Review
BibTex RIS Cite

Hidrojenin Kullanım Alanları ve Hidrojen Ekonomisi

Year 2023, Volume: 8 Issue: 1, 20 - 31, 20.07.2023

Abstract

Hidrojenin enerji taşıyıcısı olarak kullanımı gelecekte önemli bir rol oynayabilir. Geleneksel yakıtların yerini alabilecek ve temiz enerji kaynaklarına yönelik bir alternatif olabilecek hidrojen, birçok sektörde kullanılabilir. Hidrojen, yenilenebilir enerji kaynaklarından üretilerek depolanabilir ve daha sonra enerji üretiminde kullanılabilir. Elektroliz yöntemiyle üretilen hidrojen, güneş ve rüzgâr enerjisi gibi yenilenebilir kaynakların depolanması ve taşınması için kullanılabilir. Hidrojenin kullanımı enerji sektöründe daha fazla temiz enerjiye erişimi sağlayabilir. Hidrojen ayrıca ulaşım sektöründe de kullanılabilir. Hidrojen yakıtlı araçlar, benzinli ve dizel araçlara alternatif olarak kullanılabilir. Bu araçlar, sıfır emisyonlu taşımacılık için bir seçenek olabilir. Bununla birlikte, hidrojenin depolanması, taşınması ve dağıtımı gibi teknolojik zorluklar hala var ve bu zorlukların ele alınması gerekiyor. Hidrojenin enerji sektöründe kullanımı, aynı zamanda enerji verimliliği ve karbon emisyonlarının azaltılması gibi çevresel faydalar da sağlayabilir. Hidrojen, fosil yakıtlara kıyasla daha az çevresel etkiye sahip olduğu için, enerji sektöründeki dönüşümün bir parçası olarak daha sürdürülebilir bir gelecek için önemli bir rol oynayabilir. Sonuç olarak, hidrojenin enerji taşıyıcısı olarak kullanımı, temiz enerji kaynaklarına yönelik bir alternatif olarak gelecekte önemli bir rol oynayabilir. Ancak, hidrojenin potansiyelinden tam olarak yararlanmak için teknolojik zorlukların ele alınması ve hidrojenin daha yaygın olarak kullanımı için altyapının geliştirilmesi gerekiyor.

References

  • [1] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges,” Renewable and Sustainable Energy Reviews, vol. 146, p. 111180, Aug. 2021, doi: 10.1016/J.RSER.2021.111180.
  • [2] A. Zahedi, H. A. Z. AL-bonsrulah, and M. Tafavogh, “Conceptual design and simulation of a stand-alone Wind/PEM fuel Cell/Hydrogen storage energy system for off-grid regions, a case study in Kuhin, Iran,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103142, Jun. 2023, doi: 10.1016/J.SETA.2023.103142.
  • [3] T. Yusaf et al., “Sustainable hydrogen energy in aviation – A narrative review,” Int J Hydrogen Energy, Mar. 2023, doi: 10.1016/J.IJHYDENE.2023.02.086.
  • [4] M. D. Scovell, “Explaining hydrogen energy technology acceptance: A critical review,” Int J Hydrogen Energy, vol. 47, no. 19, pp. 10441–10459, Mar. 2022, doi: 10.1016/J.IJHYDENE.2022.01.099.
  • [5] A. V. Vorontsov and P. G. Smirniotis, “Advancements in hydrogen energy research with the assistance of computational chemistry,” Int J Hydrogen Energy, vol. 48, no. 40, pp. 14978–14999, May 2023, doi: 10.1016/J.IJHYDENE.2022.12.356.
  • [6] S. Salahshoor and S. Afzal, “Subsurface technologies for hydrogen production from fossil fuel resources: A review and techno-economic analysis,” Int J Hydrogen Energy, Sep. 2022, doi: 10.1016/J.IJHYDENE.2022.08.202.
  • [7] S. Z. Zhiznin, N. N. Shvets, V. M. Timokhov, and A. L. Gusev, “Economics of hydrogen energy of green transition in the world and Russia.Part I,” Int J Hydrogen Energy, Mar. 2023, doi: 10.1016/J.IJHYDENE.2023.03.069.
  • [8] Y. Woo, J. M. Park, J. W. Bae, and M. J. Park, “Kinetic modeling of the steam reforming of light hydrocarbon mixture from waste resources: Effects of gas composition on hydrogen production,” Int J Hydrogen Energy, vol. 48, no. 41, pp. 15383–15391, May 2023, doi: 10.1016/J.IJHYDENE.2023.01.050.
  • [9] İ. Üçgül and G. Akgül, “Biyokütle Teknolojisi,” YEKARUM DERGİ, vol. 1, no. 1, pp. 3–11, 2010.
  • [10] M. M. Soltani, P. Ahmadi, and M. Ashjaee, “Techno-economic optimization of a biomass gasification energy system with Supercritical CO2 cycle for hydrogen fuel and electricity production,” Fuel, vol. 333, p. 126264, Feb. 2023, doi: 10.1016/J.FUEL.2022.126264.
  • [11] W. Shi et al., “Realization of photocatalytic hydrogen production by optimizing energy band structure and promoting charges separation over the S-doped CoFe2O4 microrods,” Mater Today Commun, vol. 35, p. 105588, Jun. 2023, doi: 10.1016/J.MTCOMM.2023.105588.
  • [12] D. Li, J. Tu, Y. Lu, and B. Zhang, “Recent advances in hybrid water electrolysis for energy-saving hydrogen production,” Green Chemical Engineering, vol. 4, no. 1, pp. 17–29, Mar. 2023, doi: 10.1016/J.GCE.2022.11.001.
  • [13] S. F. Ahmed et al., “Sustainable hydrogen production: Technological advancements and economic analysis,” Int J Hydrogen Energy, vol. 47, no. 88, pp. 37227–37255, Oct. 2022, doi: 10.1016/J.IJHYDENE.2021.12.029.
  • [14] R. El Mrabet and A. Berrada, “Hydrogen production and derivatives from renewable energy systems for a best valorization of sustainable resources,” Hybrid Energy System Models, pp. 343–363, Jan. 2021, doi: 10.1016/B978-0-12-821403-9.00010-X.
  • [15] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 850–866, May 2016, doi: 10.1016/J.RSER.2015.12.112.
  • [16] Q. Hassan, A. Z. Sameen, H. M. Salman, M. Jaszczur, M. Al-Hitmi, and M. Alghoul, “Energy futures and green hydrogen production: Is Saudi Arabia trend?,” Results in Engineering, vol. 18, p. 101165, Jun. 2023, doi: 10.1016/J.RINENG.2023.101165.
  • [17] F. Pruvost, S. Cloete, C. Arnaiz del Pozo, and A. Zaabout, “Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture,” Energy Convers Manag, vol. 274, p. 116458, Dec. 2022, doi: 10.1016/J.ENCONMAN.2022.116458.
  • [18] T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Hidrojen Teknolojileri Stratejisi ve Yol Haritası,” 2023.
  • [19] N. A. Al-Mufachi and N. Shah, “The role of hydrogen and fuel cell technology in providing security for the UK energy system,” Energy Policy, vol. 171, p. 113286, Dec. 2022, doi: 10.1016/J.ENPOL.2022.113286.
  • [20] P. Ahmadi, M. Raeesi, S. Changizian, A. Teimouri, and A. Khoshnevisan, “Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques,” Energy, vol. 259, p. 125003, Nov. 2022, doi: 10.1016/J.ENERGY.2022.125003.
  • [21] Y. Lee, M. C. Lee, and Y. J. Kim, “Barriers and strategies of hydrogen fuel cell power generation based on expert survey in South Korea,” Int J Hydrogen Energy, vol. 47, no. 9, pp. 5709–5719, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.212.
  • [22] Z. Fu et al., “Fuel cell and hydrogen in maritime application: A review on aspects of technology, cost and regulations,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103181, Jun. 2023, doi: 10.1016/J.SETA.2023.103181.
  • [23] M. Atif Mahmood et al., “Sensitivity analysis of performance and thermal impacts of a single hydrogen fueled solid oxide fuel cell to optimize the operational and design parameters,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103241, Jun. 2023, doi: 10.1016/J.SETA.2023.103241.
  • [24] T. Hai et al., “Comparison analysis of hydrogen addition into both anode and afterburner of fuel cell incorporated with hybrid renewable energy driven SOFC: An application of techno-environmental horizon and multi-objective optimization,” Int J Hydrogen Energy, Mar. 2023, doi: 10.1016/J.IJHYDENE.2023.02.016.
  • [25] Q. Ding, M. Zhang, and H. Huang, “Biomass-derived carbon immobilized ultrafine Pt nanoparticle as a highly efficient catalyst for hydrogen fuel cell,” Mater Lett, vol. 333, p. 133675, Feb. 2023, doi: 10.1016/J.MATLET.2022.133675.
  • [26] D. Berstad, S. Gardarsdottir, S. Roussanaly, M. Voldsund, Y. Ishimoto, and P. Nekså, “Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis,” Renewable and Sustainable Energy Reviews, vol. 154, p. 111772, Feb. 2022, doi: 10.1016/J.RSER.2021.111772.
  • [27] F. Scheller, S. Wald, H. Kondziella, P. A. Gunkel, T. Bruckner, and D. Keles, “Future role and economic benefits of hydrogen and synthetic energy carriers in Germany: a review of long-term energy scenarios,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103037, Mar. 2023, doi: 10.1016/J.SETA.2023.103037.
  • [28] C. Chu, K. Wu, B. Luo, Q. Cao, and H. Zhang, “Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology - A review,” Carbon Resources Conversion, Mar. 2023, doi: 10.1016/J.CRCON.2023.03.007.
  • [29] K. Epstein, “Hydrogen: The Energy Carrier of the Future,” May 23, 2023. https://eta.lbl.gov/news/hydrogen-energy-carrier-future (accessed May 23, 2023).
  • [30] K. J. Dillman and J. Heinonen, “A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy,” Renewable and Sustainable Energy Reviews, vol. 167, 2022, doi: 10.1016/j.rser.2022.112648.
  • [31] M. I. Khan and S. G. Al-Ghamdi, “Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects,” Int J Hydrogen Energy, vol. 48, no. 28, pp. 10315–10344, Apr. 2023, doi: 10.1016/J.IJHYDENE.2022.12.033.
  • [32] J. D. Hunt et al., “Solid air hydrogen liquefaction, the missing link of the hydrogen economy,” Int J Hydrogen Energy, Apr. 2023, doi: 10.1016/J.IJHYDENE.2023.03.405.
  • [33] M. Ricci, P. Bellaby, and R. Flynn, “What do we know about public perceptions and acceptance of hydrogen? A critical review and new case study evidence,” Int J Hydrogen Energy, vol. 33, no. 21, 2008, doi: 10.1016/j.ijhydene.2008.07.106.
  • [34] M. D. Scovell, “Explaining hydrogen energy technology acceptance: A critical review,” International Journal of Hydrogen Energy, vol. 47, no. 19. 2022. doi: 10.1016/j.ijhydene.2022.01.099.
  • [35] IEA, “Offshore Wind Outlook 2019,” 2019.
  • [36] K. Itaoka, A. Saito, and K. Sasaki, “Public perception on hydrogen infrastructure in Japan: Influence of rollout of commercial fuel cell vehicles,” Int J Hydrogen Energy, vol. 42, no. 11, 2017, doi: 10.1016/j.ijhydene.2016.10.123.
  • [37] J. Yap and B. McLellan, “Evaluating the attitudes of Japanese society towards the hydrogen economy: A comparative study of recent and past community surveys,” Int J Hydrogen Energy, Jun. 2023, doi: 10.1016/J.IJHYDENE.2023.05.174.
  • [38] Y. E. Yüksel, “Elementary science teacher candidates’ views on hydrogen as future energy carrier,” Int J Hydrogen Energy, vol. 44, no. 20, pp. 9817–9822, Apr. 2019, doi: 10.1016/j.ijhydene.2018.12.009.
Year 2023, Volume: 8 Issue: 1, 20 - 31, 20.07.2023

Abstract

References

  • [1] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges,” Renewable and Sustainable Energy Reviews, vol. 146, p. 111180, Aug. 2021, doi: 10.1016/J.RSER.2021.111180.
  • [2] A. Zahedi, H. A. Z. AL-bonsrulah, and M. Tafavogh, “Conceptual design and simulation of a stand-alone Wind/PEM fuel Cell/Hydrogen storage energy system for off-grid regions, a case study in Kuhin, Iran,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103142, Jun. 2023, doi: 10.1016/J.SETA.2023.103142.
  • [3] T. Yusaf et al., “Sustainable hydrogen energy in aviation – A narrative review,” Int J Hydrogen Energy, Mar. 2023, doi: 10.1016/J.IJHYDENE.2023.02.086.
  • [4] M. D. Scovell, “Explaining hydrogen energy technology acceptance: A critical review,” Int J Hydrogen Energy, vol. 47, no. 19, pp. 10441–10459, Mar. 2022, doi: 10.1016/J.IJHYDENE.2022.01.099.
  • [5] A. V. Vorontsov and P. G. Smirniotis, “Advancements in hydrogen energy research with the assistance of computational chemistry,” Int J Hydrogen Energy, vol. 48, no. 40, pp. 14978–14999, May 2023, doi: 10.1016/J.IJHYDENE.2022.12.356.
  • [6] S. Salahshoor and S. Afzal, “Subsurface technologies for hydrogen production from fossil fuel resources: A review and techno-economic analysis,” Int J Hydrogen Energy, Sep. 2022, doi: 10.1016/J.IJHYDENE.2022.08.202.
  • [7] S. Z. Zhiznin, N. N. Shvets, V. M. Timokhov, and A. L. Gusev, “Economics of hydrogen energy of green transition in the world and Russia.Part I,” Int J Hydrogen Energy, Mar. 2023, doi: 10.1016/J.IJHYDENE.2023.03.069.
  • [8] Y. Woo, J. M. Park, J. W. Bae, and M. J. Park, “Kinetic modeling of the steam reforming of light hydrocarbon mixture from waste resources: Effects of gas composition on hydrogen production,” Int J Hydrogen Energy, vol. 48, no. 41, pp. 15383–15391, May 2023, doi: 10.1016/J.IJHYDENE.2023.01.050.
  • [9] İ. Üçgül and G. Akgül, “Biyokütle Teknolojisi,” YEKARUM DERGİ, vol. 1, no. 1, pp. 3–11, 2010.
  • [10] M. M. Soltani, P. Ahmadi, and M. Ashjaee, “Techno-economic optimization of a biomass gasification energy system with Supercritical CO2 cycle for hydrogen fuel and electricity production,” Fuel, vol. 333, p. 126264, Feb. 2023, doi: 10.1016/J.FUEL.2022.126264.
  • [11] W. Shi et al., “Realization of photocatalytic hydrogen production by optimizing energy band structure and promoting charges separation over the S-doped CoFe2O4 microrods,” Mater Today Commun, vol. 35, p. 105588, Jun. 2023, doi: 10.1016/J.MTCOMM.2023.105588.
  • [12] D. Li, J. Tu, Y. Lu, and B. Zhang, “Recent advances in hybrid water electrolysis for energy-saving hydrogen production,” Green Chemical Engineering, vol. 4, no. 1, pp. 17–29, Mar. 2023, doi: 10.1016/J.GCE.2022.11.001.
  • [13] S. F. Ahmed et al., “Sustainable hydrogen production: Technological advancements and economic analysis,” Int J Hydrogen Energy, vol. 47, no. 88, pp. 37227–37255, Oct. 2022, doi: 10.1016/J.IJHYDENE.2021.12.029.
  • [14] R. El Mrabet and A. Berrada, “Hydrogen production and derivatives from renewable energy systems for a best valorization of sustainable resources,” Hybrid Energy System Models, pp. 343–363, Jan. 2021, doi: 10.1016/B978-0-12-821403-9.00010-X.
  • [15] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 850–866, May 2016, doi: 10.1016/J.RSER.2015.12.112.
  • [16] Q. Hassan, A. Z. Sameen, H. M. Salman, M. Jaszczur, M. Al-Hitmi, and M. Alghoul, “Energy futures and green hydrogen production: Is Saudi Arabia trend?,” Results in Engineering, vol. 18, p. 101165, Jun. 2023, doi: 10.1016/J.RINENG.2023.101165.
  • [17] F. Pruvost, S. Cloete, C. Arnaiz del Pozo, and A. Zaabout, “Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture,” Energy Convers Manag, vol. 274, p. 116458, Dec. 2022, doi: 10.1016/J.ENCONMAN.2022.116458.
  • [18] T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Hidrojen Teknolojileri Stratejisi ve Yol Haritası,” 2023.
  • [19] N. A. Al-Mufachi and N. Shah, “The role of hydrogen and fuel cell technology in providing security for the UK energy system,” Energy Policy, vol. 171, p. 113286, Dec. 2022, doi: 10.1016/J.ENPOL.2022.113286.
  • [20] P. Ahmadi, M. Raeesi, S. Changizian, A. Teimouri, and A. Khoshnevisan, “Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques,” Energy, vol. 259, p. 125003, Nov. 2022, doi: 10.1016/J.ENERGY.2022.125003.
  • [21] Y. Lee, M. C. Lee, and Y. J. Kim, “Barriers and strategies of hydrogen fuel cell power generation based on expert survey in South Korea,” Int J Hydrogen Energy, vol. 47, no. 9, pp. 5709–5719, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.212.
  • [22] Z. Fu et al., “Fuel cell and hydrogen in maritime application: A review on aspects of technology, cost and regulations,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103181, Jun. 2023, doi: 10.1016/J.SETA.2023.103181.
  • [23] M. Atif Mahmood et al., “Sensitivity analysis of performance and thermal impacts of a single hydrogen fueled solid oxide fuel cell to optimize the operational and design parameters,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103241, Jun. 2023, doi: 10.1016/J.SETA.2023.103241.
  • [24] T. Hai et al., “Comparison analysis of hydrogen addition into both anode and afterburner of fuel cell incorporated with hybrid renewable energy driven SOFC: An application of techno-environmental horizon and multi-objective optimization,” Int J Hydrogen Energy, Mar. 2023, doi: 10.1016/J.IJHYDENE.2023.02.016.
  • [25] Q. Ding, M. Zhang, and H. Huang, “Biomass-derived carbon immobilized ultrafine Pt nanoparticle as a highly efficient catalyst for hydrogen fuel cell,” Mater Lett, vol. 333, p. 133675, Feb. 2023, doi: 10.1016/J.MATLET.2022.133675.
  • [26] D. Berstad, S. Gardarsdottir, S. Roussanaly, M. Voldsund, Y. Ishimoto, and P. Nekså, “Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis,” Renewable and Sustainable Energy Reviews, vol. 154, p. 111772, Feb. 2022, doi: 10.1016/J.RSER.2021.111772.
  • [27] F. Scheller, S. Wald, H. Kondziella, P. A. Gunkel, T. Bruckner, and D. Keles, “Future role and economic benefits of hydrogen and synthetic energy carriers in Germany: a review of long-term energy scenarios,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103037, Mar. 2023, doi: 10.1016/J.SETA.2023.103037.
  • [28] C. Chu, K. Wu, B. Luo, Q. Cao, and H. Zhang, “Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology - A review,” Carbon Resources Conversion, Mar. 2023, doi: 10.1016/J.CRCON.2023.03.007.
  • [29] K. Epstein, “Hydrogen: The Energy Carrier of the Future,” May 23, 2023. https://eta.lbl.gov/news/hydrogen-energy-carrier-future (accessed May 23, 2023).
  • [30] K. J. Dillman and J. Heinonen, “A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy,” Renewable and Sustainable Energy Reviews, vol. 167, 2022, doi: 10.1016/j.rser.2022.112648.
  • [31] M. I. Khan and S. G. Al-Ghamdi, “Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects,” Int J Hydrogen Energy, vol. 48, no. 28, pp. 10315–10344, Apr. 2023, doi: 10.1016/J.IJHYDENE.2022.12.033.
  • [32] J. D. Hunt et al., “Solid air hydrogen liquefaction, the missing link of the hydrogen economy,” Int J Hydrogen Energy, Apr. 2023, doi: 10.1016/J.IJHYDENE.2023.03.405.
  • [33] M. Ricci, P. Bellaby, and R. Flynn, “What do we know about public perceptions and acceptance of hydrogen? A critical review and new case study evidence,” Int J Hydrogen Energy, vol. 33, no. 21, 2008, doi: 10.1016/j.ijhydene.2008.07.106.
  • [34] M. D. Scovell, “Explaining hydrogen energy technology acceptance: A critical review,” International Journal of Hydrogen Energy, vol. 47, no. 19. 2022. doi: 10.1016/j.ijhydene.2022.01.099.
  • [35] IEA, “Offshore Wind Outlook 2019,” 2019.
  • [36] K. Itaoka, A. Saito, and K. Sasaki, “Public perception on hydrogen infrastructure in Japan: Influence of rollout of commercial fuel cell vehicles,” Int J Hydrogen Energy, vol. 42, no. 11, 2017, doi: 10.1016/j.ijhydene.2016.10.123.
  • [37] J. Yap and B. McLellan, “Evaluating the attitudes of Japanese society towards the hydrogen economy: A comparative study of recent and past community surveys,” Int J Hydrogen Energy, Jun. 2023, doi: 10.1016/J.IJHYDENE.2023.05.174.
  • [38] Y. E. Yüksel, “Elementary science teacher candidates’ views on hydrogen as future energy carrier,” Int J Hydrogen Energy, vol. 44, no. 20, pp. 9817–9822, Apr. 2019, doi: 10.1016/j.ijhydene.2018.12.009.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other)
Journal Section articles
Authors

Halil Mutlubaş 0000-0002-8079-5290

Zafer Ömer Özdemir 0000-0002-8362-3136

Publication Date July 20, 2023
Acceptance Date July 16, 2023
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

IEEE H. Mutlubaş and Z. Ö. Özdemir, “Hidrojenin Kullanım Alanları ve Hidrojen Ekonomisi”, Yekarum, vol. 8, no. 1, pp. 20–31, 2023.