, T. 1988. Buğdayda başlıca verim komponentlerinde F1 melez gücünün (Heterosis) saptanması. Trakya Üniv. Tekirdağ Ziraat Fakültesi Yayın No:59, Araştırma No:14, 53s.
  • Hanson, G.H., H.F. Robinson and R.E. Comstock. 1956. Biometrical studies on yield in segregating populations of Korean Lespidiza. Agorn. J. 48:268-272.
  • Ibrahim, A.F. and A.N. Sharaan. 1974. Studies on certain early barley mutants in M3 and M4 generations after seed irradiation with gamma rays. Plant Breeding 73: 44-57.
  • ICC, 1972. ICC standart Method 166/1: Determination of the Sedimentation Value (according to Zeleny) as an approximate measure of baking quality.
  • ICC, 1994. ICC Standard No 155: Determination of wet gluten quantity and quality (Gluten Index ac. To Perten) of whole wheat meal and wheat flour.
  • ICC, 1995. ICC Standard No 159: Determination of protein by near infrared reflectance (NIR) spectroscopy. International Atomic Energy Agency (IAEA). 2018. Mutant Varieties Database. https://mvd.iaea.org (Accessed 6 April 2018)
  • Jankowicz-Cieslak, J., C. Mba and B.J. Till. 2017. Mutagenesis for Crop Breeding and Functional Genomics. In: Biotechnologies for Plant Mutation Breeding, ed. Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J. and Till, B. J., 3-18, Springer, New York.
  • Johnson, H.W., H.F. Robinson and R.E. Comstock. 1955. Estimation of genetic and environmental variability in soybean. Agron. J. 47:314-318.
  • Kashif, M. and I. Khaliq. 2004. Heritability, correlation and path coefficient analysis for some metric traits in wheat. Int. J. Agri. Biol. 6 (1):138-142.
  • Khan, I.A. 1984. Mutations induced by gamma irradiation, ethylmethane sulphonate and hydrazine hydrate in mungbean (Phaseolus aureus Roxb.). Botanical Bulletin of Academia Sinica 25(1): 103-110.
  • Konzak, C.F. 1987. Mutations and Mutation Breeding. In: E.G. Heyne (ed.), Wheat and Wheat Improvement, Second Edition, 428-443, ASA. CSSA. SSSA. Inc. Press, Madison, WI, USA.
  • Kozgar, M.I., S. Khan and N. Jabeeen. 2009. Mitotic studies in chickpea raised in lead nitrate supplemented Murashige and Skoogs basal media. D.I.E. Journal of Science and Engineering Research 15 (1&2): 9-12.
  • Kumar, D., R.K. Srivastava, P.K. Yadav, A. Kumar and R.S. Yadav. 2017. Studies on variability, heritability and genetic advance in some quantitative characters in bread wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. App. Sci. 6(7): 873-877.
  • Laghari, K.A., M.A. Sial, M.A. Arain, A.A. Mirbahar, A.J. Pirzada, M.U. Dahot and S.M. Mangrio. 2010. Heritability studies of yield and yield associated traits in bread wheat. Pak. J. Bot. 42(1): 111-115.
  • MacKay, T.F.C. 2011. Mutations and quantitative genetic variation: lessons from Drosophila. Philosophical Transactions of the Royal Society B. 365: 1229-1239.
  • MacKey, J. 1984. Selection Problems and Objectives in Mutation Breeding. Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria). Panel proceedings series. 35-48.
  • Mba, C. 2013. Induced mutations unleash the potentials of plane genetic resources for food and agriculture. Agronomy 3: 200-231.
  • Naik, V.R., S.S. Biradar, A. Yadawad, S.A. Desai and B.A. Veeresha. 2015. Study of genetic variability parameters in bread wheat (Triticum aestivum L.) genotypes. Res. J. Agric. Sci. 6(1): 123-125.
  • Najeeb, S., A.G. Rather, A.G. Parray, F.A. Sheikh and S.M. Razvi. 2009. Studies on genetic variability, genotypic correlation and path coefficient analysis in maize under the high altitude temperate conditions of Kashmir. Maize Genet. Cooperation News l: 83-46.
  • Poehlman, J.M. and D.A. Sleper. 1995. Breeding Field Crops. 4th Iowa State University Press, Ames, USA. Rahman, M.A., M.L. Kabir, M. Hasanuzzaman, R.H. Rumi and M. Afrose. 2016. Study of variability in bread wheat (Triticum aestivum L.). Int. J. Agric. Res. 8: 66-76.
  • Rao, D.M., T.P. Reddy and T. Kinoshita. 1988. Characterization of induced polygenic variability in pigeonpea (Cajanus cajan L). J. Faculty Agric. Hokkaido University 63(4): 387-395.
  • Rao, G.M. and E.A. Siddiq. 1977. Induced variation for yield and its components in rice. Indian J. Genet. Plant Breed. 37: 12-21.
  • Roychowdhury, R. and J. Tah. 2013. Mutagenesis A Potential Approach For Crop Improvement. In: Crop improvement: New Approaches and Modern Techniques, ed. Hakeem, K.R., P. Ahmad and M. Ozturk, 149-187, Springer, New York.
  • Salman, S., S.J. Khan and R. Ullah. 2014. Genetic variability studies in bread wheat (Triticum aestivum L.) accessions. Pak. J. Agric. Res. 27 (1): 2-6.
  • Scossiroli, R.E. 1964. Wheat mutagenesis in quantitative traits. In Proceedings of the 2nd. Wheat Genetics Symposium, pp. 85-101, Lund.
  • Scossiroli, R.E. 1977. Mutations in Characters With Continuous Variation. In: Manual On Mutation Breeding. 2nd ed., IAEA, Tech. Rep. Ser. No: 119, 118-123, Vienna.
  • Shabana, R., I.M. Amer, R.S. Taha and C.R. Azzam. 1994. Variability, heritability and expected genetic advance in irradiated and non-irradiated populations of sunflower after two cycles of mass selection for short stature. Annals Agric. Sci. 39 (1): 249-256.
  • Siddiqui, S.A. and S. Singh. 2010. Induced genetic variability for yield and yield traits in basmati rice. World Journal of Agricultural Sciences 6(3): 331-337.
  • Singh, B.D. 2001. Plant Breeding: Principles and Methods, 1-896, Kalyani Publishers, New Delhi, India. Singh, R.K. and B.D. Chaudhary. 1999. Biometrical methods in quantitive genetics analysis, 1-318, Kalyani Publishers, New Delhi, India.
  • Subramaniam, S. and M. Menon. 1973. Inheritance of short stature in rice. Madras Agriculture Journal 60: 1129-1133.
  • Tammam, A.M., S.A. Ali and E.A.M. El-Sayed. 2000. Phenotypic, genotypic correlation and path coefficient analysis in some bread wheat crosses. Assiut. J. Agric. Sci. 31(3): 73-85.
  • Tickoo, J.L. and N. Chandra. 1999. Mutagen induced polygenic variability in mungbean (Vigna radiata (L.) Wilczek). Indian Journal of Genetics and Plant Breeding 59(2): 193-201.
There are 46 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Alpay Balkan

Publication Date December 15, 2018
Published in Issue Year 2018 Volume: 23 Issue: 2

Cite

APA Balkan, A. (2018). GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES. Turkish Journal Of Field Crops, 23(2), 173-179. https://doi.org/10.17557/tjfc.485605
AMA Balkan A. GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES. TJFC. December 2018;23(2):173-179. doi:10.17557/tjfc.485605
Chicago Balkan, Alpay. “GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum Aestivum L.) GENOTYPES”. Turkish Journal Of Field Crops 23, no. 2 (December 2018): 173-79. https://doi.org/10.17557/tjfc.485605.
EndNote Balkan A (December 1, 2018) GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES. Turkish Journal Of Field Crops 23 2 173–179.
IEEE A. Balkan, “GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES”, TJFC, vol. 23, no. 2, pp. 173–179, 2018, doi: 10.17557/tjfc.485605.
ISNAD Balkan, Alpay. “GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum Aestivum L.) GENOTYPES”. Turkish Journal Of Field Crops 23/2 (December 2018), 173-179. https://doi.org/10.17557/tjfc.485605.
JAMA Balkan A. GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES. TJFC. 2018;23:173–179.
MLA Balkan, Alpay. “GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum Aestivum L.) GENOTYPES”. Turkish Journal Of Field Crops, vol. 23, no. 2, 2018, pp. 173-9, doi:10.17557/tjfc.485605.
Vancouver Balkan A. GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE FOR YIELD AND QUALITY TRAITS IN M2-4 GENERATIONS OF BREAD WHEAT (Triticum aestivum L.) GENOTYPES. TJFC. 2018;23(2):173-9.

Cited By













Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474