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ABSTRACT  

In this study, it was aimed to investigate the effects of salinity, which 

is an important environmental problem, in the cultivation of 

ornamental plants (such as zinnia) and irrigation with high salt 

water, especially on the antioxidant defense mechanism. For this 

purpose, the two Zinnia species were irrigated by different 

concentrations of saline water (50, 100, 150, 200 mM NaCl); effects of 

salinity on superoxide dismutase (SOD), catalase (CAT), glutathione 

reductase (GR) lipid peroxidation (MDA) and hydrogen peroxide 

(H2O2) in the leaves were determined. The results showed that salinity 

conspicuously increased SOD, CAT, GR, H2O2 and MDA content at 

two Zinnia species compared to the control groups. It was found that 

SOD and CAT enzyme activities increased remarkably with 150 mM 

NaCl in both Zinnia species, but decreased with 200 mM 

NaCl.The highest GR enzyme activity was observed in 200mM salt 

concentration at Zinnia marylandica ‘Double Zahara Fire Improved’. 

MDA and H2O2 levels were observed higher in Zinnia elegans ‘Zinnita 

Scarlet’.To conclude; it may be said that these two Zinnia varieties can 

tolerate salt concentration up to 150 mM. 
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İki Zinnia Türünün Yapraklarında Tuzluluğun Antioksidan Enzim Aktiviteleri, Lipid Peroksidasyonu 

ve H2O2 Düzeyleri Üzerine Etkilerinin Karşılaştırılması 
 

ÖZET 

Bu çalışmada, önemli bir çevresel sorun olan tuzluluğun, süs 

bitkilerinin (zinnia gibi) yetiştirilmesinde ve yüksek tuzlu su ile 

sulamada, özellikle antioksidan savunma mekanizması üzerindeki 

etkilerinin araştırılması amaçlanmıştır. Bu amaçla, iki Zinnia türü 

farklı konsantrasyonlarda tuzlu su (50, 100, 150, 200 mM NaCl) ile 

sulanmıştır; tuzluluğun yapraklardaki süperoksit dismutaz (SOD), 

katalaz (CAT), glutatyon redüktaz (GR) lipit peroksidasyonu (MDA) 

ve hidrojen peroksit (H2O2) üzerindeki etkileri belirlenmiştir. 

Sonuçlar, tuzluluğun iki Zinnia türünde SOD, CAT, GR, H2O2 ve MDA 

içeriğini kontrol gruplarına kıyasla belirgin şekilde arttırdığını 

göstermiştir. SOD ve CAT enzim aktivitelerinin her iki Zinnia 

türünde 150 mM NaCl ile önemli ölçüde arttığı, ancak 200 mM NaCl 

ile azaldığı bulunmuştur. En yüksek GR enzim aktivitesi, Zinnia 
marylandica "Double Zahara Fire Improved" da 200mM tuz 

konsantrasyonunda gözlenmiştir. MDA ve H2O2 seviyeleri Zinnia 
elegans 'Zinnita Scarlet' da daha yüksek olarak gözlemlenmiştir. 

Sonuç olarak, bu iki Zinnia çeşidinin 150 mM'a kadar tuz 

konsantrasyonunu tolere edebildiği söylenebilir. 
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INTRODUCTION 

Quality water resources are used especially in the 

cultivation of agricultural products consumed as 

human food and these resources are decreasing daily. 

Therefore, it is necessary to irrigate ornamental and 

landscape plants with lower quality waters. Salinity in 

soil or water diminish the water uptake of the plants, 

so negatively affect the plant growth (Cassaniti et al., 

2012). Salinity is one of the important abiotic stress 

factors that affect vital parameters such as growth, 

development, reproduction and crop yield in many 

plants (Läuchli and Grattan 2007; Waqas et al., 2019). 

Also, salinity affects the visual quality of ornamental 

plants that are as well of commercial value (Cassaniti 

et al. 2009; Koksal et al., 2016; Yasemin et al., 2017). 

In addition, it was reported that growth parameters 

were negatively affected in the case of salt stress in 

ornamental plants (Yasemin et al., 2017).  So, it is 

important to determine salt tolerance mechanisms in 

ornamental plants. Zinnia, Asteraceae family, is 

cultivated worldwide for use as annual bedding plants 

and some of Zinnia could be used as cut flowers. Flower 

and leaf morphology, ray floret colors differ from each 

other. For this reason, these plants have a big interest 

for being used in gardens or landscaping (Stimart and 

Boyle, 2007). In particular, the determination of 

salinity defenses in such ornamental plants can be an 

important step for selection and use in these areas.  

There are two basic questions to understand the 

impact of salt stress and how to deal with it. Firstly, 

which changes does the plant experience when it is 

exposed to salt stress? Second, what kinds of defense 

responses are given to these changes? Salinity is first 

detected by the root system and many signal paths are 

actived. Salinity primarily causes cell dehydration and 

a decrease in water potential in plants. Under salinity, 

nutrient imbalance and reduced water availability 

cause osmotic and ionic stress. After these effects, as 

in water shortage; it continues by reduced cellular and 

metabolic effects, closure of stomata, inhibition of 

photosynthesis, leaf fall, change in carbon distribution, 

production of reactive oxygen species (ROS) and cell 

death. Salinity stress also causes protein denaturation 

and the membranes to become unstable. As a result of 

all these, growth and development in plants decline 

(Munns 2005; Pang and Wang 2008; Acosta-Motos et 

al., 2017; Isayenkov and Maathuis, 2019). 

Plants activate several complex mechanisms in the 

control of genes to deal with salt stress. And so, 

stomatal control, ion secretion, osmotic adjustment 

and antioxidant systems come into play (Munns 2005; 

Abogadallah, 2010). Abiotic stresses induce the 

formation of ROS (O2•−, H2O2, •OH) in plants and 

oxidative damage occurs. Antioxidant enzymes and 

nonenzymatic compounds, which are antioxidant 

metabolism components, have an important role in 

detoxifying ROS caused by salt stress (Hasanuzzaman 

et al., 2012; Gill et al., 2013; Gupta and Huang 2014; 

Parvin et al., 2019). 

Increasing in the activities of the antioxidant defense 

system under environmental stresses is generally 

correlated with the stress tolerance of plants 

(Zandalinas et al., 2017; Laxa et al., 2019). SOD, CAT, 

ascorbate peroxidase (APX), monodehydroascorbate 

reductase (MDHAR), dehydroascorbate reductase 

(DHAR), GR, glutathione peroxidase (GPX), and 

glutathione S-transferase (GST) are key enzymes in 

the enzymatic system that regulate the content of 

ROS, such as H2O2, O2 .- and OH radicals (Asada, 1999; 

Liang et al., 2018; Parvin et al., 2019). Also lipid 

peroxidation, identified as MDA concentration is one of 

the remarkable markers of oxidative damage during 

salinity stress (Hernandez et al., 2000; Khan and 

Panda, 2008). 

Salt stress can reduce growth and biomass as a result 

of a nutritional imbalance in ornamental plants as in 

many other plant groups. Salinity conditions can alter 

water relationships and photosynthetic capacity in 

these plants. Antioxidant mechanisms as well can use 

counteract these negative effects (García-Caparrós and 

Lao, 2018). Since the salinity problem affects both soil 

and water, ornamental plant research one of the main 

objectives is thought to be to determining tolerant 

plants (Cassaniti et al., 2013). 

This article focuses on analyzing antioxidant defense 

in plant stress tolerance by watering ornamental 

plants with salty water (mimic low quality water), 

especially considering limited water resources. For this 

purpose, antioxidant enzyme activities (SOD, CAT and 

GR), lipid peroxidation (MDA) and H2O2 contents were 

measured in two different Zinnia species under saline 

conditions. 
 

MATERIALS and METHODS 

Plant Growth Condition and Salt Stress Treatment 

This study was conducted in the greenhouse at the 

Department of Horticulture, Cukurova University in 

Adana/Turkey (32.9/19.7°C day/night, relative 

humidity 54 %). In this study seeds of Zinnia elegans 

‘Zinnita Scarlet’ and Zinnia marylandica ‘Double 

Zahara Fire Improved’ species (Tasaco Farm,Turkey) 

were used as plant material. These two cultivars were 

determined to be relatively sensitive (‘Zinnita Scarlet’) 

and tolerant (‘Double Zahara Fire Improved’) to salt 

stress in a screening study conducted among twenty 

Zinnia cultivars (Yasemin, 2020). Seeds of Zinnia 

cultivars were germinated in tray plugs containing 

peat. After germination, plantlets were transferred 

into 2 L plastic pots which included peat: perlite (2:1). 

5 days after the transfer, the plants were irrigated 

with solution included 0, 50, 100, 150 and 200 mM 
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NaCl concentrations one-day interval. Salinity 

treatments were continued for three weeks. Treatment 

was terminated, as soon as the first visual symptoms 

were seen on the plants.  
 

Extraction for Antioxidant Enzyme Assays 

SOD, CAT, GR extractions 

Fresh leaves of two Zinnia species (1g) were 

homogenized with 5 mL of potassium phosphate buffer 

(0.1 M, pH 6.8) including 100 mg of PVP and EDTA 

(0.1 mM). The homogenate was centrifuged at +4 °C 16 

000 g for 5 min and the supernatant was collected for 

enzyme analysis (Beyer and Fridowich, 1987).  
 

Measurement of Antioxidant Enzyme Activity 

Superoxide dismutase (SOD) activity 

SOD activity (EC 1.15.1.1) was determined according 

to the modified method of Beyer and Fridowich, 1987. 

Reaction mixtures composed 200 μL of enzyme extract, 

100 μL of 5 mM nitro blue tetrazolium (NBT), 150 μL 

of 0.1 mM riboflavin, 200 μL of 0.25 M methionine, and 

1 mL of 200 mM sodium carbonate. These reagents 

except for riboflavin wasprepared with 0.1 M 

potassium phosphate buffer (pH 7.5). SOD activity was 

determined as the amount of enzyme causing 50% 

inhibition of NBT measured at 560 nm 

spectrophotometer. 
 

Catalase (CAT) activity 

CAT activity (EC 1.11.1.6) was detected by measuring 

the rate of decomposition of H2O2 at 240 nm, according 

to Aebi, (1974). The reaction mixture contained 120 µL 

of enzyme extract, 2.8 mL of 50 mM potassium 

phosphate buffer (pH 7 without EDTA), and 80 µL of 

0.5 M H2O2. 
 

Glutathione reductase (GR) Activity 

GR (EC 1.6.4.2) activity was determined as described 

by Carlberg and Mannervik (1985). The reaction 

mixture consisted of 1.5 mL 0.1 M phosphate buffer, 

150 μL of 200 mM oxidized glutathione, 150 μL of 2 

mM NADPH, 1 mL pure water, 200 μL enzyme extract. 

The oxidation of NADPH at 340 nm was defined as GR 

activity.  

 

Measurement of Soluble Protein Content  

The amount of soluble protein was carried out using 

the working solution according to the Bradford 

method. Bovine serum albumin was used to generate a 

standard curve; samples were read and recorded on the 

Elisa instrument at 595 nm (Bradford, 1976). The 

datum of soluble protein content was used to estimate 

specific activities of SOD, CAT, and GR. 
 

 

Malonyldialdehyde (MDA) assay 

Lipid peroxidation was detected by measuring the 

MDA level. Fresh leaf tissue (0.5 g) of Zinnia plants 

was homogenized in 1 mL (5%) trichloroacetic acid 

(TCA) solution. The homogenate was centrifuged at 

room temperature for 15 min at 16.000g. The 

supernatant was transferred to the tubes by taking 

equal volumes of 0.5% thiobarbituric acid (TBA) and 

20% TCA solutions. The tubes were incubated at 96°C 

for 25 min. Then, the tubes were transferred to an ice 

bath and centrifuged at 12.000 g for 5 min. The 

supernatant was measured at 532 and 600 nm. 0.5% 

TBA in 20% TCA solution was used as a blank sample. 

The MDA content was calculated using the extinction 

coefficient (Ohkawa et al., 1979). 
 

Hydrogen peroxide (H2O2) assay  

H2O2 level was determined according to Loreto and 

Velikova, (2001) with some modifications. Firstly, 0.5g 

leaf tissue was homogenized in the ice bath with 5 mL, 

1% (v:v) TCA, the homogenate was centrifuged at 

12.000 g and 0.75 mL supernatant was added to 

0.75 mL phosphate buffer and 1.5 ml KI. H2O2 level 

was evaluated by comparing its absorbance at 390 nm 

to a standard calibration.  
 

Statistical Analysis 

Stress treatment was carried out completely 

randomized experimental design with two factors. 

Treatments had five replications with five plants each. 

Data were subjected to ANOVA and the means were 

separated using the LSD multiple range test at P<0.05. 

Student-T analysis test was used to compare the 

groups. All the statistical analyses were performed 

using the JMP8 Software package. 
 

RESULTS and DISCUSSION  

In this study, the effects of salt stress on the 

antioxidant enzymes activities (SOD, CAT, GR), H2O2 

and MDA levels in the leaves of two Zinnia species 

grown under different salt (0, 50, 100, 150, 200 mM) 

concentrations were comparatively investigated. It 

was determined that salinity notably caused increases 

the SOD, CAT, GR, H2O2 and MDA content at two 

Zinnia species compared to the control groups(Table 1). 

Cultivar effects in terms of activities of three 

antioxidant enzymes, lipid peroxidation and H2O2 

levels were statistically significant, except of SOD 

(Table 2). MDA and H2O2, stress indicators, were 

higher level in Z. elegans (Zi.S). was identified as a 

sensitive cultivar to salinity in previous studies 

(Yasemin, 2020; Yasemin et al., 2020 in press). When 

considering antioxidant enzyme activity, GR and CAT 

activities were higher in Z. marylandica (D.Za.F.I) 

relatively tolerant cultivar than in Z. elegans (Zi.S) 

sensitive cultivar. 



KSÜ Tarım ve Doğa Derg 24 (1): 31-39, 2021 

KSU J. Agric Nat  24 (1): 31-39, 2021 

Araştırma Makalesi 

Research Article 
 

34 

 

Table 1. Treatment effect on SOD, CAT, GR, MDA and H2O2 levels.  

Tablo 1. SOD, CAT, GR, MDA ve H2O2 seviyeleri üzerine uygulamaların etkisi. 

NaCl (mM) 
 

SOD CAT GR H2O2 MDA 

0 8.354d 10.339e 0.094c 0.676d 1.961d 

50 10.117c 14.278d 0.139b 0.840c 2.386c 

100 11.267bc 20.690b 0.150ab 0.956b 2.424c 

150 14.203a 27.940a 0.163ab 0.978b 2.833b 

200 11.764b 17.656c 0.170a 1.372a 3.086a 

LSD 1.435*** 2.466*** 0.026*** 0.106*** 0.234*** 

(***p<0.001) 
 

Table 2. Cultivars effect on SOD, CAT, GR, MDA and H2O2 levels. 

Tablo 2. Çeşitlerin SOD, CAT, GR, MDA ve H2O2 seviyeleri üzerine etkisi. 

Parameters 
Parametreler 

Z. elegans Zi.S Z. marylandica D.Za.F.I t test 

SOD 11.436 10.847 0.1908NS 

GR 0.127 0.159 0.0006* 

CAT 16.389 19.972 0.0001* 

H2O2 1.100 0.828 <0001* 

MDA 2.712 2.363 <0001* 
 

According to results, the effects of salinity on SOD 

activity were found important, statistically (Figure 1). 

The highest SOD activity was observed at 150 mM salt 

concentration in both species. As shown in Figure 1, 

SOD activity decreased in 200 mM salinity partly, 

compared with 150 mM salinity, in both species. In the 

study, we detected similar increasing trends in both 

species in terms of SOD activity which has an 

important role in defense mechanisms of cells against 

ROS and is one of the ubiquitous enzymes in aerobic 

organisms (Bowler et al., 1992). It is well known that 

low concentration ROS act as signal molecules, while 

higher levels of ROS damage cellular components 

(Choudhury et al., 2013; Liu et al., 2019). In various 

studies, many researchers have been reported that 

increases in SOD enzyme activities occur in plants 

exposed to salt stress, similar to obtain the results 

(Mittova et al. 2002; Bor et al., 2003; Ahmad, 2010; 

Özkoku et al., 2019). It was stated, SOD activity 

increased importantly in the leaves of Olea europaea 

L. which exposed to 200 mM NaCl (Valderrama et al., 

2006), in this study similar result observed on 150 mM 

salt concentration. Manivannan et al. (2015) also 

reported that 50 mM NaCl treatment increases SOD 

enzyme activity in Z. elegans ‘Dreamland Yellow’. This 

means that SOD enzyme activity varies depending on 

plant species and salt concentration.  

GR enzyme showed high activity from the lowest NaCl 

concentration (50 mM) to highest one (200 mM) in Z. 
marylandica D.Za.F.I which is a relatively tolerant 

cultivar. The highest GR activity in Z. elegans Zi.S was 

determined at salt level ≥ 100 mM (Figure 1). Omari 

and Nhiri, (2015) reported that GR enzyme activity in 

the leaves increased by approximately 90% with 150 

mM salt application. Similarly, Saı Kachout et al., 

(2013) reported that GR activity increased steadily 

with NaCl concentration and it nearly doubled in 

response to 90 mM NaCl in Atriplex hortensis var. 

rubra (red). GR is an important enzyme that plays a 

role in protecting against various abiotic stresses such 

as salinity (Romero-Puertas et al., 2006; Saı Kachout 

et al. 2013). Moradi and Ismail, (2007) reported that 

increasing salt stress in salt-tolerant rice line (IR651) 

caused GR activity increased in leaves of the tolerant 

lines. However, salinity did not affect GR activity in 

leaves of in salt-intolerant rice line (IR29). In light of 

this information, it can be concluded that the GR level 

may vary according to the tolerance degree of genotype 

and salt concentration (Moradi and Ismail 2007; Çekiç 

and Ünyayar, 2006). Many researchers showed that 

increases in GR activity could mean tolerance to salt 

stress. Owing to increasing of GR activity in salt 

tolerant genotypes, it could be thought that, salt 

tolerant genotypes were more active in reducing H2O2 

compared to salt sensitive genotypes (Kusvuran et al., 

2007; Li, 2009; Sevengor et al., 2011). 

CAT activity was affected important from salinity, 

statistically (Figure 1). CAT activity increased with 

stress in both species. While the highest enzyme 

activity was found in 150 mM NaCl level, CAT activity 

decreased at 200 mM NaCl in both species. The CAT 

decreased at 200mM NaCl might be resulted from the 

prevention of new enzyme synthesis or catalase photo-

inactivation (Basu et al., 2010; Çevik et al.,2015). The 

highest value of enzyme (CAT) activity was obtained 

from 150 mM NaCl concentration in the Z. 
marylandica D.Za.F.I plants. Manivannan et al. (2015) 

reported that CAT activity did not differ significantly 

between control and 50mM NaCl treatments in Z. 
elegans ‘Dreamland Yellow’, similar to this result. 
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Figure 1. SOD, GR, CAT enzyme activities in two Zinnia species exposed to salinity. The data followed by the same 

letters in the figure show that there is no significant difference between groups (*p <0.05,        **p 

<0.01,***p <0.001). 

Şekil 1. Tuzluluğa maruz kalan iki Zinnia türündeki SOD, GR, CAT enzim aktiviteleri. Şekilde aynı harflerin 
izlediği veriler, gruplar arasında anlamlı bir fark olmadığını göstermektedir (*p <0.05, **p <0.01,      ***p 
<0.001). 

 

Sevengor et al., (2011) reported that salt treatment 

increased CAT activity in all genotypes (salt tolerant 

and salt sensitive), when compared to their control 

groups in local Turkish pumpkin varieties. However, 

they determined that these increases were higher in 
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salt tolerant species than that of salt sensitive ones. 

Valderrama et al. (2006) were reported that the leaves 

of olive (Olea europea L.) treated with 200 mM NaCl 

increased CAT activities, significantly. Findings in this 

study support the report of Bor et al., (2003) who also 

found high CAT and GR activity intolerant beet under 

salt stress. Also, CAT is the most effective antioxidant 

enzyme in preventing cellular damage by H2O2. Yaşar 

and Ellialtıoğlu, (2013) declared that significant 

differences in CAT enzyme activities at 150 mM salt 

concentration in a study on eggplant genotypes. 

While there was a systematic increase in SOD and 

CAT enzyme activities up to 150 mM salt 

concentration, there was a sudden decrease in the 200 

mM salt concentration in both species (Figure 1, Table 

1). According to these results, the question of whether 

the 200 mM salt concentration can be an overdose or 

not for these species comes to mind! 

As salinity increased, H2O2 and MDA content in the 

leaves of two cultivars increased, in parallel (Figure 2). 

These increases were found important, statistically. 

The highest H2O2 and MDA content in both species 

were observed at 200mM salt concentration. 

Manivannan et al., (2015) reported that 50mM NaCl 

treatment significantly increased the H2O2 and MDA 

content in Z. elegans ‘Dreamland Yellow’. A significant 

increase in the level of H2O2 (3.6-fold) and MDA (2.2 

fold) was seen in cumin seedlings subjected to 100 mM 

salt stress for 7 days concerning 0 mM NaCl (Pandey 

et al., 2015). Also, it was reported that MDA content 

increased significantly under salt stress in rice 

(Shobbar et al., 2012). Similar to findings results in 

this study, Sevengor et al., (2011) found an increase in 

MDA content in four pumpkin genotypes at 100mM 

salt concentration, this increase was found higher in 

sensitive genotypes. Lipid peroxidation increased in 

salt stressed leaves of the salt-sensitive maize 

genotypes, whereas salt-tolerant plants were better 

protected from oxidative damage under salt stress 

(Neto et al., 2006). In these results, a significant 

difference was observed in the MDA content between 

two species at 200mM salt concentration. It is known 

that abiotic stresses, especially salinity and drought, 

cause a significant increase in H2O2 content that 

causes lipid peroxidation of cell membranes. (Møller et 

al.,2007). 

 

 
Figure 2. H2O2 and MDA content in two Zinnia species exposed to salinity. The data followed by the same letters 

in the figure show that there is no significant difference between groups (**p <0.01, ***p <0.001). 

Şekil 2. Tuzluluğa maruz kalan iki Zinnia türünde H2O2 ve MDA içeriği. Şekilde aynı harflerin izlediği veriler, 
gruplar arasında anlamlı bir fark olmadığını göstermektedir (*p <0.05, **p <0.01, ***p <0.001). 

 
When plants are exposed to salt stress, it activates the 

antioxidant defense system to eliminate the damaging 

effect of increased reactive oxygen (Ahmad, 2010; 

Acosta-Motos et al., 2017; García-Caparrós and Lao, 

2018; Parvin et al., 2019; Özkoku et al., 2019). In 

various studies, it was shown that antioxidative 

defense responses differ in the plants under salt or 

other abiotic stress conditions (Acosta-Motos et al., 

2017; García-Caparrós and Lao, 2018). The increase of 

SOD enzyme activity under salinity conditions 

indicates that SOD is good oxidative stress scavenge 

enzyme (Panda and Khan, 2004). It was found that 100 

mM NaCl application in corn increased SOD, APX, 

GPX and GR activities compared to control and was 

more pronounced in tolerant genotypes (Neto et al., 

2006). Moreover, the intracellular H2O2 concentration 

also determines the activity of antioxidant enzymes 

(Mittler, 2002). In several plants, salinity increased 

the peroxidation of lipids, implying that in the cellular 

membranes damages as the result of oxidative damage 

(Gong et al., 2005). These results indicated that the 

ability of plants defense against oxidative damage 

caused by salt stress may change (Ashraf, 2009). 
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CONCLUSION  

Scientists who work on ornamental and landscape 

plants, try to understand how plants perceive and get 

used to stressful conditions and find out resistance 

mechanisms. In various studies, it has been shown by 

many researchers that tolerant and sensitive 

genotypes respond differently under salinity. 

Antioxidative enzyme activities play a protective role 

against salinity. Antioxidative defense mechanisms 

are effective in providing resistance to stress in Zinnia 

plants. It has been shown in the current study that 

there may be differences between Zinnia species.  
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