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Abstract: The present study aims to balance an inverted pendulum (IP) system on 
cart using fuzzy controllers with different membership functions (MFs) based on 
proportional-derivative control. To this end, a cart was designed to track an intended 
trajectory in a horizontal (linear) position, while IP was balanced in a vertical 
(angular) position. This controller system was simulated in Matlab/Simulink, and 
performance rates were measured for IP’s vertical position and cart’s horizontal 
position. Simulation results demonstrated that triangular fuzzy membership function 
(MF) improved rise time, settling time and overshoot for the IP’s vertical position by 
8%, 4.35% and 7.7%, respectively, compared to gaussian fuzzy MF. Similarly, for the 
cart’s horizontal position, triangular fuzzy MF improved rise time, settling time and 
overshoot by 3.8%, 3 and 30%, respectively, compared to gaussian fuzzy MF. When 
all performance rates are analyzed in terms of IP’s vertical position and cart’s 
horizontal position, it was found that triangular fuzzy MF displayed a more 
satisfactory performance compared to gaussian fuzzy MF.    

Arabalı Ters Sarkacın Dengelenmesi için Farklı Oransal-Türevsel Denetim Tabanlı 
Bulanık Üyelik Fonksiyonlarının Başarımlarının İncelenmesi  
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Öz: Bu çalışmada, arabalı bir ters sarkaç (TS) sisteminin oransal-türevsel denetim 
tabanlı farklı üyelik fonksiyonlu (MF) bulanık denetleyiciler kullanılarak 
dengelenmesi amaçlanmıştır. Bu amaçla araba yatay konumda (çizgisel konum) arzu 
edilen yörüngeyi takip ederken, sarkacın da dikey konumda (açısal konum) dengede 
kalması sağlanmıştır. Tasarlanan denetim sistemine ait benzetim çalışmaları 
Matlab/Simulink ortamında yapılmış olup sarkacın dikey ve arabanın yatay konum 
denetimi için elde edilen başarım değerleri ayrı ayrı verilmiştir. Benzetim 
çalışmasından edilen denetim başarım değerleri incelendiğinde sarkacın dikey 
konumu için yükselme zamanı, yerleşme zamanı ve aşım bakımından üçgen bulanık 
üyelik fonksiyonunun gauss bulanık üyelik fonksiyonuna göre sırasıyla %8, %4.35 ve 
%7.7 oranlarında iyileştirme yaptığı görülmüştür. Benzer şekilde arabanın yatay 
konumu için de yükselme zamanı, yerleşme zamanı ve aşım bakımından üçgen 
bulanık üyelik fonksiyonunun (ÜF) gauss bulanık ÜF’ye göre sırasıyla %3.8, %3 ve 
%30 oranlarında daha iyi denetim başarımına sahip olduğu görülmüştür. Sarkacın 
dikey konum ve arabanın yatay konum denetimi için tüm denetim başarım değerleri 
analiz edildiğinde üçgen bulanık ÜF’nin gauss bulanık ÜF’ye göre daha tatmin edici 
sonuçlar verdiği açıkça görülmüştür. 
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1. Introduction

Inverted pendulum (IP) on cart is an unstable and non-linear system. It is an important field of study which offers 
the opportunity to test existing controller systems and develop new controller mechanisms [1]. There are various 
IP systems in the field of engineering. Among the most popular systems are IP on cart [2-4], double IP [5-6] and 
rotational single-arm pendulum (Furuta pendulum) [7-8]. Due to the difficulty of control and the need for further 
improvements on the system, numerous studies have been so far carried out on IP. Many studies on IP in the 
existing literature focus on the performance of a controller system in balancing IP in a vertical (angular) position 
[9]. In the current literature, intelligent control systems, linear and non-linear systems and hybrid systems as a 
combination of different methods have been so far proposed to balance IP [10]. While the most well-known linear 
control methods can be listed as proportional-integral, proportional-derivative, proportional-integral-derivative 
[11-12] and linear-quadratic regulator [13-20], non-linear control methods are sliding mode control [21-24] and 
back-stepping control [25-28]. On the other hand, fuzzy neural networks [29-32], adaptive neuro-fuzzy inference 
system [33-37], optimization algorithms [38-41] and fuzzy logic (FL) [42-54] are intelligent control systems. It is 
also possible to benefit from hybrid control systems [55-61] with a combination of different control systems. The 
literature review above indicates that a high number of control methods have been so far proposed in order to 
balance an unstable and vertical IP system on cart.   
In the present study, a mathematical model was designed for an IP system on cart via Matlab/Simulink. Thanks to 
a single input-multiple output (SIMO) control approach, different proportional-derivative based fuzzy 
membership functions (MFs) were used to help the cart track an intended horizontal trajectory and balance the 
pendulum in a vertical position. Unlike some control methods such as proportional-derivative-integral [57, 59-
60], linear quadratic [62], self-tuning fuzzy [61-62] and fuzzy sugeno [53, 57], which were used by the authors in 
their previous studies on the IP system on cart, the control performances of different proportional-derivative 
based fuzzy MFs (triangular and gaussian) were analyzed. The main contribution of the present study is that it is 
the first in the existing literature to have analyzed the control performances of different proportional-derivative 
based fuzzy MFs in balancing an IP system on cart, which contributes to the originality of the present study. 
The rest of the present study is organized as follows: The mathematical model of IP system on cart, basic structure 
of the FL control system and proportional-derivative FL system are described in Section 2.  The comparative 
results of the detailed simulation studies are presented in Section 3. The obtained numerical data from simulation 
studies are discussed in Section 4.  

2. Material and Method

The present section describes the mathematical modelling of IP system on cart and design of and proportional-
derivative FL system.  

2.1 The Mathematical Modelling of IP System on Cart 

IP on cart system requires a mathematical modelling in order for the cart to track an intended horizontal trajectory 
and to keep its pendulum in a vertical position. This mathematical model is created using laws of physics. As shown 
in Figure 1, IP on cart involves the movements of a condensed pendulum pole with a length of L and mass of m 
along a cart with a mass of M. The angle between the pole and vertical position intersecting its area of movement 
is represented by Ɵ, while its distance to a certain reference point in a horizontal position is denoted by x, 
respectively. While the movement of a pole is limited to x-y axis, the cart is allowed to only move along x axis. At 
this point, non-linear model of IP is calculated using Newton’s laws of motion [63-65]. 



 The Investigation of Performances of Different Proportional-Derivative Control Based Fuzzy Membership Functions in Balancing the Inverted Pendulum System on Cart 

485

Figure 1.  IP on cart 

The center of gravity for a mass of m is defined in (x,y) coordinates in Equation (1) and (2). 

singx x L = +  (1) 

cosgy L =  (2) 

If Newton’s second law is applied to the movement towards x, it gives a differential equation in Equation (3). 

22

2 2

gd xd x
M m u

dt dt
+ =  (3) 

When the expression in Equation (1) is put back in its position in Equation (3), it gives Equation (4). 

... ..
2(M m) (sin ) (cos )x mL mL u   + − + =  (4) 

Secondly, if Newton’s second law is applied to the movement of m around the pole, it gives a differential equation 
in Equation (5). 

2 2

2 2
cos sin sin

g gd x d y
m L m L mgL

dt dt
  − =

 (5) 

When the expressions in Equation (1) and (2) are put back in their respective positions in Equation (5), it gives 
Equation (6).  

. ... .. ..
2 2(sin ) (cos ) cos (cos ) (sin ) sin sinm x L L L m L L L mgL          

   
− + − − − =   

   
 (6) 

Element values for IP system on cart are given in Table 1. 
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Table 1.  Element values for IP on cart system  

Parameters Symbol Value Unit 

Mass of the cart M 2.4 kg 

Mass of the IP m 0.23 kg 

 The length of the pole L 0.36 m 

Gravitational acceleration g 9.8 m/sec2 

Track length l 0.5 m 

2.2. FL Control System 

FL toolbox module was used to control the IP’s vertical position and the cart’s horizontal position via a FL 
controller. Matlab FL toolbox window is shown in Figure 2. 

Figure 2. Matlab FL toolbox menu 

After the number of optimal input and output variables is selected for the control system on this window, it is 
possible to select any MFs and types by entering input and output values. In addition, and/or methods, decision, 
fuzzification, defuzzification, mamdani and sugeno fuzzy inference methods can also be selected from this menu. 
The membership function (MF) and fuzzy inference windows in Matlab FL toolbox are shown in Figure 3 and 4, 
respectively.  
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Figure 3. Matlab FL  toolbox MF window 

Types and ranges of MFs can be selected on Matlab FL toolbox MF window to determine optimal MFs for the 
designed control system. “Edit” button can be used to add or delete any MFs.  

Figure 4. Matlab FL toolbox fuzzy inference window 
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Using Matlab FL toolbox fuzzy inference window, connection methods are selected to create a rule base suitable 
to the control system, and MFs are connected to each other via linguistic connectors. It must be noted that a higher 
number of rules and MFs in a fuzzy controller decreases oscillation and increases stability in the control system. 
The definition of MFs in a fuzzy controller directly affects the system response. Therefore, input values must be 
always entered within the range of MFs in the control system to operate rule base effectively.  
Maximum error (e) range for cart’s horizontal (linear) position is [-1,1]. Error (e), change in error (de) and output 
value (u) range were selected as [-1,1]. Linguistic variables for triangular and gaussian MFs are negative big (NB), 
negative medium (NM), negative small (NS), Zero (ZR), positive small (PS), positive medium (PM) and positive big 
(PB). Meanwhile, 7 different linguistic variables were selected for each input using triangular and gaussian MFs in 
the design of FL controller. As a result, rule base consisted of 49 rules without excluding any ordered pairs. It was 
created based on the expert’s abilities, observations and system experiments. Mamdani was used as a fuzzy 
inference method in the designed FL controller. Center of gravity was used as a defuzzification method. In the 
designed system, regions with a change in (e) value higher than 0 are where the linear position starts to decrease. 
In particular, impact values in a region with an (e) value higher than 0 must be higher than impact values in other 
regions. A region with an (e) value higher than 0 and (de) value lower than 0 is the point where linear position 
attempts to reach a reference value. Settling time and overshoot were taken into account to determine impact 
values in this region. The region with an (e) value and (de) value equal to 0 is the most critical point for the system, 
and therefore its impact values must be selected accurately. (e) and (de) were used as inputs in the designed fuzzy 
control system, and all rules in the rule table were processed to check all probabilities.  

 (e), (de) and linguistic variables for output (u) in triangular MF are as follows: 

NB= [-1.333 -1 -0.6667], 

NM= [-1 -0.6667 -0.3333], 

NS= [-0.6667 -0.3333 -5.551e-17], 

ZR= [-0.3333 0 0.3333], 

PS= [-5.551e-17 0.3333 0.6667], 

PM= [0.3333 0.6667 1] 

PB= [0.672 1.005 1.338], 

Triangular MF for (e), (de) and (u) is shown in Matlab FL toolbox in Figure 5.  

Figure 5. Triangular MF for (e), (de) and (u)  
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(e), (de) and linguistic variables for (u) in gaussian MF are as follows: 

NB= [0.1416 -1], 

NM= [0.142 -0.6613], 

NS= [0.1416 -0.3334], 

ZR= [0.1416 0], 

PS= [0.1416 0.3334], 

PM= [0.1416 0.6666], 

PB= [0.1416 -1], 

Gaussian MF for (e), (de) and (u) is shown in Matlab FL toolbox in Figure 6. 

Figure 6. Gaussian MF for (e), (de) and (u) 

Maximum (e) range for IP’s angular position is [-0.3, 0.3]. (e) value range in triangular and gaussian MF was 
selected as [-0.3, 0.3]. (de) and (u) value range was selected as [-1,1]. Linguistic variables for triangular and 
gaussian MFs are (NB), (NM), (NS), (ZR), (PS), (PM) and (PB). Meanwhile, 7 different linguistic variables were 
selected for each input using triangular and gaussian MFs for IP’s vertical (angular) position in the design of FL 
controller. As a result, rule base consisted of 49 rules without excluding any ordered pairs. Mamdani was used as 
a fuzzy inference structure in the designed FL controller. Center of gravity was used as a defuzzification method. 
In the designed system, regions with a change in (e) value higher than 0 are those where the angular position starts 
to decrease. In particular, impact values in a region with an (e) value higher than 0 must be higher than impact 
values in other regions. A region with an (e) value higher than 0 and (de) value lower than 0 is the point where the 
angular position attempts to reach a reference value. Settling time and overshoot were taken into account to 
determine impact values in this region. The region with an (e) value and (de) value equal to 0 is the most critical 
point for the system, and therefore its impact values must be selected accurately. (e) and (de) were used as inputs 
in the designed fuzzy control system, and all rules in the rule table were processed to check all probabilities.  

Linguistic variables for (e) in triangular MF are as follows: 

NB= [-0.4 -0.3 -0.2], 

NM= [-0.3 -0.2 -0.1], 

NS= [-0.2 -0.1 -1.388e-17], 

ZR= [-0.1 8.674e-19 0.1], 

PS= [-1.388e-17 0.1 0.2], 
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PM= [0.1 0.2 0.3], 

PB= [0.2 0.3 0.4], 

Membership functions for (e) in triangular MF are shown in Matlab FL toolbox in Figure 7. 

Figure 7. Triangular membership function for (e) 

Membership functions for (de) and (u) in triangular MF are shown in Matlab FL toolbox in Figure 8. 

(de) and linguistic variables for (u) in triangular MF are as follows:  

NB= [-1.333 -1 -0.6667], 

NM= [-1 -0.6667 -0.3333], 

NS= [-0.6667 -0.3333 -5.551e-17], 

ZR= [-0.3333 0 0.3333], 

PS= [-5.551e-17 0.3333 0.6667], 

PM= [0.3386 0.672 1.005], 

PB= [0.6667 1 1.333], 

Figure 8. Triangular MF for (de) and (u) 
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Linguistic variables for the (e) in gaussian MF are as follows:   

NB= [0.04247 -0.3], 

NM= [0.0425 -0.203], 

NS= [0.04247 -0.09842], 

ZR= [0.04247 0], 

PS= [0.0425 0.1], 

PM= [0.04247 0.2], 

PB= [0.0425 0.3], 

MFs for (e) in gaussian MF are shown in Matlab FL toolbox in Figure 9. 

Figure 9. Gaussian MF for (e) 

(de) and linguistic variables for (u) in Gaussian MF are as follows;  

NB= [0.1416 -1], 

NM= [0.1416 -0.6667], 

NS= [0.1416 -0.3333], 

ZR= [0.1416 0], 

PS= [0.142 0.339], 

PM= [0.1416 0.6667], 

PB= [0.1416 1], 
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Figure 10. Gaussian MF for the (de) and (u) 

Rule table used for IP system on cart is given in Table 2.  

Table 2.  The rule table used for IP system on cart 

 u 

de 

NB NM NS ZR PS PM PB 

e 

NB NB NB NB NB NM NS ZR 

NM NB NB NB NM NS ZR PS 

NS NB NB NM NS ZR PS PM 

ZR NB NM NS ZR PS PM PB 

PS NM NS ZR PS PM PB PB 

PM NS ZR PS PM PB PB PB 

PB ZR PS PM PB PB PB PB 

2.3. Proportional-Derivate Control Based FL System 

Proportional-derivative control based FL system is a two-input single-output control system which was developed 
based on conventional proportional-derivative. A proportional-derivative controller consists of proportional and 
derivative gain factors. It is used to minimize rise time, overshoot and instability in a control system. The output 
of proportional-derivative controller is given in Equation (7). Matlab/Simulink diagram of a proportional-
derivative control based FL system is shown in Figure 11. 

Figure 11. Matlab/Simulink diagram of a proportional-derivative control based FL system 
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Kp and Kd gains are particularly important for the design of a proportional-derivative control based fuzzy 
controller. When changing gains, to determine the most optimal values for the designed control system, Kp value 
was increased if the system response was slow, while Kd value was increased if overshoot and oscillation rates 
were high (65). Proportional and derivative gains for the control of IP’s vertical (angular) position were adjusted 
as Kp=8 and Kd=5, respectively. On the other hand, for the control of cart’s horizontal (linear) position, the 
proportional and derivative gains were adjusted as Kp=1.6 and Kd=3, respectively. The initial and reference vertical 
(angular) positions were set to 0.035 radians (2 degrees) and 0 radians, respectively, for IP. On the other hand, 
initial and reference horizontal (linear) positions were set to 0 m and 0.1 m, respectively, for cart [4]. As shown in 
Figure 12, disturbance in the designed system was a pulse signal with an amplitude of 0.25N. The model designed 
for the control system simulated on Matlab/Simulink is shown in Figure 13. 

Figure 12. Disturbance Input Signal 

Figure 13. Matlab/Simulink model designed for the proportional-derivative control-based FL system 
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3. Results

3.1 Simulation Studies for the IP System on Cart 

IP system on cart is a single-input multiple-output (SIMO) one. In the current literature, there are several studies 
which focused on independent control of cart’s horizontal (linear) position against the reference input or IP’s 
vertical (angular) position against the reference input. However, the present study proposes a proportional-
derivative control based controller with different fuzzy (MFs) for the simultaneous control of cart’s horizontal 
(linear) position and IP’s vertical (angular) position. The disturbances for IP on cart’s horizontal (linear) and 
vertical (angular) position were added to control signals and given to the system as an input. The disturbance 
pulse signal was applied to the system at the 15th second and lasted 1 second. The control signal was limited within 
a range of u=[-1,1]. The control of IP on cart’s vertical (angular) position using triangular and Gaussian MFs are 
shown in Figure 14.  

Figure 14. The control of IP on cart’s vertical (angular) position using triangular and gaussian MFs 

The control of IP on cart’s horizontal (linear) position using triangular and gaussian MFs is shown in Figure 15. 



 The Investigation of Performances of Different Proportional-Derivative Control Based Fuzzy Membership Functions in Balancing the Inverted Pendulum System on Cart 

495

Figure 15. The control of IP on cart’s horizontal (linear) position using triangular and gaussian MFs 

The impact of triangular and gaussian MFs on the proposed controller’s performance in terms of IP on cart’s 
vertical (angular) position was analyzed. As shown in Figure 14, three important performance parameters for the 
proposed controller, namely rise time (tr), settling time (ty) and overshoot (M%), were assessed in terms of IP on 
cart’s vertical (angular) position. The results are summarized in Table 3.  

Table 3. The control performance for IP on cart’s vertical (angular) position 

Performance values tr (sec) ty(sec) M% 

Triangular 0.23 4.4 12 

Gaussian 0.25 4.6 13 

The impact of triangular and gaussian MFs on the proposed controller’s performance in terms of IP on cart’s 
horizontal (linear) position was analyzed. As shown in Figure 15, three important performance parameters for the 
proposed controller, namely rise time (tr), settling time (ty) and overshoot (M%), were assessed in terms of IP on 
cart’s vertical (angular) position. The results are summarized in Table 4.  

Table 4. The control performance for IP on cart’s horizontal (linear) position 

Performance Values tr (sec) ty(sec) M% 

Triangular 0.625 3.3 7 

Gaussian 0.650 3.4 10 

According to Tables 3 and 4, improved performance values of triangular membership function for controlling IP’s 
vertical and the cart’s horizontal position are shown in Figure 16.  
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Figure 16. Improved performance values of triangular membership function for controlling IP’s vertical and 
cart’s horizontal position 

As for the control of IP’s vertical position, a disturbance signal was applied at the 15th second for 1 second, and the 
system with triangular membership function was balanced and came to a steady-state (without oscillation) 
position after 4 seconds. On the other hand, the system with gaussian membership function underwent oscillation 
and was balanced after 6 seconds. Similarly, as for the control of cart’s horizontal position, the system with a 
gaussian membership function underwent oscillation and was balanced in an unstable position. However, the 
system with a triangular membership function was balanced in a steady-state position. Settling time performance 
values of both membership functions for vertical and horizontal positions following disturbance signals are given 
in Tables 5 and 6, respectively. 

Table. 5 IP’s vertical position control values following a disturbance signal 

Performance Values ty(sec) 

Triangular 4 

Gaussian 6 

Table. 6 Cart’s horizontal position control values following a disturbance signal 

Performance Values ty(sec) 

Triangular 10 

Gaussian 10 
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4. Discussion and Conclusion

The present study designed a non-linear model for an IP system on a cart to control the IP’s vertical (angular) 
position and the cart’s horizontal (linear) position simultaneously using different proportional-derivative control-
based fuzzy MFs against disturbance signals. The results demonstrated that fuzzy triangular MF displayed the 
highest performance in the control of the IP on cart’s vertical (angular) and horizontal (linear) position thanks to 
its narrower peak, higher slope, and quicker response to change in error. It was also observed that steady-state 
error in the system response was caused by the system input value range and that a narrower range would 
contribute to a more accurate system. In addition to the methods used in the present study, future studies are 
recommended to focus on obtaining better system responses through the optimization of the most optimal rules 
and membership functions for FL control systems.  
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