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ABSTRACT 

 

The aim of this study is to compare the results obtained from analytical and finite element solutions of 

low velocity transverse impact problem of a sphere onto simply supported beam. Twelve models with 

various mass ratios were created by keeping the beam dimensions constant and changing the sphere 

radius. The effect of the element size in the finite element solution was analyzed with five separate 

meshes whose element size gradually decreases at the impact point. In the solutions, the deflections of 

the beam and the displacement of the sphere at the impact point were taken into account. To check the 

validity of the model, a comparison with an experimental study in the literature was also made. 

Comparisons show that the deflections obtained from the analytical solution are compatible with the 

finite element solution within the period of repetitive or continuous contact between the sphere and 

beam. Particularly, as the mass ratio defined for beam and sphere gets smaller, maximum deflection 

values obtained from analytical and finite elements become closer. For the cases including sub-

impact, after the sphere leaves the beam there exist differences in the results mainly because of the 

sub-impacts.  

 

Keywords: Low velocity transverse impact, Analytical solution, Finite element analysis. 

 

1. INTRODUCTION 

 

Research on the impact problem of beam-type structures helps to understand the behavior of this 

structural element and to make designs that consider dynamic effects. One of the fundamental 

problems frequently addressed is the impact of a spherical object in the transverse direction. An early 

work was done by Cox to find the deflection of a beam impacted by a ball in transverse direction [1]. 

The problem was considered by Timoshenko [2] in more detail with a theoretical work after the 

development of local contact deformations theory by Hertz [3].  
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A simple approach for an analytical solution to the problem considers the beam as a massless spring. 

It is indicated that significant difference between the results obtained with this approach and the 

experimental results were due to the absence inertial effects of the beam [4]. A procedure that 

considers the mass of the beam is a completely inelastic impact approach that takes into account that a 

fraction of the beam mass and the sphere have a common velocity immediately after the impact [4, 5]. 

In this case, the energy equations are written considering the mass of beam. In case the beam 

vibrations were considered, the time-varying impact force can be expressed as a nonlinear integral 

equation by considering displacements and Hertz contact law at the point of impact. This integral 

equation can be solved by various approximate methods to calculate the maximum contact force and 

contact duration in case of transverse impact on beam and plate type structures [6]. In these 

calculations, the operations are time consuming and the integral equation to calculate the impact force 

can be solved by simplification provided that the beam support type is not effective on the formation 

of the maximum impact load [7]. An adequate and fast approximate solution for determining the beam 

deflections as a function of time is the analytical approach that takes into account the free vibrations 

of the elastic beam where the contact force not need to be calculated [4]. This approach is summarized 

in the next section. 

 

In addition to analytical methods, two or three-dimensional finite element (FE) models of structural 

elements are frequently used to investigate the impact behavior in more complex cases including 

concrete [8], reinforced concrete [9-12], composite [13, 14] beams and slabs. The formation of the 

impact requires determining partial or complete contact state of the two impacting bodies and their 

separation over time so that the problem is considered primarily as the contact-impact problem [15-

17]. ABAQUS [18], a comprehensive and general-purpose finite element software, is one of the tools 

that enables such computational simulations for several decades [19-24]. 

 

The following studies can be included to evaluate relevant studies on the low velocity impact of a 

sphere striker on a flexible beam. Considering the impact duration, Pashah et al. proposed a simplified 

half space approximation to estimate this for elastic and elastic-plastic simply supported beams, and 

performed 3d finite element analysis in ABAQUS in order to consider the structural effects [25]. They 

also presented a spring-mass model to take into account the structural response in the simplified 

analytical approach and indicated the range at which it produced good results based on a period ratio. 

To obtain a faster solution compared to finite element analysis, Zhang et al. [26] proposed a hybrid 

numerical-analytical approach for a simply supported elastic-perfectly plastic beam. Among the works 

which interested in the path of the sphere after the impact, Seifried [27] conducted experimental and 

numerical research on aluminum beams and noted a chaotic behavior for the coefficient of restitution 

due to the sub-impacts. The sub-impact phenomenon, repeated contacts between striker and beam 

after initial contact, was initially mentioned by Timoshenko [2] and Arnold [28]. This was later 

investigated widely by Qi and Yin using steel beams, and they stated that these repeated contacts were 

affected by local deformations and global vibrations of the beam [29]. In addition, using LS-DYNA 

[30], they numerically simulated their experimental work and highlighted factors affecting the 

duration of repeated impacts and the conditions of the sub-impact formation [31].  
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In the following sections, the analytical formulation given by Goldsmith [4] for the beam deflections 

that occurred after the initial contact is summarized, the ABAQUS model for the finite element 

solution is explained and the results obtained from these two solutions are compared respectively.  

 

2. ANALYTICAL a FINITE ELEMENT SOLUTIONS  

 

If the mass of the beam is not negligible compared to the mass of the impacting object, the calculation 

should be made by taking into account the vibration and local deformation occurring in the beam [32]. 

Such an elastic impact problem has a more complex solution than the non-elastic impact problem 

where the beam mass can be neglected. Goldsmith [4], expressed the beam deflections as a series 

expression, starting from the governing differential equation of the forced vibration problem of the 

beam. Here, for a transverse impact of a rigid sphere of mass m2 onto a simply supported beam of 

length L and mass m1 with a velocity of v2 as shown in Fig. 1, the formulation of the equation of the 

deflections of the beam will be summarized [4]. The analytical model assumes a uniform Euler-

Bernoulli beam and a sphere which is attached to the beam after the impact. Impact force is replaced 

by an initial condition for velocity immediately after the impact. In the analytical and finite element 

solutions, it is considered that the behavior is linearly elastic and the material is homogeneous and 

isotropic. No damping is taken into account unless it is specified as in section 2.3.   

 

When one-dimensional transverse impact problem is to be solved based on the beam vibration 

problem, a solution can be obtained from the following forced vibration differential equation. 

 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 = 𝐹#         (1) 

 

                                            

Figure 1. Properties of beam and sphere for transverse central impact. 

 

where, w is the displacement of the beam in the transverse direction, F is a time-dependent force per 

unit length exerted by the sphere on the beam at contact point. Goldsmith [4] wrote the displacement 

of the beam as a series summation of the product of two position-dependent and time-dependent 

discrete functions in the analytical solution that considers vibration as follows, 

 

𝑤 = ∑ 𝑋𝑖(𝑥)𝑞𝑖(𝑡)∞
𝑖=1 #          (2) 

 

This displacement function must satisfy the differential equation given in Eq. 1. At this point, 

Goldsmith [4] re-expressed the kinetic and potential energy functions of the beam using the 

L/2 L/2 

x 

y 
Sphere, mass=m2 

Beam, mass= m1 ↓ 𝑣2 
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displacement in Eq. 2, and by writing these energy functions into the Lagrangian equation of motion, 

defined a function for 𝑞𝑖(𝑡).  

 

This function, and therefore the displacement function, involves an unknown forcing function that 

occurs on the beam at the impact, which changes with time and must be calculated to fully express the 

displacement. In order to calculate this forcing function, an equation can be written by considering the 

displacement of the striker and the deflection of the beam at the impact point are equal. But, it is 

stated that this equation does not have a solution in a closed form and must be solved by a 

computational method. 

 

Instead of solving the forced vibration problem to obtain an approximate analytical solution of the 

displacement function, Goldsmith [4] proposed a solution of the beam’s free vibration associated with 

the impulse replaced by a suitable boundary condition. The transverse free vibration equation can be 

written by setting the forcing function F in Eq. 1 equal to zero. Writing Eq. 2 into the transverse free 

vibration equation yields, 

 

𝐸𝐼 ∑ 𝑞𝑖
𝜕4𝑋𝑖

𝜕𝑥4
∞
𝑖=1 + 𝜌𝐴 ∑ 𝑋𝑖

𝜕2𝑞𝑖

𝜕𝑡2
∞
𝑖=1 = 0#         (3)  

 

Each term in the series summation must be equal to zero in order to satisfy the above equation, as 

follows, 

 

𝑎4𝑞𝑖
𝜕4𝑋𝑖

𝜕𝑥4 + 𝑋𝑖
𝜕2𝑞𝑖

𝜕𝑡2 = 0#         (4) 

 

where  𝑎4 ≡
𝐸𝐼

𝜌𝐴
. This partial differential equation can be solved by considering,  

 
1

𝑋𝑖

𝜕4𝑋𝑖

𝜕𝑥4 = −
1

𝑎4𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑡2 = 𝜉𝑖
4#        (5) 

 

where 𝜉𝑖 is an arbitrary constant and there are two separate differential equations. Solving these two 

differential equations for 𝑋𝑖 and 𝑞𝑖, and by writing these two solutions into Eq. 2 yields, 

 

𝑤 = ∑ (𝐴𝑖𝑠𝑖𝑛𝜉𝑖𝑥 + 𝐵𝑖𝑐𝑜𝑠𝜉𝑖𝑥 + 𝐶𝑖𝑠𝑖𝑛ℎ𝜉𝑖𝑥 + 𝐷𝑖𝑐𝑜𝑠ℎ𝜉𝑖𝑥)(𝐸𝑖𝑠𝑖𝑛𝜔𝑖𝑡 + 𝐹𝑖𝑐𝑜𝑠𝜔𝑖𝑡)∞
𝑖=1 #  (6) 

 

where 𝐴𝑖, 𝐵𝑖 , 𝐶𝑖, and 𝐷𝑖  are constants to be determined from boundary conditions and 𝐸𝑖, and 𝐹𝑖 are 

constants to be determined from initial conditions. For a simply supported beam, the boundary 

conditions are given by,  

 

𝑤〈0, 𝑡〉 = 0;   
𝜕2𝑤

𝜕𝑥2
〈0, 𝑡〉 = 0;   

𝜕𝑤

𝜕𝑥
〈

𝐿

2
, 𝑡〉 = 0;   𝐸𝐼

𝜕3𝑤

𝜕𝑥3
〈

𝐿

2
, 𝑡〉 =

1

2
𝑚2

𝜕3𝑤

𝜕𝑡3
〈

𝐿

2
, 𝑡〉 #   (7) 
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where displacement, moment at the supports and slope at the mid-span are equal to zero, and shear at 

the contact point is equal the reversed effective force of the striker. Substitution of first three 

conditions into Eq.6 with 𝑤〈𝑥, 0〉 = 0 yields the displacement function as, 

 

𝑤(𝑥, 𝑡) = ∑
1

𝑎2𝜉𝑖
2 𝐺𝑖𝑋𝑖𝑠𝑖𝑛𝜉𝑖

2𝑎2𝑡∞
𝑖=1 #       (8) 

 

where 𝐺𝑖 = 𝑎2𝜉𝑖
2𝐸𝑖𝐴𝑖 cos

1

2
𝜉𝑖𝐿  is constant, and 𝑋𝑖 =

𝑠𝑖𝑛𝜉𝑖𝑥

cos
1

2
𝜉𝑖𝐿

−
𝑠𝑖𝑛ℎ𝜉𝑖𝑥

cosh
1

2
𝜉𝑖𝐿

 is a function of x. Substitution 

Eq. 8 into the last condition in Eq.7 yields the following characteristic equation, 

 

𝜙𝑖(𝑡𝑎𝑛𝜙𝑖 − 𝑡𝑎𝑛ℎ𝜙𝑖) = 2𝑀#        (9) 

 

where 𝜙𝑖 =
1

2
𝜉𝑖𝐿 and 𝑀 =

𝑚1

𝑚2
. Solution of this equation gives 𝜙𝑖 or its equivalent 𝜉𝑖. 

 

In order to determine the unknown constant 𝐺𝑖, the displacement function needs be converted to 

include the impactor’s speed at the time of impact. If the impactor transfers its velocity entirely to the 

infinitesimal part of the beam at the contact point, momentum of the impactor just before the impact, 

m2v2, should be equal to the sum of the momentum of this part of the beam and the momentum of 

impactor just after the impact. At 𝑡 = 0, this momentum equality is written as,  

 

∫
𝜕𝑤

𝜕𝑡 (𝑥,𝑡=0)
𝑑𝑄 = 𝑚2𝑣2 #         (10) 

 

where 𝑄 represents total mass of beam and impactor. The left hand side of this equation can also be 

written in terms of beam mass and impactor mass as, 

 

2 ∫
𝜕𝑤

𝜕𝑡
(

𝑚1

𝐿
𝑑𝑥) 

𝑥=
𝐿

2
𝑥=0

+
𝜕𝑤

𝜕𝑡
𝑚2#        (11) 

 

Taking time derivative of Eq. 8 at 𝑡 = 0 yields, 

 
𝜕𝑤

𝜕𝑡
= ∑ 𝐺𝑖𝑋𝑖

∞
𝑖=1 = 𝜓 #         (12) 

 

where 𝜓  is velocity of the beam just after the impact as a function of x. By multiplying both sides of 

the above equation with 𝑋𝑗, 

 

∑ 𝐺𝑖𝑋𝑖
∞
𝑖=1 𝑋𝑗 = 𝜓 𝑋𝑗#                                                                                                            (13) 

 

 

If Eq. 13 multiplied by 𝑚2 and evaluated at 𝑥 =
𝐿

2
 is added to the integral of Eq. 13 with respect to the 

beam mass 𝑑𝑚1 = (
𝑚1

𝐿
) 𝑑𝑥, the following equation is obtained. 
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∑ 𝐺𝑖
∞
𝑖=1 (

2𝑚1

𝐿
∫ 𝑋𝑖〈𝑥〉𝑋𝑗〈𝑥〉𝑑𝑥 

𝑥=
𝐿

2
𝑥=0

+ 𝑋𝑖 〈
𝐿

2
〉 𝑋𝑗 〈

𝐿

2
〉 𝑚2) =

2𝑚1

𝐿
∫ 𝜓〈𝑥〉𝑋𝑗〈𝑥〉𝑑𝑥 

𝑥=
𝐿

2
𝑥=0

+ 𝜓 〈
𝐿

2
〉 𝑋𝑗 〈

𝐿

2
〉 𝑚2# (14) 

 

Integration at left hand side of above equation vanishes when 𝑖 ≠ 𝑗 which yields 𝐺𝑖 as, 

 

𝐺𝑖 =
2𝑚1

𝐿
∫ 𝑋𝑖𝜓〈𝑥〉𝑑𝑥 

𝑥=
𝐿
2

𝑥=0
+𝑚2𝑋𝑖〈

𝐿

2
〉𝜓〈

𝐿

2
〉

2𝑚1
𝐿

∫ 𝑋𝑖
2𝑑𝑥 

𝑥=
𝐿
2

𝑥=0
+𝑚2𝑋𝑖

2〈
𝐿

2
〉

#       (15) 

 

As assumed earlier that the impactor transfers its velocity entirely to the infinitesimal part of the beam 

at the contact point, we may write 
𝜕𝑤

𝜕𝑡
= 0 for 𝑡 = 0, 𝑥 ≠

𝐿

2
 and 

𝜕𝑤

𝜕𝑡
= 𝑣2 for 𝑡 = 0, 𝑥 =

𝐿

2
 and 𝐺𝑖 

becomes 

 

𝐺𝑖 =
𝑚2𝑋𝑖〈

𝐿

2
〉𝑣2

2𝑚1
𝐿

∫ 𝑋𝑖
2𝑑𝑥 

𝑥=
𝐿
2

𝑥=0
+𝑚2𝑋𝑖

2〈
𝐿

2
〉

=
4𝑣2

𝜙𝑖(
1

𝑐𝑜𝑠2 𝜙𝑖
−

1

cosh2 𝜙𝑖
)+

2

𝜙𝑖

𝑚1
𝑚2

 
 #     (16) 

 

By writing the above equation in Eq. 8 the approximate beam displacement function can be written as 

follows, 

 

𝑤 =
𝐿2𝑣2

𝑎2
∑

1

𝜙𝑖
3

∞
𝑖=1

𝑠𝑖𝑛
2𝜙𝑖𝑥

𝐿
𝑐𝑜𝑠𝜙𝑖

−
𝑠𝑖𝑛ℎ

2𝜙𝑖𝑥
𝐿

𝑐𝑜𝑠ℎ𝜙𝑖
1

𝑐𝑜𝑠2𝜙𝑖
−

1

𝑐𝑜𝑠ℎ2𝜙𝑖
+

2

𝜙𝑖
2

𝑚1
𝑚2

𝑠𝑖𝑛
4𝜙𝑖

2𝑎2𝑡

𝐿2 #      (17) 

 

It should be noted that this approximate analytical solution is based on the classical beam theory and 

neglects the rotational inertia and shear effects.  

 

2.1. The Finite Element Analysis 

The following beam geometry and material properties were used to compare the displacements in 

transverse direction obtained from the analytical solution and finite element model. The beam has a 

square cross section with the dimensions of 0.01m x 0.01m, and its length is 0.4 m. Mass of the beam 

is m1 = 0.314 kg. The beam and striking sphere have the same material properties such that the density 

is 7850 kg/m
3
, the modulus of elasticity is 200 GPa and Poisson’s ratio is 0.3. Analysis were carried 

out for different striker sizes. The velocity of the striker just before the impact is v2 = 4.63 m/s 

downward for each case.  

 

Models used in the finite element analysis were created in ABAQUS/Explicit software. Using the 

symmetry, a quarter geometry was modeled as shown in Fig. 2. Roller support condition was created 

on the bottom left edge of the beam along z-axis. The symmetry boundary conditions were applied on 

two vertical mid-sections of the beam and the sphere. The sphere was constrained to strike at the 

midspan and to move along transverse direction (y-direction) during the impact. 
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The finite element used in the analysis is C3D8R, which is a linear brick element with reduced 

integration. This finite element, unlike C3D8, has one integration point and eliminates the possibility 

of occurrence of locking. The shear locking is a problem for which there exists the formation of shear 

stresses that should not normally occur, and the elements tend to be too stiff under bending. Similarly, 

for the volume locking the finite elements behave too stiff during the incompressible or almost 

incompressible material behavior [18].  

 

General contact algorithm with defaults was used for defining the interaction between beam and 

sphere. Beam and striking sphere were meshed with the same type of elements. Contact interaction 

property along the normal direction was hard contact allowing separation after contact. Tangential 

behavior was implemented as rough friction formulation with no slip on the contacting surfaces. 

 

 
Figure 2. The geometry of quarter model for the beam and striker. 

 

Table 1. The name of models used in the finite element analysis and their properties. 

Model R-50 R-75 R-100 R-125 R-150 R-175 R-200 R-300 R-400 

Radius of 

striker (mm) 
5 7.5 10 12.5 15 17.5 20 30 40 

Mass ratio, M 

(m1/m2) 
76.394 22.635 9.5493 4.8892 2.8294 1.7818 1.1937 0.3537 0.1492 

 

A number of models with different mass ratios were considered, as given in Table 1. The beam 

dimensions were held constant while changing the radius of striker between the models. These models 

are shown in Fig. 3. An explicit dynamic analysis was performed in the solution. Time integration 

with explicit central finite differences can be performed effectively using small time increments. The 

finite elements solution has been obtained for a period of 16 ms starting from the initial contact which 

is sufficient to observe the vibrations and the sub-impacts.  

 

Numerical calculations were carried out on a computer with 128GB of ram and 2.2 GHz 32 cores 64 

threads dual CPU. 
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Figure 3. Models considered for the transverse impact between simply supported beam and sphere. 

 

2.2. Mesh Size Analysis 

A number of mesh distributions with different element sizes were considered. These mesh 

distributions are shown in Fig. 4. For each mesh from (a) to (e) in Fig. 4, the smallest element size 

formed at the impact point is 1 mm, 0.8 mm, 0.5 mm, 0.5 mm and 0.2 mm, respectively. Most of these 

have uniform element distribution. However, having smaller elements in the mesh, which decreases 

the "stable time increment" value, with the increase in number of elements prolongs the solution time 

significantly. Therefore, in order to reduce run time as much as possible, a non-uniform distribution 

was used for mesh (e). Total number of elements for each mesh is shown in Table 2. The CPU times 

of the solution range from 100 seconds to 9 hours. 

 

 

Figure 4. The finite element mesh distributions used for mesh size analysis. 

 

In order to see the effect of element size on the solution, initially, the displacements obtained during 

the first contact were examined on the model R-125. The initial contact occurs within approximately 

0.3 ms. As seen in Fig. 5 (a), the meshes from (a) to (d), present an element penetration occurred at 

certain amount. The sphere displacements indicated with the dashed lines are below the beam 
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displacements indicated with a solid line, these are the regions where the sphere and beam elements 

are penetrated at the contact point. Maximum penetration occurred for mesh (a) among these mesh 

types and this penetration is 0.024 mm occurred at 0.03 ms. During the initial contact, it is observed 

that element penetration at the contact point is quite small for mesh (e) as shown in Fig. 5 (b) which is 

0.002 mm occurred at 0.03 ms. 

 

Table 2. Total number of elements for each mesh. 

Radius 

(mm) 
Mesh (a) Mesh (b) Mesh (c) Mesh (d) Mesh (e) 

5 10224 10550 11792 81792 12082 

7.5 10744 11792 16048 86048 13434 

10 13480 14466 25040 95040 22602 

12.5 13480 20192 39120 109120 37090 

15 16048 22750 60016 130016 37262 

17.5 23568 28496 89072 159072 52228 

20 30376 39120 127632 197632 128082 

30 60016 109720 389948 459948 390450 

40 127632 238640 914932 984932 915222 

 

 

Figure 5. Displacements of the beam and striker during initial contact. 

 

The beam deflections at the impact point and sphere displacements obtained from these meshes after 

the first contact are shown in Fig. 6. For the models without sub-impacts such as R-50 and R-75, the 

change in mesh size does not have a significant effect on the displacements of the impact point. For 
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other models, deflections obtained from each mesh are quite similar until the sub-impact. After the 

sub-impact, an apparent difference is observed in the beam deflections depending on the time of 

occurrence of the sub-impact between beam and sphere. During the initial contact the mesh size has a 

slight effect on the contact penetration and the displacements but small changes create a considerable 

effect on the velocity of the sphere and the time of occurrence of the sub-impact. 

 

2.3. Verification with the Experimental Study 

In order to check the validity of the finite element model, a comparison was made with the results of 

the experimental study of Qi and Yin [29]. The geometric and mechanical properties used for the 

beam discussed in this section are the same as those used in the experimental study. As in the other 

numerical analyzes used in this study, the support conditions were chosen as simply supported and 

numerical analysis was performed using the quarter model. The finite element mesh used in numerical 

analysis is the mesh specified as mesh (e). Deflections for this problem are also computed using the 

analytical method and shown in Fig. 7. 

 

The beam has the dimensions of b x h = 60 x 27.8 mm
2
 and length of 780 mm. The density of the 

beam material is 7800 kg/m
3
, the modulus of elasticity is 206 GPa and Poisson’s ratio is 0.3. Mass of 

the beam is 10.213 kg. The striking sphere of 35 mm radius has a material density of 7800 kg/m3, the 

modulus of elasticity is 208 GPa and Poisson’s ratio is 0.33. Mass of the striker is 1.4008 kg. The 

mass ratio M is 7.29.  

 

When the results of the finite element analysis are examined it is seen that the finite element model 

gives quite similar displacement values for the first two peaks in the displacement-time curve, 

although there were differences in the contact times of the sphere with the beam as shown in Fig. 7 

(a). If the time-displacement graphs of the experimental study are examined, the damping of the beam 

displacements is clearly observed. At this point, it is possible to obtain results closer to the 

experimental results by introducing the damping in the finite element model. Accordingly, damping 

has been defined and the displacement values obtained are shown in Fig. 7 (b). 
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Figure 6. Displacements obtained by the mesh size analysis a) r=5mm, b) r=7.5mm, c) r=10mm, d) 

r=12.5mm, e) r=15mm, f) r=17.5mm, g) r=20mm, h) r=30mm, i) r=40mm. 

 

 

Figure 7. Displacements of the beam and striker a) without damping, b) with damping. 
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2.4. Comparison Between the Analytical Solution and Finite Elements  

First seven terms of the series in Eq. 17 were used to determine the deflections of the beam at contact 

point in the analytical solution. The 𝜙𝑖 terms obtained from solution of the Eq. 9 are given in Table 3. 

In the finite element solution, smallest element sized mesh (e) was used. Comparison of the 

displacements are shown in Fig. 8. 

 

Period of motion, as the duration between two crests in displacement – time graphs, observed for the 

analytical and finite element solutions are quite similar in the model with largest mass ratio, but there 

exists a difference in vibration amplitudes. In models where sub-impact occurs, it is observed that the 

analytical solution and finite element solution are quite compatible until the sub-impact. The 

maximum amplitude value after the sub-impact is smaller in finite element solution compared to 

analytical solution. In models where the mass ratio is very small and the radius of the impacting 

sphere is large, sub-impacts turn into continuous contact and deflections obtained from the analytical 

solution and the finite element solution during this stage are very close. For these models as well, after 

the contact ends, there exists a difference between the amplitude values calculated in the analytical 

solution and in the finite element solution. The analytical and finite element solutions are more 

compatible during the time when sphere and beam are in contact. 

 

Table 3. The values of 𝜙𝑖 based on mass ratio. 

Radius 

of 

striker 

(mm) 

Mass of 

striker 

(kg) 

𝑚1

𝑚2
 ratio 𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6 𝜙7 

5 0.00411 76.394 1.5606 4.6827 7.8054 10.929 14.053 17.178 20.304 

7.5 0.01387 22.635 1.5379 4.6201 7.7095 10.805 13.906 17.012 20.122 

9 0.02397 13.099 1.5159 4.5651 7.6321 10.713 13.805 16.905 20.012 

9.35 0.02688 11.6825 1.5098 4.5508 7.6130 10.691 13.782 16.882 19.988 

9.6 0.02909 10.7934 1.5053 4.5403 7.5993 10.676 13.766 16.865 19.972 

10 0.03288 9.5493 1.4977 4.5232 7.5772 10.652 13.741 16.840 19.948 

12.5 0.06422 4.8892 1.4413 4.4110 7.4460 10.517 13.610 16.716 19.830 

15 0.1110 2.8294 1.3734 4.3045 7.3400 10.421 13.521 16.638 19.760 

17.5 0.1762 1.7818 1.3000 4.2157 7.2631 10.356 13.468 16.590 19.718 

20 0.2631 1.1937 1.2264 4.1468 7.2097 10.314 13.433 16.560 19.692 

30 0.8878 0.3537 0.9754 4.0076 7.1159 10.244 13.378 16.514 19.653 

40 2.104 0.1492 0.8038 3.9629 7.0892 10.224 13.363 16.502 19.643 

 



  
 
 

 
 

 
 
 

Erbaş, Y. And Alyavuz, B.,  Journal of Scientific Reports-A, Number 51, 263-282 December 2022. 
 

 
 

275 
 

 

 
Figure 8. Displacements obtained from analytical solution and finite element solution a) M=76.4 b) 

M=22.6, c) M=13.1, d) M=11.7, e) M=10.8, f) M=9.55, g) M=4.89, h) M=2.83, i) M=1.78, j) M=1.19, 

k) M=0.35, l) M=0.15. 
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Figure 8. (Cont.) Displacements obtained from analytical solution and finite element solution a) 

M=76.4 b) M=22.6, c) M=13.1, d) M=11.7, e) M=10.8, f) M=9.55, g) M=4.89, h) M=2.83, i) M=1.78, 

j) M=1.19, k) M=0.35, l) M=0.15. 

 

2.5. Effect of Sub-impact 

If the impacting sphere is small, the period of interaction is very small instant of time which results in 

a direct separation of beam and sphere. In case of large mass impact onto a slender beam, there exists 

substantial structural deformations and energy loss to structural vibrations [33]. As the mass ratio 

decreases, the velocity of the sphere after the initial contact decreases. This results in secondary 

contacts that occur as the beam continues its motion. From the finite element analysis, it has been 

observed that sub-impacts occur when the mass ratio is less than 11.6 as shown in Fig. 9. As the mass 

ratio approaches to 1 the number of sub-impacts increases as shown in Fig. 8 (i) and Fig. 8 (j). As the 

ratio decreases further repetitive contacts give way to a state of continuous contact as shown in Fig. 8 

(k) and Fig. 8 (l) until the sphere leaves the beam. 

 

If a case is created by forcing the sphere to move upward, a finite element analysis can be done 

without the effect of sub-impacts on the beam motion. This forcing was realized by applying an 

artificial upward displacement on the sphere after the first contact. The deflection of the impact point 

on the beam obtained from this analysis is shown in Fig. 10 with dashed lines for a sphere of 10 mm 

radius and a mass ratio of M = 9.55. In this case, the amplitude value is 1.16 mm. In the actual case, 

the displacement amplitude after the sub-impact is 0.72 mm. This corresponds to a 38% reduction in 
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the amplitude. Sub-impact causes the point on the beam to displace less and the subsequent amplitude 

values to continue at  

 

 

Figure 9. Displacements a) without sub-impact and b) with sub-impact. 

 

this level. Furthermore, period of motion is around 7 ms for both cases. This value is quite close to the 

natural period, 𝑇𝑛, for the first free vibration mode of a simply supported beam when the mass is 

spread uniformly over its length. If one calculate the natural period using  𝑇𝑛 =
2

𝜋
√

𝑞𝐿4

𝐸𝐼
  where q is 

mass per unit length [25],  𝑇𝑛 = 7𝑚𝑠.  The period value occurred around 7 ms in all finite element 

solutions. 

 

The graph in Fig. 11 (a) shows variation of the maximum deflection of impact point on the beam after 

the initial contact, with the mass ratio, M. The analytical and finite element solutions yield similar 

maximum deflection values for the values of M close to 1 or less than 1. In this case, relatively large 

mass creates a single loading-unloading mechanism as mentioned in [34]. Maximum difference 

between the deflections obtained from the analytical and finite element solution is 39% which is 

observed for the largest mass ratio, that is for the smallest impactor mass. The analytical solution 

underestimates the deflection with respect to finite element solution for small sphere mass. It should 

be noted that the approximate displacement function is based on Euler-Bernoulli beam theory and it 

does not consider the actual contact force in the vibration equation. On the other hand, the finite 

element model is based on a 3d continuum element which does not have the assumptions of Euler-

Bernoulli beam theory. Fig. 11 (b) shows the maximum upward deflection of the beam, i.e. the 

amplitude at the crest of the vibration, and reduction percent of the amplitude because of the sub-

impact. The dashed line in the graph indicates the finite element results when the occurrence of sub-

impacts is restricted.  
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Figure 10. Decrease in the amplitude due to the sub-impact. 

 

 

Figure 11. The maximum deflection of impact point (a), the amplitude at the crest of the vibration (b). 

 

3. CONCLUSIONS 

 

In this study, a comparison between the analytical solution and finite element solution was made for 

the transverse impact problem of a sphere to a simply supported beam. The deflection equation, given 

by Goldsmith [4], of an elastic beam impacted by a rigid sphere was considered in the analytical 

solution. Finite element solutions were obtained in ABAQUS for a number of models with different 

mass ratios and various mesh sizes. Deflections of the beam and displacement of the sphere were 

calculated at the contact point. 

 

A mesh size analysis was carried out first with various mesh sizes. The deflections of the beam and 

the sub-impact effects were investigated. First seven term of the series were used in the analytical 
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solution and the smallest element sized mesh was used in the finite element solutions. According to 

this; 

 

1. Through the mesh size analysis, in models without sub-impacts such as R-50 and R-75 it is 

observed that, change in the mesh size has no significant effect on the calculated value of the 

beam deflection. For models with sub-impacts, the mesh size has also no significant effect on 

the beam deflections until the start of sub-impacts. Change in the mesh size results a slight 

change in the occurrence time of the sub-impacts. Therefore, amplitude of the vibration 

obtained from each mesh at the impact point also changes after the sub-impact process. 

2. In the model with the largest mass ratio, the analytical solution and finite element solution 

yield similar vibration periods, but analytical solution underestimates the maximum 

deflection with respect to the finite element solution. 

3. In models with sub-impacts, it is observed that the analytical solution and finite element 

solution are quite compatible until the sub-impact occurs. However, the finite element 

solution gives smaller amplitude values compared to the analytical solution after the sub-

impact. 

4. The sub-impacts are observed for the mass ratio less than a certain value. This value is 

M=11.6 for the models considered in this study.  

5. In models with small mass ratio, sub-impacts turn into continuous contact and during this 

time period the analytical solution and the finite element solution are in very close 

agreement. After the contact period ends, a difference has arisen between the analytical 

solution and the finite element solution for the amplitude values calculated in these models. 

6. As the mass ratio decreases, the maximum deflection value becomes more compatible for the 

analytical solution and the finite element solution. Maximum difference is 39% and the 

difference is less than 13% for the mass ratio values smaller than M=11.6. 

7. As the mass ratio changes, the period of vibration obtained from the analytical solution 

changes, whereas the period of vibration remains the same in the finite element solution. For 

the largest mass ratio, the vibration period obtained from analytical solution and the finite 

element solution are quite close, but as the mass ratio decreases analytical solution gives 

larger vibration period values compared to finite element solution. 

 

Because the impactor and beam are assumed to remain in contact, the analytical solution does not 

provide any information about the motion of impactor, the sub-impacts and effect of sub-impacts on 

displacements. Despite the assumptions made, this method yields maximum deflection values that 

correlate well with the finite elements especially for small mass ratio, i.e. for large-mass impact onto 

the beam. As the mass ratio decreases, bending becomes more significant and it prolongs the period of 

contact. For cases of large mass ratio, M, the period of interaction is very small instant of time so that 

the contact force has a very short range. Small mass impact is worth further studying. A solution 

including forcing function F can produce better results especially for small-mass impact. 
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