Cilt 17, Sayı 3, Sayfalar 1 - 12 2015-02-09

Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi

İrfan ÖZTÜRK [1]

167 552

Özet: Bu çalışmanın amacı, küçük örneklemlerde karkas ağırlığının tahmin edilmesinde yanlı tahmin tekniklerinden Ridge Regression (RR) yönteminin en küçük kareler EKK yöntemine karşı etkinliğini araştırmaktır. Bu amaçla broilerde karkas ağırlığı ile açıklayıcı değişkenler arasındaki doğrusal ilişkinin tahmininde EKK ve yanlı tahmin tekniklerinden Ridge Regression yöntemi karşılaştırılmaktadır. Araştırmada, bağımsız değişkenler arasındaki yüksek çoklu doğrusal bağlantı problemine dayanarak RR yönteminin EKK yöntemine göre daha küçük standart hatalı, durağan ve kuramsal beklentilere uygun tahminler sağlayacağı beklenmiştir.

Anahtar Kelimeler: En küçük Kareler Yöntemi, Ridge Regresyon, Çoklu Doğrusal Bağlantı

 

The Solution of Multicolinearity Problem via Biased Regression Analysis in Animal Production Data

 

Abstract: The aim of this study is to investigate the effectiveness of Ridge Regression (RR) applying biased estimation techniques over the method of Least Squares (LS) technique on the estimation of carcass weight. For this purpose, the Ridge Regression method biased estimation techniques are compared with LS to estimate linear relationship between carcass weight and explanatory variables in broiler. In this study, based the problem of high multiple linear connection between the independent variables, it was hypothesized that RR method has smaller standard errors and estimates in accordance with theoretical expectations according to the method of LS.

Keywords: Least Squares Technique, Ridge Regression, Multicolinearity

Bu çalışmanın amacı, küçük örneklemlerde karkas ağırlığının tahmin edilmesinde yanlı tahmin tekniklerindenRidge Regression (RR) yönteminin en küçük kareler EKK yöntemine karşı etkinliğini araştırmaktır. Bu amaçlabroilerde karkas ağırlığı ile açıklayıcı değişkenler arasındaki doğrusal ilişkinin tahmininde EKK ve yanlı tahmintekniklerinden Ridge Regression yöntemi karşılaştırılmaktadır. Araştırmada, bağımsız değişkenler arasındakiyüksek çoklu doğrusal bağlantı problemine dayanarak RR yönteminin EKK yöntemine göre daha küçük standarthatalı, durağan ve kuramsal beklentilere uygun tahminler sağlayacağı beklenmiştir
  • Aktaş, C., 2007. Çoklu Bağıntı ve Liu Kestiricisiyle Enflasyon Modeli için bir Uygulama. ZKÜ sosyal Bilimler Dergisi, cilt 3, sayı 6, 67-79 .
  • Albayrak, A.S., 2005. Çoklu doğrusal bağlantı halinde en küçük kareler tekniğinin alternatifi yanlı tahmin teknikleri ve bir uygulama ZKÜ Sosyal Bilimler Dergisi Cilt 1, Sayı 1, 105-126.
  • Albayrak, A.S. 2006. Uygulamalı Çok Değişkenli İstatistik Teknikleri. Asil yayın dağıtım, Ankara, 265-284.
  • Alma, G.Ö., Vupa, Ö. 2008. Regresyon Analizinde Kullanılan En Küçük Kareler Ve En Küçük Medyan Kareler Yöntemlerinin Karşılaştırılması. SDÜ Fen Edebiyat Fakültesi Fen Dergisi (E-Dergi). 3(2) 219- 229.
  • Arıcı, H. 1991. İstatistik Yöntemler ve Uygulamalar. Ankara: Meteksan.281 s.
  • Coşkuntuncel, O. 2010. Sosyal Bilimlerde Yanlı Regresyon Tahmin Edicilerin Kullanılması. Eğitim ve Psikolojide Ölçme ve Değerlendirme Dergisi, 1(2), 100-108.
  • Ebegil M. 2009. Ridge tahminine dayalı yanlı tahmin edici için bir test istatistiği , SAÜ Fen Edebiyat Dergisi, II, 1-14. Freund, R.J. and
  • Minton, P.D. 1979. Regression
  • methods. Marcel Dekker, New York 261 s.
  • Gujarati, D.N. 1995. Basic Econometrics. McGraw-Hill, New York, 319-399 s.
  • Hoerl, A.E. and Kennard, R.W. 1970 Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, Cilt:12, No: 1, 55-67.
  • İpek, O. 2011. Ridge Regresyon Üzerine Bir Çalışma. idari.cu.edu.tr/sempozyum/bil28.htm Erişim Tarihi: 06.06.2014.
  • Marqurt, D.W.,Snee, R.D. 1975. Ridge Regression in Pratice. The American Statistician, ,Vol. 29 No. 1,4.
  • Maxwell, Scott E. 2000. Sample Size in Multiple Regression Analysis. Psychological Methods, Cilt: 5, No: 4, 434-458.
  • Montgomery, D. C., Peck, E. A., & Vining, G. G. 2013. Doğrusal Regresyon analizine Giriş (Introduction to linear regression analysis New York: John Wiley and Sons.) 5.Basımdan çeviri. Yayın No: 717, 142 Nobel Akademik Yayıncılık, Ankara, 645 S.
  • Mullet, G, M. 1976. Wye Regression Coefficients have the wrong sign. Journal of Quality Technology, 8, 121-126.
  • NCSS Statistical System 2001. User’s Guide, Kaysville, NCSS Inc.
  • Netter, J., Wasserman W. and Kunter M. 1990. Applied Linear Statistical Models. Irwin: Homewood, IL.
  • Şahinler, S. 2000. En Küçük Kareler Yöntemi ile Doğrusal Regresyon Modeli Oluşturmanın Temel Prensipleri. MKÜ. Ziraat Fakültesi Dergisi 5 (1-2). Hatay, 57–73.
  • Şenyay, L. ve Özler, C. 1993. “Ridge Tahminleyicisinin Özellikleri. Dokuz Eylül Üniversitesi”, I. Ulusal Ekonometri ve İstatistik Sempozyumu, İzmir, 217- 236.
  • Vinod, H.D. 1995. Double Bootstrap for Shrinkage Estimators, Journal of Econometrics, 68, 287-302.
  • Vupa Ö ve Alma, Ö.G. 2008. Doğrusal Regresyon çözümlemesinde Çoklu bağlantı probleminin sapan değer içeren küçük örneklemlerde incelenmesi. SÜ Fen Ed. F. Derg. Sayı 31, Konya, 97-107.
  • Webster, A.1995. Applide Statistics for Business and Economics 683-684.
Birincil Dil tr
Konular
Dergi Bölümü BİYOMETRİ (Biometrics)
Yazarlar

Yazar: İrfan ÖZTÜRK
E-posta: ozirfan23@yahoo.com

Bibtex @ { ksudobil243855, journal = {Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi}, issn = {}, address = {Kahramanmaraş Sütçü İmam Üniversitesi}, year = {2015}, volume = {17}, pages = {1 - 12}, doi = {10.18016/ksujns.77504}, title = {Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi}, language = {en}, key = {cite}, author = {ÖZTÜRK, İrfan} }
APA ÖZTÜRK, İ . (2015). Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 17 (3), 1-12. Retrieved from http://dogadergi.ksu.edu.tr/issue/22842/243855
MLA ÖZTÜRK, İ . "Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi". Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi 17 (2015): 1-12 <http://dogadergi.ksu.edu.tr/issue/22842/243855>
Chicago ÖZTÜRK, İ . "Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi". Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi 17 (2015): 1-12
RIS TY - JOUR T1 - Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi AU - İrfan ÖZTÜRK Y1 - 2015 PY - 2015 N1 - DO - T2 - Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi JF - Journal JO - JOR SP - 1 EP - 12 VL - 17 IS - 3 SN - -1309-1743 M3 - UR - Y2 - 2017 ER -
EndNote %0 Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi %A İrfan ÖZTÜRK %T Hayvansal Üretim Verilerinde Çoklu Bağlantı Probleminin Yanlı Regresyon Yöntemi İle Çözümlenmesi %D 2015 %J Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi %P -1309-1743 %V 17 %N 3 %R %U