Research Article
BibTex RIS Cite

Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.)

Year 2020, Volume: 7 Issue: 1, 78 - 84, 29.02.2020
https://doi.org/10.19159/tutad.668185

Abstract

The aim of this study was to investigate the role of grain size on seedling root architecture. Ten different bread
wheat cultivars were selected to examine the effect of grain size on primary root traits under controlled conditions. Seminal
root traits were tested with germination papers at the growth stage 1. Significant differences between seminal root number,
total seminal root length, longest root length, and root growth angle were observed among 10 cultivars. The seminal root
number per plant was found to be 3.93 in the large, 3.71 in the medium and 3.20 in the small grain groups. Similar rankings
in the seminal root length were observed, while root growth angle did not follow the same trend. The study suggested that the
cultivar Atay 85 with superior primary root traits can be an advantage, especially in regions where plants achieve an advantage
at a deep soil water level, under water stress at early growth stages.

Supporting Institution

The University of California Riverside, Botanic Gardens, the University of California Riverside, Botanic Gardens, Turkish Republic Ministry of National Education

Thanks

Nageen Asadi

References

  • Akman, H., Topal, A., 2013. Effects on wheat root growth and development of rhizosphere environment and stress factors. Journal of Selcuk University Natural and Applied Science, 2(ICOEST Special Issue): 824-838.
  • Allard, V., Martre, P., Le Gouis, J., 2013. Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. European Journal of Agronomy, 46: 68-76.
  • Anderson, W.K., 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research, 116(1-2): 14-22.
  • Anonymous, 2017. Crop Production Indicators. The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT), Rome, Italy.
  • Anonymous, 2019. Mega International. (https://mega-international.com/), (Access date: 23.12.2019).
  • Arnott, R.A., 1969. The effect of seed weight and depth of sowing on the emergence and early seedling growth of perennial ryegrass (Lolium perenne). Grass and Forage Science, 24(2): 104-110.
  • Atkinson, J., 2015. Phenotyping wheat root architecture in 2D and 3D. PAG XXIII Conference, 10-14 January, San Diego, CA, USA.
  • Bektas, H., Hohn, C.E., Waines, J.G., 2016. Root and shoot traits of bread wheat (Triticum aestivum L.) landraces and cultivars. Euphytica, 212(2): 297-311.
  • Bengough, A.G., Gordon, D.C., Al-Menaie, H., Ellis, R.P., Allan, D., Keith, R., Thomas, W.T.B., Forster, B.P., 2004. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant and Soil, 262(1-2): 63-70.
  • Cideciyan, M.A., Malloch, A.J., 1982. Effects of seed size on the germination, growth and competitive ability of Rumex crispus and Rumex obtusifolius. The Journal of Ecology, 70(1): 227-232.
  • De Smet, I., White, P.J., Bengough, A.G., Dupuy, L., Parizot, B., Casimiro, I., Heidstra, R., Laskowski, M., Lepetit, M., Hochholdinger, F., Draye, X., 2012. Analyzing lateral root development: how to move forward. The Plant Cell, 24(1): 15-20.
  • Döös, B.R., 2002. Population growth and loss of arable land. Global Environmental Change, 12(4): 303-311.
  • Edwards, C.J., Hartwig, E.E., 1971. Effect of seed size upon rate of germination in soybeans 1. Agronomy Journal, 63(3): 429-450.
  • Ehdaie, B., Waines, J.C., 2006. Determination of a chromosome segment influencing rooting ability in wheat-rye 1BS-1RS recombinant lines (Triticum aestivum L.; Secale cereale L.). Journal of Genetics and Breeding, 60(1): 71-76.
  • Gonzalez, E.J., 1993. Effect of seed size on germination and seedling vigor of Virola koschnyi Warb. Forest Ecology and Management, 57(1-4): 275-281.
  • Hawkesford, M.J., Araus, J.L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J., Parry, M.A.J., 2013. Prospects of doubling global wheat yields. Food Energy Security, 2(1): 34-48.
  • Hedden, P., 2003. The genes of the Green Revolution. Trends in Genetics, 19(1): 5-9.
  • Hendrix, S.D., 1984. Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelliferae). American Journal of Botany, 71(6): 795-802.
  • Jaradat, A.A., 2013. Wheat landraces: A mini review. Emirates Journal of Food and Agriculture, 25(1): 20-29.
  • Jia, Z., Liu, Y., Gruber, B. D., Neumann, K., Kilian, B., Graner, A., von Wirén, N. 2019. Genetic dissection of root system architectural traits in spring barley. Frontiers in Plant Science, 10: 1-14.
  • Karagöz, A., 2014. Wheat landraces of Turkey. Emirates Journal of Food and Agriculture, 26(2): 149-156.
  • Kätterer, T., Hansson, A.C., Andrén, O., 1993. Wheat root biomass and nitrogen dynamics effects of daily irrigation and fertilization. Plant and Soil, 151(1): 21-30.
  • Kong, L., Si, J., Sun, M., Feng, B., Zhang, B., Li, S., Wang, Z., Wang, F., 2013. Deep roots are pivotal for regulating post‐anthesis leaf senescence in wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science, 199(3): 209-216.
  • Lynch, J.P., 2007. Roots of the second green revolution. Australian Journal of Botany, 55(5): 493-512.
  • Lynch, J.P., 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2): 347-357.
  • Lynch, J.P., Wojciechowski, T., 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany, 66(8): 2199-2210.
  • Manschadi, A.M., Hammer, G.L., Christopher, J.T., Devoil, P., 2008. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1-2): 115-129.
  • Manske, G.G., Vlek, P.L., 2002. Plant roots, the hidden half. In Y. Waisel, A. Eshel, T. Beeckman, U. Kafkafi (Eds.), Root Architecture-Wheat as a Model Plant, CRC Press, Boca Raton, pp. 249-259.
  • Marshall, D.L., 1986. Effect of seed size on seedling success in three species of Sesbania (Fabaceae). American Journal of Botany, 73(4): 457-464.
  • Mian, M.A.R., Nafziger, E.D., 1994. Seed size and water potential effects on germination and seedling growth of winter wheat. Crop Science, 34(1): 169-171.
  • Moshatati, A., Gharineh, M.H., 2012. Effect of grain weight on germination and seed vigor of wheat. International Journal of Agriculture and Crop Sciences, 4(8): 458-460.
  • Passioura, J.B., 1983. Roots and drought resistance. Agricultural Water Management, 7(1-3): 265-280.
  • Richard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T., 2015. High-throughput phenotyping of seminal root traits in wheat. Plant Methods, 11(13): 1-11.
  • Robertson, B.M., Waines, J.G., Gill, B.S., 1979. Genetic variability for seedling root numbers in wild and domesticated wheats 1. Crop Science, 19(6): 843-847.
  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7): 671.
  • Sharma, S., DeMason, D.A., Ehdaie, B., Lukaszewski, A.J., Waines, J.G., 2010. Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. Journal of Experimental Botany, 61(10): 2623-2633.
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics: a Biometrical Approach, McGraw-Hill, New York.
  • Topp, C.N., Iyer-Pascuzzi, A.S., Anderson, J.T., Lee, C.R., Zurek, P.R., Symonova, O., Zheng, Y., Bucksch, A., Mileyko, Y., Galkovskyi, T., Moore, B.T., 2013. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proceedings of the National Academy of Sciences, 110(18): 1695-1704.
  • Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P., 2011. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil, 341(1-2): 75-87.
  • Uga, Y., Okuno, K., Yano, M., 2011. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8): 2485-2494.
  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9): 1097.
  • Waines, J.G., Ehdaie, B., 2007. Domestication and crop physiology: roots of green-revolution wheat. Annals of Botany, 100(5): 991-998.
  • Zhu, J., Mickelson, S.M., Kaeppler, S.M., Lynch, J.P., 2006. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 113(1): 1-10.

Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.)

Year 2020, Volume: 7 Issue: 1, 78 - 84, 29.02.2020
https://doi.org/10.19159/tutad.668185

Abstract

The aim of this study was to investigate the role of grain size on seedling root architecture. Ten different bread
wheat cultivars were selected to examine the effect of grain size on primary root traits under controlled conditions. Seminal
root traits were tested with germination papers at the growth stage 1. Significant differences between seminal root number,
total seminal root length, longest root length, and root growth angle were observed among 10 cultivars. The seminal root
number per plant was found to be 3.93 in the large, 3.71 in the medium and 3.20 in the small grain groups. Similar rankings
in the seminal root length were observed, while root growth angle did not follow the same trend. The study suggested that the
cultivar Atay 85 with superior primary root traits can be an advantage, especially in regions where plants achieve an advantage
at a deep soil water level, under water stress at early growth stages.

References

  • Akman, H., Topal, A., 2013. Effects on wheat root growth and development of rhizosphere environment and stress factors. Journal of Selcuk University Natural and Applied Science, 2(ICOEST Special Issue): 824-838.
  • Allard, V., Martre, P., Le Gouis, J., 2013. Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. European Journal of Agronomy, 46: 68-76.
  • Anderson, W.K., 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research, 116(1-2): 14-22.
  • Anonymous, 2017. Crop Production Indicators. The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT), Rome, Italy.
  • Anonymous, 2019. Mega International. (https://mega-international.com/), (Access date: 23.12.2019).
  • Arnott, R.A., 1969. The effect of seed weight and depth of sowing on the emergence and early seedling growth of perennial ryegrass (Lolium perenne). Grass and Forage Science, 24(2): 104-110.
  • Atkinson, J., 2015. Phenotyping wheat root architecture in 2D and 3D. PAG XXIII Conference, 10-14 January, San Diego, CA, USA.
  • Bektas, H., Hohn, C.E., Waines, J.G., 2016. Root and shoot traits of bread wheat (Triticum aestivum L.) landraces and cultivars. Euphytica, 212(2): 297-311.
  • Bengough, A.G., Gordon, D.C., Al-Menaie, H., Ellis, R.P., Allan, D., Keith, R., Thomas, W.T.B., Forster, B.P., 2004. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant and Soil, 262(1-2): 63-70.
  • Cideciyan, M.A., Malloch, A.J., 1982. Effects of seed size on the germination, growth and competitive ability of Rumex crispus and Rumex obtusifolius. The Journal of Ecology, 70(1): 227-232.
  • De Smet, I., White, P.J., Bengough, A.G., Dupuy, L., Parizot, B., Casimiro, I., Heidstra, R., Laskowski, M., Lepetit, M., Hochholdinger, F., Draye, X., 2012. Analyzing lateral root development: how to move forward. The Plant Cell, 24(1): 15-20.
  • Döös, B.R., 2002. Population growth and loss of arable land. Global Environmental Change, 12(4): 303-311.
  • Edwards, C.J., Hartwig, E.E., 1971. Effect of seed size upon rate of germination in soybeans 1. Agronomy Journal, 63(3): 429-450.
  • Ehdaie, B., Waines, J.C., 2006. Determination of a chromosome segment influencing rooting ability in wheat-rye 1BS-1RS recombinant lines (Triticum aestivum L.; Secale cereale L.). Journal of Genetics and Breeding, 60(1): 71-76.
  • Gonzalez, E.J., 1993. Effect of seed size on germination and seedling vigor of Virola koschnyi Warb. Forest Ecology and Management, 57(1-4): 275-281.
  • Hawkesford, M.J., Araus, J.L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J., Parry, M.A.J., 2013. Prospects of doubling global wheat yields. Food Energy Security, 2(1): 34-48.
  • Hedden, P., 2003. The genes of the Green Revolution. Trends in Genetics, 19(1): 5-9.
  • Hendrix, S.D., 1984. Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelliferae). American Journal of Botany, 71(6): 795-802.
  • Jaradat, A.A., 2013. Wheat landraces: A mini review. Emirates Journal of Food and Agriculture, 25(1): 20-29.
  • Jia, Z., Liu, Y., Gruber, B. D., Neumann, K., Kilian, B., Graner, A., von Wirén, N. 2019. Genetic dissection of root system architectural traits in spring barley. Frontiers in Plant Science, 10: 1-14.
  • Karagöz, A., 2014. Wheat landraces of Turkey. Emirates Journal of Food and Agriculture, 26(2): 149-156.
  • Kätterer, T., Hansson, A.C., Andrén, O., 1993. Wheat root biomass and nitrogen dynamics effects of daily irrigation and fertilization. Plant and Soil, 151(1): 21-30.
  • Kong, L., Si, J., Sun, M., Feng, B., Zhang, B., Li, S., Wang, Z., Wang, F., 2013. Deep roots are pivotal for regulating post‐anthesis leaf senescence in wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science, 199(3): 209-216.
  • Lynch, J.P., 2007. Roots of the second green revolution. Australian Journal of Botany, 55(5): 493-512.
  • Lynch, J.P., 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2): 347-357.
  • Lynch, J.P., Wojciechowski, T., 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany, 66(8): 2199-2210.
  • Manschadi, A.M., Hammer, G.L., Christopher, J.T., Devoil, P., 2008. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1-2): 115-129.
  • Manske, G.G., Vlek, P.L., 2002. Plant roots, the hidden half. In Y. Waisel, A. Eshel, T. Beeckman, U. Kafkafi (Eds.), Root Architecture-Wheat as a Model Plant, CRC Press, Boca Raton, pp. 249-259.
  • Marshall, D.L., 1986. Effect of seed size on seedling success in three species of Sesbania (Fabaceae). American Journal of Botany, 73(4): 457-464.
  • Mian, M.A.R., Nafziger, E.D., 1994. Seed size and water potential effects on germination and seedling growth of winter wheat. Crop Science, 34(1): 169-171.
  • Moshatati, A., Gharineh, M.H., 2012. Effect of grain weight on germination and seed vigor of wheat. International Journal of Agriculture and Crop Sciences, 4(8): 458-460.
  • Passioura, J.B., 1983. Roots and drought resistance. Agricultural Water Management, 7(1-3): 265-280.
  • Richard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T., 2015. High-throughput phenotyping of seminal root traits in wheat. Plant Methods, 11(13): 1-11.
  • Robertson, B.M., Waines, J.G., Gill, B.S., 1979. Genetic variability for seedling root numbers in wild and domesticated wheats 1. Crop Science, 19(6): 843-847.
  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7): 671.
  • Sharma, S., DeMason, D.A., Ehdaie, B., Lukaszewski, A.J., Waines, J.G., 2010. Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. Journal of Experimental Botany, 61(10): 2623-2633.
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics: a Biometrical Approach, McGraw-Hill, New York.
  • Topp, C.N., Iyer-Pascuzzi, A.S., Anderson, J.T., Lee, C.R., Zurek, P.R., Symonova, O., Zheng, Y., Bucksch, A., Mileyko, Y., Galkovskyi, T., Moore, B.T., 2013. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proceedings of the National Academy of Sciences, 110(18): 1695-1704.
  • Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P., 2011. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil, 341(1-2): 75-87.
  • Uga, Y., Okuno, K., Yano, M., 2011. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8): 2485-2494.
  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9): 1097.
  • Waines, J.G., Ehdaie, B., 2007. Domestication and crop physiology: roots of green-revolution wheat. Annals of Botany, 100(5): 991-998.
  • Zhu, J., Mickelson, S.M., Kaeppler, S.M., Lynch, J.P., 2006. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 113(1): 1-10.
There are 43 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Harun Bektaş 0000-0002-4397-4089

John Waınes 0000-0002-7341-7312

Publication Date February 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Bektaş, H., & Waınes, J. (2020). Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). Türkiye Tarımsal Araştırmalar Dergisi, 7(1), 78-84. https://doi.org/10.19159/tutad.668185
AMA Bektaş H, Waınes J. Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). TÜTAD. February 2020;7(1):78-84. doi:10.19159/tutad.668185
Chicago Bektaş, Harun, and John Waınes. “Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum Aestivum L.)”. Türkiye Tarımsal Araştırmalar Dergisi 7, no. 1 (February 2020): 78-84. https://doi.org/10.19159/tutad.668185.
EndNote Bektaş H, Waınes J (February 1, 2020) Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). Türkiye Tarımsal Araştırmalar Dergisi 7 1 78–84.
IEEE H. Bektaş and J. Waınes, “Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.)”, TÜTAD, vol. 7, no. 1, pp. 78–84, 2020, doi: 10.19159/tutad.668185.
ISNAD Bektaş, Harun - Waınes, John. “Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum Aestivum L.)”. Türkiye Tarımsal Araştırmalar Dergisi 7/1 (February 2020), 78-84. https://doi.org/10.19159/tutad.668185.
JAMA Bektaş H, Waınes J. Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). TÜTAD. 2020;7:78–84.
MLA Bektaş, Harun and John Waınes. “Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum Aestivum L.)”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 7, no. 1, 2020, pp. 78-84, doi:10.19159/tutad.668185.
Vancouver Bektaş H, Waınes J. Effect of Grain Size on The Root System Architecture of Bread Wheat (Triticum aestivum L.). TÜTAD. 2020;7(1):78-84.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667