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1. Introduction

Let (M o Em, g) be a (2n+ 1) —dimensional contact metric manifold. We know that here R is the curvature tensor, & is
the characteristic vector field and the condition R (py,p2) & = 0 is satisfied, for any vector field p;, p» € M>"*!. The contact
metric manifold that satisfies this condition also satisfies the condition

R(p1,p2) & =N (p2) (kI +ph) p1 —n (p1) (K 4 ph) pa, (L.1)

and this condition is called (k, i) nullity condition, where «, it are constants and £ is the self adjoint (1,1)—tensor field. E.
Boeckx in [1] and D. E. Blair et al. in [2], (k, ) nullity conditions on contact metric manifolds are considered when k and
are constant. E. Boeckx proved that non-Sasakian contact metric manifold is completely determined locally by its dimension
for the constant values of k and p. If vector field & relate to the (k, 1) —nullity distribution, then (1.1) is provided and the
manifold (M?"*1.¢,& 1, g) is described (k, it) —contact metric manifold.

In particular, if x and u are not constant smooth functions on M>"*! then the manifold (M2”+1,¢,§,n7g) is described
generalized (k, 1) —contact metric manifold [2].

T. Koufogiorgos et al. introduced (k, it, V) —contact metric manifold in [3]. Riemann curvature tensor of (k, i, V) —contact
metric manifoldis in the form

R(p1,p2) & =x[n(p2) p1 — 1 (p1) p2] + 1t [N (p2) hp1 — 1 (p1) hp2] + v (M (p2) 9hp1 — 1 (p1) Phpa], (1.2)

for all py,p, € T (TM), where K, 1L, v are smooth functions on M2+

If dn =0 and d® = 21n A P, then this manifold is an almost Kenmotsu manifold, where ® (p1,p2) = g(p1,9p2) is the
fundamental 2—form of M>"*!. If an almost Kenmotsu manifold provide a (i, i, v) —nullity distribution, it is described an
almost Kenmotsu (x, 1, v) —space [4].
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Later on, manifolds that do not have a contact metric structure but satisfy condition (1.2) have been studied. The almost
cosymplectic (k, i, V) —space is defined by P. Dacko and Z. Olszak in [5]. M. Atgeken obtained very important properties of
almost Kenmotsu (x, it, v) —space in [6]. Pseudoparallel submanifolds of many different structures have been investigated
in [7-18].

The concept of submanifold for a manifold is quite interesting. For example, it plays a very important role in fields such as
applied mathematics, analysis and physics, contributing to the illumination of these fields.

In this article, pseudoparallel submanifolds for almost Kenmotsu (k, i, v) —space are investigated. The almost Kenmotsu
(k, 1, v) —space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such
as concircular pseudoparallel, concircular 2—pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular
2—Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant
submanifolds of almost Kenmotsu (x, it, v) —space to be total geodesic according to the behavior of the k, u, v functions.

2. Preliminary

Let N be (2n+ 1) —dimensional contact metric manifold. This manifold admits an almost contact metric structure (¢,&,1,g)
such that

’pr=—pi+n(P)&, n(p)=gp1,&), NE)=1n00=0, 2.1)

g(9p1,¢p2) =g (p1,p2) —n (p1)N (P2), (2.2)

for all vector fields p;,pr € I (TN ) , where I" (TN ) denotes the set of differentiable vector fields on N [3]. N together with the
(¢,€,m,g) is called a contact metric manifold.
The Riemannian curvature tensor R of N is given

R(p1,p2) = VorVe, =V, Vo = Vip a5

forall p1,p2 €T (T]V ) , where V is the Levi-Civita connection of g.
Let i be tensor field (1,1) —type and /¢ be the Lie-derivative in the direction of &. Thus, we can write

2hp1 = (Ig9) 1,
for all p; € T (TN). On the other hand # is self-adjoint and satisfies
Oh+ho = 0,trh =trgh = 0,hE = 0. (2.3)
In addition, contact metric manifolds provide the formula given by
Vo & =9p1—0hp1,Ved =0. 24)
The (k, i) —nullity distribution of a contact metric manifold N for the pair («, ) € R? is distribution

R(p1,p2) p3 = K[g(p2,p3) p1 — & (P1,P3) P2] + 1 [g (P2, P3) hp1 — & (P1,p3) hp2] s

for all p1,p2 € F(TIV) .
Now let’s give some equations below which are important for almost Kenmotsu (i, i, v) —space. Let N>"*1 (¢, n, &, g) be
(2n+ 1) —dimensional almost Kenmotsu (k, i, V) —space. Then the following relations are provided.

W=(k+1)¢*x<—1, (2.5)
E(k)=2(k+1)(v—-2), (2.6)

(Vo,8) p2 = 2 (9p1+hp1.p2) & =1 (p2) (9p1 +hp1), @.7)
Vp & =—0°p1 — Ohp, (2.8)

S(p1,8) = 2nkn (p1), (2.9)

R(E,p1)p2=xK[g(p1,p2) & — M (p2) p1] + 1 [g (hp1,p2) & =1 (p2) hp1] + Vg (9hp1,p2) E — M (p2) $hpr].  (2.10)
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Let N be the immersed submanifold of an almost Kenmotsu (&, it,v) —space N>**1 (¢, & 7, g) . Let the tangent and normal
subspaces of N in N**1(¢,&,n,g) be I'(TN) and I" (T N), respectively. Gauss and Weingarten formulas for I'(7M) and

[ (T+M) are

Vp P2 =Vp P2+ 0 (P1,p2), (2.11)

Vo Ps = —ApsP1+Vp, Ps, (2.12)

respectively, for all py,p, € I' (TM) and ps € T' (T+M) , where 57 and 17+ are the connections on N and I (T+N), respectively,
o and A are the second fundamental form and the shape operator of N. There is a relation

g (Apsp1,p2) =g (o (p1,p2),ps) (2.13)

between the second basic form and shape operator defined as above. The covariant derivative of the second fundamental form
o is defined as

(Vp,0) (P2,P3) = 75,0 (P2,p3) — 0 (Vp, P2:P3) — O (P2, Vp, P3) » (2.14)

for all py,p2,p3 € T'(TN). Specifically, if \;6 = 0, N is said to be its second fundamental form is parallel.
Let R be the Riemann curvature tensor of N. In this case, the Gauss equation can be expressed as

R(p1,p2) p3 = R(P1,02) P3+As(p, p3)P2 = Ac(py.p5)P1 + (W, O) (P2,03) — (V,0) (P1,P3), (2.15)

for all p1,p2,p3 € F(TN) .
R- o is given by

(R(p1.p2)- 0) (ps,p5) =R (p1,p2) 0 (P4, P5) — 6 (R(P1,02) P4, Ps) — T (P4, R (P1,02) Ps) , (2.16)
where the Riemannian curvature tensor of normal bundle I' (TLN ) is given
R (p1,p2) = [vfi ’Vf)_z} _V[Jﬁl-ﬂz]’

On the other hand, the concircular curvature tensor for Riemannian manifold (N 2+l g) is given by

. r
C(p1,p2)p3 =R(p1,p2) p3 — n i) [¢(p2,p3) p1 — & (P1,P3) P2], (2.17)
where r denotes the scalar curvature of N.
Similarly, the tensor C - ¢ is defined by
(C(p1,p2) - 0) (P4, p5) = R™(p1,p2) G (pa,p5) — & (C(p1,p2) P4, ps5) — T (P4, C (p1,p2) P5), (2.18)

for all p1,p2,p4,p5 €T (TN).
Let N be a Riemannian manifold, 7 is (0, k) —type tensor field and A is (0,2) —type tensor field. In this case, Tachibana tensor
field Q (A, T) is defined as

Q(A,T) (Xl,...7Xk;p17p2) = —T((pl NA p2)X17 ...,Xk) — .= T(Xl,...,Xk,1,<p1 NA p2>Xk)7 (2.19)
where

(P1Aap2)p3 =A(P2,p3) p1 —A(P1,P3) P2, (2.20)
k > 13X17X27"~7Xkap17p2 € F(TN)

Definition 2.1 ( [8]). A submanifold N of a Riemannian manifold (]V , g) is said to be concircular pseudoparallel, concircular
2—pseudoparallel, concircular Ricci-generalized pseudoparallel and concircular 2—Ricci generalized pseudoparallel if

C-cand Q(g,0)
C-Vo andQ(g,@c)
C-cand Q(S,0)

C-Vo and Q (S,Vo)

are linearly dependent, respectively.
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3. Invariant Pseudoparalel Submanifolds of an Almost Kenmotsu (k, 11, v) —Space

Let N be the immersed submanifold of an (214 1) —dimensional an almost Kenmotsu (k, i, v) —space N>"*1 (¢,&.1,g).
If ¢ (Tp1 N ) C Tp,N in every p; point, the manifold N is called invariant submanifold. We note that all of properties of an
invariant submanifold inherit the ambient manifold. From this section of the article, we will assume that the manifold N is
the invariant submanifold of the an almost Kenmotsu (k, i, v) —space N2**! (¢,€,1,g). So, it is clear that the following
proposition.

Proposition 3.1. Let N be an invariant submanifold of an almost Kenmotsu (k, i, v) —space N*"*1 (¢,E,m, g) such that £ is
tangent to N. Then the following equalities hold on N.

R(p1,p2) S = x[n(p2) pr — 1 (P1) p2] + 1 [n (p2) hpy — 1 (P1) hpa2] + v [N (p2) $hp1 — 1 (p1) 9Rpo] 3.1)
R(E.p1)p2=x([g(p1,p2)E =1 (p2) pr] + 1 [g (hp1,p2) & — 1 (P2) hp1] + v [g (9hp1, p2) & — 11 (p2) Ohpi ], 3.2)
(Vp,®) p2 =g (dp1 +hp1,p2) E =1 (pa) (dp1 +hpy), (3.3)

Vo, & =—0%p1 — Ohp, (3.4)

[N (p2) pr =1 (p1) p2] + 1 [1 (p2) hpr — 1 (p1) hp2] + Vv [0 (p2) 9hp1 — N (p1) 9hpa], (3.5)

C(p1,p2) &= [K_m]

C(&,p1)p2= {K— 2;1(2:14-1)} [g(p1,02)E =M (p2) p1] + 1 [g (hp1,p2) & — 1 (p2) hpi] 3:6)

+VIg(9hp1,p2)§ —1n(p2) phpi],

CEpE= k-5

e IR 6)

o(p1,§)=0, o (¢p1,p2) =0(p1,0p2) = 9¢c(P1,p2), (3.8)

forall py,p2 €T (TN), where V,0 and R denote the induced Levi-Civita connection on N, the shape operator and Riemannian
curvature tensor of N, respectively.

Lemma 3.2 ( [6]). Let N be the invariant submanifold of an almost Kenmotsu (k, i, V) —space N>"*1 (¢, &, n,g). Then the
second fundamental form o of N is parallel if and only if N is the total geodesic submanifold provided x # 0.

Let us now consider the invariant submanifolds of the almost Kenmotsu (i, i, v) —space N>"*! (¢, &, 1, g) on the concircular
curvature tensor.

Equivalent to the definition of concircular pseudoparallel given above, it can be said that there is a function [/ ; on the set
M, ={x € N|o(x) # g(x)} such that

C-0=F10(g,0).
If /| = O specifically, N is called a concircular semiparallel submanifold.

Theorem 3.3. Let N be the invariant submanifold of the (2n+ 1) —dimensional an almost Kenmotsu (k,l,V)—space
N*"+1(¢,& n,g). If N is concircular pseudoparallel submanifold, then N is either a total geodesic submanifold or

r
=|lK—— K+1)(vZ—u?),u-v(xk+1)=0.
Fi= (6 smy ) TV D02 - v( )
Proof. Let’s assume that N is a concircular pseudoparallel submanifold. So, we can write

(C(p1,p2)-0)(P4,p5) = F 10(8,0) (p1,P5:P1,P2) , (3.9
for all py,p2,p4,p5 € [ (TN). From (2.18), it is clear that

R (p1,p2) 6 (pa,ps5) — & (C(p1,p2) P4, P5) — 6 (Pa,C (P1,p2) p5) = —F 1 {0 ((P1 Ag P2) P4: P5) +0 (P4, (P1 Ag P2)P5) } -
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Easily from here, we can write

R (p1,p2) 6 (ps,ps) — 6 (C(p1,p2) P4, Ps) — O (P4, C(p1,p2) ps) = —F 1{g(p2,ps) & (p1,Ps) —&(P1,Ps) T (p2,P5)
(3.10)

+8(p2.P5) 0 (P4, p1) =& (P1,P5) O (P4, P2)} -
If we choose p; = p4 = & in (3.10) and make use of (3.7), we get

o (C(§,02)E,ps5) =—F10(p2,ps)- (3.11)

If we use (3.7) out of (3.11), we obtain

{F] - (K— m)] 6 (p2,ps5) = 1o (hp2,ps) + Voo (hp,ps) - (3.12)

Substituting hp; for py in (3.12) by view of (2.5) and (3.8), we have

[Fl - (K— 2n(2rz+1)ﬂ o (hp2,ps) = — (k+1) 1o (p2,ps5) + Vo (p2,p5)]. (3.13)

From (3.12) and (3.13), one can easily see that

r

2
{(K—I—l) (u2_v2) + [Fl - <K—2n(2n+1)>} }G(pz,p5)+2(1<+l)uvq)a(pz,ps) =0. (3.14)

This tell us that N is either totally geoesic submanifold or

r

(k+1) (u*—v?) + [Fl - (K—Zn(znﬂ))r: (k+1)uv=0.

This completes the proof. O

Corollary 3.4. Let N be an invariant pseudoparallel submanifold of the (2n+ 1) —dimensional an almost Kenmotsu
(1,0, V) —space N> 71 (9, E 1, g). Then N is concircular semiparallel if and only if N is totally geodesic provided

2
(k4 1) (12 —v?) + (K_M) £00r (K+1)uv #£0.

Equivalent to the definition of concircular Ricci generalized pseudoparallel given above, it can be said that there is a function
F > on the set
M, = {x € N|S(x) # o (x)} such that

C-c=r20(S,0).
If F» = 0 specifically, N is called a concircular Ricci generalized semiparallel submanifold.

Theorem 3.5. Let N be the invariant submanifold of the (2n+ 1) —dimensional an almost Kenmotsu (K, l,V)—space
N*"+1(¢,E n,g). If N is concircular Ricci generalized pseudoparallel submanifold, then N is either a total geodesic

submanifold or
2n(2n+1)k—r_ 1
b= pmcnen) eV TNV i) v (k1) =0

Proof. Let’s assume that N is a concircular Ricci generalized pseudoparallel submanifold. So, we can write

(C(p1,p2)-0) (Pa;ps) = I 2Q(S,0) (P4,P5:P1,P2) , (3.15)
for all py,p2,p4,p5 € L' (TN). From (2.18), it is clear that

R (p1,p2) 6 (pa,ps) — & (C(p1,p2) P, P5) — G (pa,C (p1,p2) ps) = —F 2{c ((p1 As p2) P, p5) +0 (ps,(P1 Asp2) ps)} -

Easily from here, we can write

R (p1,p2) & (ps,ps5) — 6 (C(p1,p2) p1,p5) — 6 (p4,C (p1,p2) p5) = —F 2{S (p2,p4) 5 (P1,ps5) — S (p1,pa) & (p2,p5)
(3.16)

+8(p2,P5) 0 (P4, p1) =S (P1,P5) O (Pa.P2)} -
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If we choose p; = ps = & in (3.16) and make use of (3.7), we get

0 (ps4,C(E,p2)E) =—F28(E,&)o(ps,p2). (3.17)

If we use (2.9) and (3.7) in (3.17), we obtain

KK MZH)> - anfz] G (pa,p2) = 1O (pa,hp2) + VPO (pa,hp2) . (3.18)

Substituting hp, for p; in (3.18) by view of (2.5) and (3.8), we have

[(K— 2n(2;r1+1)> —2nKF2:| 0 (hp2,ps) = — (k4 1) (Lo (p2,p4) + VOO (P2,p4)] . (3.19)

From (3.18) and (3.19), one can easily see that

2
{ KK— M}ZH)) —ZnKFz] +(k+1) (1 —v?) } 0 (Pa,p2) +2(K+1) v o (pa, p2) = 0. (3.20)

This tell us that N is either totally geoesic submanifold or

KK 271(2;-1-1)) ZnKFerr(KJr 1) (12— v?) = (+ 1) v = 0.

This completes the proof. O

Corollary 3.6. Let N be an invariant pseudoparallel submanifold of the (2n+ 1) —dimensional an almost Kenmotsu
(k, 1, V) —space N*"*1 (¢.&.n,g). Then N is concircular Ricci generalized semiparallel if and only if N is totally geodesic
provided

2
(k1) (2 —v2) + (K—M:HI)) £00r (k+1)uv #0.

Equivalent to the definition of concircular 2—pseudoparallel given above, it can be said that there is a function £ 3 on the set
M3 ={x € N|g(x) # Vo (x)} such that

C-Vo = F3Q(g,ﬁ(7) .
If F 3 = 0 specifically, N is called a concircular 2—semiparallel submanifold.

Theorem 3.7. Let N be the invariant submanifold of the (2n+ 1) —dimensional an almost Kenmotsu (k,[L,V)—space
N>+ (9,E,n,g). IfN is concircular 2—pseudoparallel submanifold, then N is either a total geodesic submanifold or

Fa= [K_ (k+1) (V2= p2), v (x+1) =0.

-
(20t 1)] +
Proof. Let’s assume that M is a concircular 2—pseudoparallel submanifold. So, we can write

(C(p17p2) : 66) (p47p5ap3) =F30 (S7 @6) (p4ap55p3;plap2) s (3.21)

for all py,p2,p4,P5,p3 € T(TM). If we choose p; = ps = & in (3.21), we can write

R(§,02) (Vp,0) (6.03) = (Ve p)ps ©) (6:03) = (Vp, 0) (C(&,02) &, 03) — (Vp,0) (§,C(&,p2) p3)

= F3{ (T e ) (€:93) + (V,0) ((E A p2) €.p3) +(7,0) (€. (€ Agp2) p3)} -
Let’s calculate all the expressions in (3.22). In view of (2.14), (2.19), (3.4), and (3.8), we can derive
R-(&,p2) (Vp,0) (,p3) = R* (é,pz){vﬁp(é,ps) 0 (Vps6:p3) =0 (&, psP3) }
= —R(£.p2)0 (Vp,E.p3) (3-23)

R (&,p2) {0 (9hps,p3) — 6 (ps,p3)},
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(N C(E.p2)ps O )(‘5 p3) = (5p2p4

6 (§,p3)—0 (Ve

~,P2)P4‘§’p3) -0 (éaVC(&,pg)p4p3)

= 0 (9?C(&,p2) pa+OhC(&,p2) P4, p3)

= n(m){[K

+vo (¢hpa,p3) — [K

- WZH)} 0 (p2,p3) + 1o (hpa,p3)

- WZH)} ¢ (hp2,p3)

+(k+1)pdo(p2,p3) — (kK +1)vo(p2,p3)}

(700 C(EP2)Ep2) = (7,0) |k~ 3| I (P2) ] —sps — vopa. )

(Vi) (E,C(E.p2)p3) =

1
5/\gP2)

(V(enpn)pi®) (E:P3) = ¥

V5,0(8.C(&,p)p3)—0

(Vp4évc(<§aP2)P3)

—O (57Vp4c(‘§7P2)P3)

-0 (VP4§7C

o (¢2p4 + ¢hP4,C (év

n(p3){ [x — sy

+v90 (s, hps) — [k

+u(x

(évPZ)p3)

P2)p3)

} 0 (pa;p2) + 1O (Pa,hp2)

- WZH)] o (¢hp4, p2)

+1) 90 (pa,p2) =V (Kk+1)0 (pa,p2)}

o (5,p3) — ( (5/\;:92)P4€’p3) -0 <5’v(5/\gP2)P4p3)

= 1n(ps){o(p2,p3) — 90 (hp2,p3

(
= 0 (9% (§ Agp2) pa+Oh(E Agp2)pa,p3)

)}

(Vp,0) (ENgP2)E,p3) = (Vp,0) (M(P2) & —p2.p3)

= (Vp,0) (M(p2)&.p3)—

= —o(V

p4n(Pz)§aps) -

(@pﬁ) (p2,p3)

(ﬁpﬁ) (p2,p3)

= =0 (pa[M(P)IE+M(P2) Vp,&.03) — (Vp,0) (P2,P3)

N (p2){o (9hp4,p3) —

(V0,0) (§,(ENgp2) p3) =

0 (pa,p3)} — (@pﬁ) (p2,p3)

—0 (Vp4§a (é /\g P2)P3)

o (02ps+hpa, g

n(p3) {0 (ps,p2) -

(p2ap3)<§ *8(67P3)P2)

0 (0hpa,p2)}

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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If we substitute (3.22), (3.23), (3.24), (3.25), (3.26), (3.27), (3.28) in (3.21), we obtain

R*(&,p2) {0 (0hps,p3) — 0 (s, p3)} =11 (pa) { [k = 5y | 0 (P2, p3) + 4 (2, ps)
VG (0hp2,p3) — [k = 5y | 00 (hp2,p3) + (i + 1) w95 (p2,p3) = (K4 1) v (p2,03)}
—(Vp,0) ([K— W:H-I)} (1 (p2) & — pa] — 1hp2 — V¢hP27P3)

[K— m} O (pa,p2) + 1O (Pa,hp2) + VOO (pa, hp2) — [K— m] G (9hpa,p2)
—n(p3)
+u(k+1)90 (ps,p2) — V(K +1)0(ps,p2)

= —F3{n(ps) {0 (p2,03) — 95 (hp2,p3)} + 1 (p2) {0 (9hpa, p3) — T (p4,03)} — (V,0) (P2, 03)

+1(p3) {0 (p4,p2) — 0 (9hpa, p2)}}
If we choose p3 = & in (3.30), we get

V00 (pa.hp2) + [ K = gy | (0hpa.p2) = 1 (4 1) 00 (pa.p2) v (K +1) 0 (pa.p2)

=—F3{=(Vp,0) (p2.&) +0(ps.p2) — 0 ($hps, p2)} -

By direct calculations, one can easily see that

(V2:0) (| %~ sy | [11(02) & = pa] — s — voip2.& )
= [K* m] 0 (p2,p4) + U0 (hp2,ps) + VPO (pa, hp2) — {K* Wrm)} 90 (p2,hps)

+u(k+1)900 (ps,;p2) =V (k+1) 0 (pa, p2),
and
(Vp,0) (02,&) = 90 (hpa, p2) — 6 (P4, p2) -
If (3.32) and (3.33) are out in (3.31), we obtain

[F3= (k= sy ) + (v=00) (c+1)] 0 (pasp2) = [ (F3 = (k= 57y ) ) 0 + (1 +9v)| 0 (pashipz) = 0

Substituting hp, instead of p; in (3.34), we can easily see that

(3= (k= sy ) + (v = 16) (+ 1)] 0 (ps, p2)

~[(ra= (= mer) ) 0+ (+0v)] (x+ 1) (1, p2) = 0.

From common solutions of (3.34) and (3.35), we can infer

{[m (s~ ey ) + (v - 110) (e 1)]°

G CEEE=) ¢+(u+¢V)]2(K+1)}G(p4,pz) =0

This implies that N is either totally geodesic or

r )]:F (k+1)(vV2—p?),pu-v(k+1)=0

Fs= [K_ 2n(2n+ 1

This completes of the proof.

—(Vpi0) ([K— m} (1 (p2) & — p2] = php2 — vri)hpz,é) - [K— m} 0 (P4, p2) — O (P, hp2)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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Corollary 3.8. Let N be an invariant pseudoparallel submanifold of the (2n+ 1) —dimensional an almost Kenmotsu
(K, 1, v) —space N*"1 (¢, &, 1, 8). Then N is concircular 2—semiparallel if and only if N is totally geodesic provided

2
{K_M’H)] (1) (V2= 12) £ 0 0r (x4 1) v £0.

Equivalent to the definition of concircular 2—Ricci generalized pseudoparallel given above, it can be said that there is a
function F 4 on the set B
My = {x€N|S(x)# Vo (x)} such that

C-Vo=Fr40(S, Vo).
If /4 = O specifically, N is called a concircular 2—Ricci generalized semiparallel submanifold.

Theorem 3.9. Let N be the invariant submanifold of the (2n+ 1) —dimensional an almost Kenmotsu (k, L, V) —space
N> +1(¢,E,n,g). If N is concircular 2—Ricci generalized pseudoparallel submanifold, then N is either a total geodesic

submanifold or
1 2n(2n+1) \/—
=—(lF—X 1 2_ 142 . N=o0.
Fa Zn( Fa@nr e,V EFDVE—r )),u V(k+1)=0

Proof. The proof of the theorem can be easily done similar to the proof of the previous theorem. O

4. Conclusion

In this article, pseudoparallel submanifolds for almost Kenmotsu (x, it, V) —space are investigated. The almost Kenmotsu
(k, 1, v) —space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such
as concircular pseudoparallel, concircular 2—pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular
2—Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant
submanifolds of almost Kenmotsu (x, 1, V) —space to be total geodesic according to the behavior of the x, tt, v functions.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for
their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

Conlflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the
CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this
research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

[11 E.Boeckx, A full classification of contact metric (x, ) —spaces, lllinois J. Math., 44(1) (2000), 212-219.

[2] D.E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.

[3] T. Koufogiorgos, M. Markellos, V. J. Papantoniou, The harmonicity of thr Reeb vector fields on contact 3—manifolds, Pasific J. Math., 234(2) (2008),
325-344.

[4] A. Carriazo, V. Martin-Molina, Almost cosymplectic and almost Kenmotsu (K, 1L, V) —Spaces, Mediterr. J. Math., 10 (2013), 1551-1571.

[5]1 P. Dacko, Z. Olszak, On almost cosymplectic (k, [, V) —spaces, Banch Center Publ., 69(1) (2005), 211-220.

[6] M. Atgeken, Certain results on invariant submanifolds of an almost Kenmotsu (x, [, V) —space, Arab. J. Math., 10 (2021), 543-554.

[7]1 A. Bejancu, N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, Annal Alexandru loan Cuza Univ. lasi Math., 27 (1981), 163-170.



60

Fundamental Journal of Mathematics and Applications

(8]

(91
[10]
[11]
[12]
[13]
(14]
[15]
[16]

(17]
[18]

M. Atgeken, P. Uygun, Characterizations for totally geodesic submanifolds of (k, L) —paracontact metric manifolds, Korean J. Math., 28(3) (2021),
?3‘55])2,7114 note on the paper on invariant submanifolds of LP-Sasakian manifolds, Extracta Math., 28(1) (2013), 33-36.

M. Atgeken, T. Mert, Characterizations for totally geodesic submanifolds of a K—paracontact manifold, AIMS Math., 6(7) (2021),7320-7332.

D. Chinea, P.S. Prestelo, Invariant submanifolds of a trans-Sasakian manifold, Publ. Math. Debrecen, 38(1-2) (1991), 103-109.

M. Atgeken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30(1) (2022), 175-185.

S.K. Hui, V.N. Mishra, T. Pal, Vandana, Some classes of invariant submanifolds of (LCS), —Manifolds, Italian J.P. Appl. Math., 39 (2018), 359-372.
V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Saakian manifolds, Khayyam J. Math., 6(1) (2020), 16-26.

S. Sular, C. Ozgﬁr, C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacet. J. Math. Stat., 39(4) (2010), 535-543.

P. Uygun, S. Dirik, M. Atceken, T. Mert, Some Characterizations Invariant Submanifolds of A (k, ) —Para Contact Space, J. Eng. R. App. Sci., 11(1)
(2022), 1967-1972.

M. Atgeken, G. Yiica, Some results on invariant submanifolds of an almost Kenmotsu (x, |L,V) —space, Honam Math. J., 43(4) (2021), 655-665.

R. Prasad, PAnkaj, On (k, 1) —Manifolds with Quasi-conformal Curvature Tensor, Int. J. Contemp. Math. Sciences, 34(5) 2010, 1663- 1676.



	Introduction
	Preliminary
	Invariant Pseudoparalel Submanifolds of an Almost Kenmotsu ( ,,) -Space
	Conclusion

