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Abstract

In this article, pseudoparallel submanifolds for almost Kenmotsu (κ,µ,ν)−space are
investigated. The almost Kenmotsu (κ,µ,ν)−space is considered on the concircular
curvature tensor. Submanifolds of these manifolds with properties such as concircular
pseudoparallel, concircular 2−pseudoparallel, concircular Ricci generalized pseudoparallel,
and concircular 2−Ricci generalized pseudoparallel has been characterized. Necessary
and sufficient conditions are given for the invariant submanifolds of almost Kenmotsu
(κ,µ,ν)−space to be total geodesic according to the behavior of the κ,µ,ν functions.

1. Introduction

Let
(
M2n+1,φ ,ξ ,η ,g

)
be a (2n+1)−dimensional contact metric manifold. We know that here R is the curvature tensor, ξ is

the characteristic vector field and the condition R(ρ1,ρ2)ξ = 0 is satisfied, for any vector field ρ1,ρ2 ∈M2n+1. The contact
metric manifold that satisfies this condition also satisfies the condition

R(ρ1,ρ2)ξ = η (ρ2)(κI +µh)ρ1−η (ρ1)(κI +µh)ρ2, (1.1)

and this condition is called (κ,µ) nullity condition, where κ,µ are constants and h is the self adjoint (1,1)−tensor field. E.
Boeckx in [1] and D. E. Blair et al. in [2], (κ,µ) nullity conditions on contact metric manifolds are considered when κ and µ

are constant. E. Boeckx proved that non-Sasakian contact metric manifold is completely determined locally by its dimension
for the constant values of κ and µ . If vector field ξ relate to the (κ,µ)−nullity distribution, then (1.1) is provided and the
manifold

(
M2n+1,φ ,ξ ,η ,g

)
is described (κ,µ)−contact metric manifold.

In particular, if κ and µ are not constant smooth functions on M2n+1, then the manifold
(
M2n+1,φ ,ξ ,η ,g

)
is described

generalized (κ,µ)−contact metric manifold [2].
T. Koufogiorgos et al. introduced (κ,µ,ν)−contact metric manifold in [3]. Riemann curvature tensor of (κ,µ,ν)−contact
metric manifoldis in the form

R̃(ρ1,ρ2)ξ = κ [η (ρ2)ρ1−η (ρ1)ρ2]+µ [η (ρ2)hρ1−η (ρ1)hρ2]+ν [η (ρ2)φhρ1−η (ρ1)φhρ2] , (1.2)

for all ρ1,ρ2 ∈ Γ(T M) , where κ,µ,ν are smooth functions on M2n+1.
If dη = 0 and dΦ = 2η ∧Φ, then this manifold is an almost Kenmotsu manifold, where Φ(ρ1,ρ2) = g(ρ1,φρ2) is the
fundamental 2−form of M2n+1. If an almost Kenmotsu manifold provide a (κ,µ,ν)−nullity distribution, it is described an
almost Kenmotsu (κ,µ,ν)−space [4].
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Later on, manifolds that do not have a contact metric structure but satisfy condition (1.2) have been studied. The almost
cosymplectic (κ,µ,ν)−space is defined by P. Dacko and Z. Olszak in [5]. M. Atçeken obtained very important properties of
almost Kenmotsu (κ,µ,ν)−space in [6]. Pseudoparallel submanifolds of many different structures have been investigated
in [7–18].
The concept of submanifold for a manifold is quite interesting. For example, it plays a very important role in fields such as
applied mathematics, analysis and physics, contributing to the illumination of these fields.
In this article, pseudoparallel submanifolds for almost Kenmotsu (κ,µ,ν)−space are investigated. The almost Kenmotsu
(κ,µ,ν)−space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such
as concircular pseudoparallel, concircular 2−pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular
2−Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant
submanifolds of almost Kenmotsu (κ,µ,ν)−space to be total geodesic according to the behavior of the κ,µ,ν functions.

2. Preliminary

Let Ñ be (2n+1)−dimensional contact metric manifold. This manifold admits an almost contact metric structure (φ ,ξ ,η ,g)
such that

φ
2
ρ1 =−ρ1 +η (ρ1)ξ , η (ρ1) = g(ρ1,ξ ) , η (ξ ) = 1,η ◦φ = 0, (2.1)

g(φρ1,φρ2) = g(ρ1,ρ2)−η (ρ1)η (ρ2) , (2.2)

for all vector fields ρ1,ρ2 ∈ Γ
(
T Ñ
)
, where Γ

(
T Ñ
)

denotes the set of differentiable vector fields on Ñ [3]. Ñ together with the
(φ ,ξ ,η ,g) is called a contact metric manifold.
The Riemannian curvature tensor R̃ of Ñ is given

R̃(ρ1,ρ2) = ∇̃ρ1∇̃ρ2 − ∇̃ρ2∇̃ρ1 − ∇̃[ρ1,ρ2],

for all ρ1,ρ2 ∈ Γ
(
T Ñ
)
, where ∇̃ is the Levi-Civita connection of g.

Let h be tensor field (1,1)−type and lξ be the Lie-derivative in the direction of ξ . Thus, we can write

2hρ1 =
(
lξ φ
)

ρ1,

for all ρ1 ∈ Γ
(
T Ñ
)
. On the other hand h is self-adjoint and satisfies

φh+hφ = 0, trh = trφh = 0,hξ = 0. (2.3)

In addition, contact metric manifolds provide the formula given by

∇̃ρ1ξ = φρ1−φhρ1, ∇̃ξ φ = 0. (2.4)

The (κ,µ)−nullity distribution of a contact metric manifold Ñ for the pair (κ,µ) ∈ R2 is distribution

R̃(ρ1,ρ2)ρ3 = κ [g(ρ2,ρ3)ρ1−g(ρ1,ρ3)ρ2]+µ [g(ρ2,ρ3)hρ1−g(ρ1,ρ3)hρ2] ,

for all ρ1,ρ2 ∈ Γ
(
T Ñ
)
.

Now let’s give some equations below which are important for almost Kenmotsu (κ,µ,ν)−space. Let Ñ2n+1 (φ ,η ,ξ ,g) be
(2n+1)−dimensional almost Kenmotsu (κ,µ,ν)−space. Then the following relations are provided.

h2 = (κ +1)φ
2,κ ≤−1, (2.5)

ξ (κ) = 2(κ +1)(ν−2) , (2.6)

(
∇̃ρ1φ

)
ρ2 = g(φρ1 +hρ1,ρ2)ξ −η (ρ2)(φρ1 +hρ1) , (2.7)

5̃ρ1
ξ =−φ

2
ρ1−φhρ1, (2.8)

S (ρ1,ξ ) = 2nκη (ρ1) , (2.9)

R̃(ξ ,ρ1)ρ2 = κ [g(ρ1,ρ2)ξ −η (ρ2)ρ1]+µ [g(hρ1,ρ2)ξ −η (ρ2)hρ1]+ν [g(φhρ1,ρ2)ξ −η (ρ2)φhρ1] . (2.10)
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Let N be the immersed submanifold of an almost Kenmotsu (κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g) . Let the tangent and normal
subspaces of N in Ñ2n+1 (φ ,ξ ,η ,g) be Γ(T N) and Γ

(
T⊥N

)
, respectively. Gauss and Weingarten formulas for Γ(T M) and

Γ
(
T⊥M

)
are

5̃ρ1
ρ2 =5ρ1ρ2 +σ (ρ1,ρ2) , (2.11)

5̃ρ1
ρ5 =−Aρ5ρ1 +5⊥ρ1

ρ5, (2.12)

respectively, for all ρ1,ρ2 ∈ Γ
(
T M̃
)

and ρ5 ∈ Γ
(
T⊥M̃

)
, where5 and5⊥ are the connections on N and Γ

(
T⊥N

)
, respectively,

σ and A are the second fundamental form and the shape operator of N. There is a relation

g
(
Aρ5ρ1,ρ2

)
= g(σ (ρ1,ρ2) ,ρ5) (2.13)

between the second basic form and shape operator defined as above. The covariant derivative of the second fundamental form
σ is defined as (

5̃ρ1
σ
)
(ρ2,ρ3) =5⊥ρ1

σ (ρ2,ρ3)−σ
(
5ρ1ρ2,ρ3

)
−σ

(
ρ2,5ρ1ρ3

)
, (2.14)

for all ρ1,ρ2,ρ3 ∈ Γ(T N) . Specifically, if 5̃σ = 0, N is said to be its second fundamental form is parallel.
Let R be the Riemann curvature tensor of N. In this case, the Gauss equation can be expressed as

R̃(ρ1,ρ2)ρ3 = R(ρ1,ρ2)ρ3 +Aσ(ρ1,ρ3)ρ2−Aσ(ρ2,ρ3)ρ1 +
(
5̃ρ1

σ
)
(ρ2,ρ3)−

(
5̃ρ2

σ
)
(ρ1,ρ3) , (2.15)

for all ρ1,ρ2,ρ3 ∈ Γ(T N) .
R̃ ·σ is given by(

R̃(ρ1,ρ2) ·σ
)
(ρ4,ρ5) = R⊥ (ρ1,ρ2)σ (ρ4,ρ5)−σ (R(ρ1,ρ2)ρ4,ρ5)−σ (ρ4,R(ρ1,ρ2)ρ5) , (2.16)

where the Riemannian curvature tensor of normal bundle Γ
(
T⊥N

)
is given

R⊥ (ρ1,ρ2) =
[
∇
⊥
ρ1
,∇⊥ρ2

]
−∇

⊥
[ρ1,ρ2]

.

On the other hand, the concircular curvature tensor for Riemannian manifold
(
N2n+1,g

)
is given by

C (ρ1,ρ2)ρ3 = R̃(ρ1,ρ2)ρ3−
r

2n(2n+1)
[g(ρ2,ρ3)ρ1−g(ρ1,ρ3)ρ2] , (2.17)

where r denotes the scalar curvature of N.
Similarly, the tensor C ·σ is defined by

(C (ρ1,ρ2) ·σ)(ρ4,ρ5) = R⊥ (ρ1,ρ2)σ (ρ4,ρ5)−σ (C (ρ1,ρ2)ρ4,ρ5)−σ (ρ4,C (ρ1,ρ2)ρ5) , (2.18)

for all ρ1,ρ2,ρ4,ρ5 ∈ Γ(T N) .
Let N be a Riemannian manifold, T is (0,k)−type tensor field and A is (0,2)−type tensor field. In this case, Tachibana tensor
field Q(A,T ) is defined as

Q(A,T )(X1, ...,Xk;ρ1,ρ2) =−T ((ρ1∧A ρ2)X1, ...,Xk)− ...−T (X1, ...,Xk−1,(ρ1∧A ρ2)Xk) , (2.19)

where

(ρ1∧A ρ2)ρ3 = A(ρ2,ρ3)ρ1−A(ρ1,ρ3)ρ2, (2.20)

k ≥ 1,X1,X2, ...,Xk,ρ1,ρ2 ∈ Γ(T N).

Definition 2.1 ( [8]). A submanifold N of a Riemannian manifold
(
Ñ,g

)
is said to be concircular pseudoparallel, concircular

2−pseudoparallel, concircular Ricci-generalized pseudoparallel and concircular 2−Ricci generalized pseudoparallel if

C ·σ and Q(g,σ)

C · ∇̃σ and Q
(
g, ∇̃σ

)
C ·σ and Q(S,σ)

C · ∇̃σ and Q
(
S, ∇̃σ

)
are linearly dependent, respectively.
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3. Invariant Pseudoparalel Submanifolds of an Almost Kenmotsu (κ,µ,ν)−Space

Let N be the immersed submanifold of an (2n+1)−dimensional an almost Kenmotsu (κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g) .
If φ

(
Tρ1 N

)
⊂ Tρ1N in every ρ1 point, the manifold N is called invariant submanifold. We note that all of properties of an

invariant submanifold inherit the ambient manifold. From this section of the article, we will assume that the manifold N is
the invariant submanifold of the an almost Kenmotsu (κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g) . So, it is clear that the following
proposition.

Proposition 3.1. Let N be an invariant submanifold of an almost Kenmotsu (κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g) such that ξ is
tangent to N. Then the following equalities hold on N.

R(ρ1,ρ2)ξ = κ [η (ρ2)ρ1−η (ρ1)ρ2]+µ [η (ρ2)hρ1−η (ρ1)hρ2]+ν [η (ρ2)φhρ1−η (ρ1)φhρ2] , (3.1)

R(ξ ,ρ1)ρ2 = κ [g(ρ1,ρ2)ξ −η (ρ2)ρ1]+µ [g(hρ1,ρ2)ξ −η (ρ2)hρ1]+ν [g(φhρ1,ρ2)ξ −η (ρ2)φhρ1] , (3.2)

(
∇ρ1φ

)
ρ2 = g(φρ1 +hρ1,ρ2)ξ −η (ρ4)(φρ1 +hρ1) , (3.3)

∇ρ1ξ =−φ
2
ρ1−φhρ1, (3.4)

C (ρ1,ρ2)ξ =

[
κ− r

2n(2n+1)

]
[η (ρ2)ρ1−η (ρ1)ρ2]+µ [η (ρ2)hρ1−η (ρ1)hρ2]+ν [η (ρ2)φhρ1−η (ρ1)φhρ2] , (3.5)

C (ξ ,ρ1)ρ2 =

[
κ− r

2n(2n+1)

]
[g(ρ1,ρ2)ξ −η (ρ2)ρ1]+µ [g(hρ1,ρ2)ξ −η (ρ2)hρ1]

+ν [g(φhρ1,ρ2)ξ −η (ρ2)φhρ1] ,

(3.6)

C (ξ ,ρ1)ξ =

[
κ− r

2n(2n+1)

]
[η (ρ1)ξ −ρ1] (3.7)

σ (ρ1,ξ ) = 0, σ (φρ1,ρ2) = σ (ρ1,φρ2) = φσ (ρ1,ρ2) , (3.8)

for all ρ1,ρ2 ∈ Γ(T N) , where ∇,σ and R denote the induced Levi-Civita connection on N, the shape operator and Riemannian
curvature tensor of N, respectively.

Lemma 3.2 ( [6]). Let N be the invariant submanifold of an almost Kenmotsu (κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g) . Then the
second fundamental form σ of N is parallel if and only if N is the total geodesic submanifold provided κ 6= 0.

Let us now consider the invariant submanifolds of the almost Kenmotsu (κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g) on the concircular
curvature tensor.
Equivalent to the definition of concircular pseudoparallel given above, it can be said that there is a function z1 on the set
M1 = {x ∈ N|σ (x) 6= g(x)} such that

C ·σ =z1Q(g,σ) .

If z1 = 0 specifically, N is called a concircular semiparallel submanifold.

Theorem 3.3. Let N be the invariant submanifold of the (2n+1)−dimensional an almost Kenmotsu (κ,µ,ν)−space
Ñ2n+1 (φ ,ξ ,η ,g). If N is concircular pseudoparallel submanifold, then N is either a total geodesic submanifold or

z1 =

(
κ− r

2n(2n+1)

)
∓
√
(κ +1)(ν2−µ2),µ ·ν (κ +1) = 0.

Proof. Let’s assume that N is a concircular pseudoparallel submanifold. So, we can write

(C (ρ1,ρ2) ·σ)(ρ4,ρ5) =z1Q(g,σ)(ρ4,ρ5;ρ1,ρ2) , (3.9)

for all ρ1,ρ2,ρ4,ρ5 ∈ Γ(T N) . From (2.18), it is clear that

R⊥ (ρ1,ρ2)σ (ρ4,ρ5)−σ (C (ρ1,ρ2)ρ4,ρ5)−σ (ρ4,C (ρ1,ρ2)ρ5) =−z1
{

σ ((ρ1∧g ρ2)ρ4,ρ5) +σ (ρ4,(ρ1∧g ρ2)ρ5)
}
.
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Easily from here, we can write

R⊥ (ρ1,ρ2)σ (ρ4,ρ5)−σ (C (ρ1,ρ2)ρ4,ρ5)−σ (ρ4,C (ρ1,ρ2)ρ5) =−z1 {g(ρ2,ρ4)σ (ρ1,ρ5) −g(ρ1,ρ4)σ (ρ2,ρ5)

+g(ρ2,ρ5)σ (ρ4,ρ1)−g(ρ1,ρ5)σ (ρ4,ρ2)} .
(3.10)

If we choose ρ1 = ρ4 = ξ in (3.10) and make use of (3.7), we get

σ (C (ξ ,ρ2)ξ ,ρ5) =−z1σ (ρ2,ρ5) . (3.11)

If we use (3.7) out of (3.11), we obtain[
z1−

(
κ− r

2n(2n+1)

)]
σ (ρ2,ρ5) = µσ (hρ2,ρ5)+νφσ (hρ2,ρ5) . (3.12)

Substituting hρ2 for ρ2 in (3.12) by view of (2.5) and (3.8), we have[
z1−

(
κ− r

2n(2n+1)

)]
σ (hρ2,ρ5) =−(κ +1) [µσ (ρ2,ρ5)+νφσ (ρ2,ρ5)] . (3.13)

From (3.12) and (3.13), one can easily see that{
(κ +1)

(
µ

2−ν
2)+[z1−

(
κ− r

2n(2n+1)

)]2
}

σ (ρ2,ρ5)+2(κ +1)µνφσ (ρ2,ρ5) = 0. (3.14)

This tell us that N is either totally geoesic submanifold or

(κ +1)
(
µ

2−ν
2)+[z1−

(
κ− r

2n(2n+1)

)]2

= (κ +1)µν = 0.

This completes the proof.

Corollary 3.4. Let N be an invariant pseudoparallel submanifold of the (2n+1)−dimensional an almost Kenmotsu
(κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g). Then N is concircular semiparallel if and only if N is totally geodesic provided

(κ +1)
(
µ

2−ν
2)+(κ− r

2n(2n+1)

)2

6= 0 or (κ +1)µν 6= 0.

Equivalent to the definition of concircular Ricci generalized pseudoparallel given above, it can be said that there is a function
z2 on the set
M2 = {x ∈ N|S (x) 6= σ (x)} such that

C ·σ =z2Q(S,σ) .

If z2 = 0 specifically, N is called a concircular Ricci generalized semiparallel submanifold.

Theorem 3.5. Let N be the invariant submanifold of the (2n+1)−dimensional an almost Kenmotsu (κ,µ,ν)−space
Ñ2n+1 (φ ,ξ ,η ,g). If N is concircular Ricci generalized pseudoparallel submanifold, then N is either a total geodesic
submanifold or

z2 =
2n(2n+1)κ− r

4n2κ (2n+1)
∓ 1

2nκ

√
(κ +1)(ν2−µ2),µ ·ν (κ +1) = 0.

Proof. Let’s assume that N is a concircular Ricci generalized pseudoparallel submanifold. So, we can write

(C (ρ1,ρ2) ·σ)(ρ4,ρ5) =z2Q(S,σ)(ρ4,ρ5;ρ1,ρ2) , (3.15)

for all ρ1,ρ2,ρ4,ρ5 ∈ Γ(T N) . From (2.18), it is clear that

R⊥ (ρ1,ρ2)σ (ρ4,ρ5)−σ (C (ρ1,ρ2)ρ4,ρ5)−σ (ρ4,C (ρ1,ρ2)ρ5) =−z2 {σ ((ρ1∧S ρ2)ρ4,ρ5) +σ (ρ4,(ρ1∧S ρ2)ρ5)} .

Easily from here, we can write

R⊥ (ρ1,ρ2)σ (ρ4,ρ5)−σ (C (ρ1,ρ2)ρ4,ρ5)−σ (ρ4,C (ρ1,ρ2)ρ5) =−z2 {S (ρ2,ρ4)σ (ρ1,ρ5) −S (ρ1,ρ4)σ (ρ2,ρ5)

+S (ρ2,ρ5)σ (ρ4,ρ1)−S (ρ1,ρ5)σ (ρ4,ρ2)} .
(3.16)
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If we choose ρ1 = ρ5 = ξ in (3.16) and make use of (3.7), we get

σ (ρ4,C (ξ ,ρ2)ξ ) =−z2S (ξ ,ξ )σ (ρ4,ρ2) . (3.17)

If we use (2.9) and (3.7) in (3.17), we obtain[(
κ− r

2n(2n+1)

)
−2nκz2

]
σ (ρ4,ρ2) = µσ (ρ4,hρ2)+νφσ (ρ4,hρ2) . (3.18)

Substituting hρ2 for ρ2 in (3.18) by view of (2.5) and (3.8), we have[(
κ− r

2n(2n+1)

)
−2nκz2

]
σ (hρ2,ρ4) =−(κ +1) [µσ (ρ2,ρ4)+νφσ (ρ2,ρ4)] . (3.19)

From (3.18) and (3.19), one can easily see that{[(
κ− r

2n(2n+1)

)
−2nκz2

]2

+(κ +1)
(
µ

2−ν
2)}

σ (ρ4,ρ2)+2(κ +1)µνφσ (ρ4,ρ2) = 0. (3.20)

This tell us that N is either totally geoesic submanifold or[(
κ− r

2n(2n+1)

)
−2nκz2

]2

+(κ +1)
(
µ

2−ν
2)= (κ +1)µν = 0.

This completes the proof.

Corollary 3.6. Let N be an invariant pseudoparallel submanifold of the (2n+1)−dimensional an almost Kenmotsu
(κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g). Then N is concircular Ricci generalized semiparallel if and only if N is totally geodesic
provided

(κ +1)
(
µ

2−ν
2)+(κ− r

2n(2n+1)

)2

6= 0 or (κ +1)µν 6= 0.

Equivalent to the definition of concircular 2−pseudoparallel given above, it can be said that there is a function z3 on the set
M3 =

{
x ∈ N|g(x) 6= ∇̃σ (x)

}
such that

C · ∇̃σ =z3Q
(
g, ∇̃σ

)
.

If z3 = 0 specifically, N is called a concircular 2−semiparallel submanifold.

Theorem 3.7. Let N be the invariant submanifold of the (2n+1)−dimensional an almost Kenmotsu (κ,µ,ν)−space
Ñ2n+1 (φ ,ξ ,η ,g). If N is concircular 2−pseudoparallel submanifold, then N is either a total geodesic submanifold or

z3 =

[
κ− r

2n(2n+1)

]
∓
√
(κ +1)(ν2−µ2),µ ·ν (κ +1) = 0.

Proof. Let’s assume that M̃ is a concircular 2−pseudoparallel submanifold. So, we can write(
C (ρ1,ρ2) · 5̃σ

)
(ρ4,ρ5,ρ3) =z3Q

(
S,5̃σ

)
(ρ4,ρ5,ρ3;ρ1,ρ2) , (3.21)

for all ρ1,ρ2,ρ4,ρ5,ρ3 ∈ Γ(T M) . If we choose ρ1 = ρ5 = ξ in (3.21), we can write

R⊥ (ξ ,ρ2)
(
5̃ρ4

σ
)
(ξ ,ρ3)−

(
5̃C(ξ ,ρ2)ρ4

σ
)
(ξ ,ρ3)−

(
5̃ρ4

σ
)
(C (ξ ,ρ2)ξ ,ρ3)−

(
5̃ρ4

σ
)
(ξ ,C (ξ ,ρ2)ρ3)

=−z3

{(
5̃(ξ∧gρ2)ρ4

σ

)
(ξ ,ρ3)+

(
5̃ρ4

σ
)
((ξ ∧g ρ2)ξ ,ρ3) +

(
5̃ρ4

σ
)
(ξ ,(ξ ∧g ρ2)ρ3)

}
.

(3.22)

Let’s calculate all the expressions in (3.22). In view of (2.14), (2.19), (3.4), and (3.8), we can derive

R⊥ (ξ ,ρ2)
(
5̃ρ4

σ
)
(ξ ,ρ3) = R⊥ (ξ ,ρ2)

{
5⊥ρ4

σ (ξ ,ρ3) −σ
(
5ρ4ξ ,ρ3

)
−σ

(
ξ ,5ρ4ρ3

)}
= −R⊥ (ξ ,ρ2)σ

(
5ρ4ξ ,ρ3

)
= R⊥ (ξ ,ρ2){σ (φhρ4,ρ3)−σ (ρ4,ρ3)} ,

(3.23)
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(
5̃C(ξ ,ρ2)ρ4

σ
)
(ξ ,ρ3) = 5⊥C(ξ ,ρ2)ρ4

σ (ξ ,ρ3)−σ
(
5C(ξ ,ρ2)ρ4

ξ ,ρ3
)
−σ

(
ξ ,5C(ξ ,ρ2)ρ4

ρ3
)

= σ
(
φ 2C (ξ ,ρ2)ρ4 +φhC (ξ ,ρ2)ρ4,ρ3

)
= η (ρ4)

{[
κ− r

2n(2n+1)

]
σ (ρ2,ρ3)+µσ (hρ2,ρ3)

+νσ (φhρ2,ρ3)−
[
κ− r

2n(2n+1)

]
φσ (hρ2,ρ3)

+(κ +1)µφσ (ρ2,ρ3)− (κ +1)νσ (ρ2,ρ3)}

(3.24)

(
5̃ρ4

σ
)
(C (ξ ,ρ2)ξ ,ρ3) =

(
5̃ρ4

σ
)([

κ− r
2n(2n+1)

]
[η (ρ2)ξ −ρ2] −µhρ2−νφhρ2,ρ3) (3.25)

(
5̃ρ4

σ
)
(ξ ,C (ξ ,ρ2)ρ3) = ∇⊥ρ4

σ (ξ ,C (ξ ,ρ2)ρ3)−σ
(
∇ρ4ξ ,C (ξ ,ρ2)ρ3

)
−σ

(
ξ ,∇ρ4C (ξ ,ρ2)ρ3

)
= −σ

(
∇ρ4ξ ,C (ξ ,ρ2)ρ3

)
= σ

(
φ 2ρ4 +φhρ4,C (ξ ,ρ2)ρ3

)
= η (ρ3)

{[
κ− r

2n(2n+1)

]
σ (ρ4,ρ2)+µσ (ρ4,hρ2)

+νφσ (ρ4,hρ2)−
[
κ− r

2n(2n+1)

]
σ (φhρ4,ρ2)

+µ (κ +1)φσ (ρ4,ρ2)−ν (κ +1)σ (ρ4,ρ2)} ,

(3.26)

(
5̃(ξ∧gρ2)ρ4

σ

)
(ξ ,ρ3) = 5⊥

(ξ∧gρ2)ρ4
σ (ξ ,ρ3)−σ

(
5(ξ∧gρ2)ρ4

ξ ,ρ3

)
−σ

(
ξ ,5(ξ∧gρ2)ρ4

ρ3

)
= σ

(
φ 2 (ξ ∧g ρ2)ρ4 +φh(ξ ∧g ρ2)ρ4,ρ3

)
= η (ρ4){σ (ρ2,ρ3)−φσ (hρ2,ρ3)} ,

(3.27)

(
5̃ρ4

σ
)
((ξ ∧g ρ2)ξ ,ρ3) =

(
5̃ρ4

σ
)
(η (ρ2)ξ −ρ2,ρ3)

=
(
5̃ρ4

σ
)
(η (ρ2)ξ ,ρ3)−

(
5̃ρ4

σ
)
(ρ2,ρ3)

= −σ
(
∇ρ4η (ρ2)ξ ,ρ3

)
−
(
5̃ρ4

σ
)
(ρ2,ρ3)

= −σ
(
ρ4 [η (ρ2)]ξ +η (ρ2)∇ρ4ξ ,ρ3

)
−
(
5̃ρ4

σ
)
(ρ2,ρ3)

= η (ρ2){σ (φhρ4,ρ3)−σ (ρ4,ρ3)}−
(
5̃ρ4

σ
)
(ρ2,ρ3)

(3.28)

(
5̃ρ4

σ
)
(ξ ,(ξ ∧g ρ2)ρ3) = −σ

(
∇ρ4ξ ,(ξ ∧g ρ2)ρ3

)
= σ

(
φ 2ρ4 +φhρ4,g(ρ2,ρ3)ξ −g(ξ ,ρ3)ρ2

)
= η (ρ3){σ (ρ4,ρ2)−σ (φhρ4,ρ2)}

(3.29)
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If we substitute (3.22), (3.23), (3.24), (3.25), (3.26), (3.27), (3.28) in (3.21), we obtain

R⊥ (ξ ,ρ2){σ (φhρ4,ρ3)−σ (ρ4,ρ3)}−η (ρ4)
{[

κ− r
2n(2n+1)

]
σ (ρ2,ρ3)+µσ (hρ2,ρ3)

+νσ (φhρ2,ρ3)−
[
κ− r

2n(2n+1)

]
φσ (hρ2,ρ3) +(κ +1)µφσ (ρ2,ρ3)− (κ +1)νσ (ρ2,ρ3)}

−
(
5̃ρ4

σ
)([

κ− r
2n(2n+1)

]
[η (ρ2)ξ −ρ2]−µhρ2−νφhρ2,ρ3

)

−η (ρ3)


[
κ− r

2n(2n+1)

]
σ (ρ4,ρ2)+µσ (ρ4,hρ2)+νφσ (ρ4,hρ2)−

[
κ− r

2n(2n+1)

]
σ (φhρ4,ρ2)

+µ (κ +1)φσ (ρ4,ρ2)−ν (κ +1)σ (ρ4,ρ2)


=−z3 {η (ρ4){σ (ρ2,ρ3)−φσ (hρ2,ρ3)} +η (ρ2){σ (φhρ4,ρ3)−σ (ρ4,ρ3)}−

(
5̃ρ4

σ
)
(ρ2,ρ3)

+η (ρ3){σ (ρ4,ρ2)−σ (φhρ4,ρ2)}}

(3.30)

If we choose ρ3 = ξ in (3.30), we get

−
(
∇̃ρ4σ

)([
κ− r

2n(2n+1)

]
[η (ρ2)ξ −ρ2]−µhρ2−νφhρ2,ξ

)
−
[
κ− r

2n(2n+1)

]
σ (ρ4,ρ2)−µσ (ρ4,hρ2)

−νφσ (ρ4,hρ2)+
[
κ− r

2n(2n+1)

]
σ (φhρ4,ρ2)−µ (κ +1)φσ (ρ4,ρ2)+ν (κ +1)σ (ρ4,ρ2)

=−z3
{
−
(
∇̃ρ4σ

)
(ρ2,ξ ) +σ (ρ4,ρ2)−σ (φhρ4,ρ2)} .

(3.31)

By direct calculations, one can easily see that(
∇̃ρ4σ

)([
κ− r

2n(2n+1)

]
[η (ρ2)ξ −ρ2]−µhρ2−νφhρ2,ξ

)
=
[
κ− r

2n(2n+1)

]
σ (ρ2,ρ4)+µσ (hρ2,ρ4)+νφσ (ρ4,hρ2)−

[
κ− r

2n(2n+1)

]
φσ (ρ2,hρ4)

+µ (κ +1)φσ (ρ4,ρ2)−ν (κ +1)σ (ρ4,ρ2) ,

(3.32)

and (
5̃ρ4

σ
)
(ρ2,ξ ) = φσ (hρ4,ρ2)−σ (ρ4,ρ2) . (3.33)

If (3.32) and (3.33) are out in (3.31), we obtain[
z3−

(
κ− r

2n(2n+1)

)
+(ν−µφ)(κ +1)

]
σ (ρ4,ρ2)−

[(
z3−

(
κ− r

2n(2n+1)

))
φ +(µ +φν)

]
σ (ρ4,hρ2) = 0. (3.34)

Substituting hρ2 instead of ρ2 in (3.34), we can easily see that[
z3−

(
κ− r

2n(2n+1)

)
+(ν−µφ)(κ +1)

]
σ (ρ4,hρ2)

−
[(

z3−
(

κ− r
2n(2n+1)

))
φ +(µ +φν)

]
(κ +1)σ (ρ4,ρ2) = 0.

(3.35)

From common solutions of (3.34) and (3.35), we can infer{[
z3−

(
κ− r

2n(2n+1)

)
+(ν−µφ)(κ +1)

]2

+
[(

z3−
(

κ− r
2n(2n+1)

))
φ +(µ +φν)

]2
(κ +1)

}
σ (ρ4,ρ2) = 0

(3.36)

This implies that N is either totally geodesic or

z3 =

[
κ− r

2n(2n+1)

]
∓
√

(κ +1)(ν2−µ2),µ ·ν (κ +1) = 0

This completes of the proof.
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Corollary 3.8. Let N be an invariant pseudoparallel submanifold of the (2n+1)−dimensional an almost Kenmotsu
(κ,µ,ν)−space Ñ2n+1 (φ ,ξ ,η ,g). Then N is concircular 2−semiparallel if and only if N is totally geodesic provided[

κ− r
2n(2n+1)

]2

− (κ +1)
(
ν

2−µ
2) 6= 0 or (κ +1)µν 6= 0.

Equivalent to the definition of concircular 2−Ricci generalized pseudoparallel given above, it can be said that there is a
function z4 on the set
M4 =

{
x ∈ N|S (x) 6= ∇̃σ (x)

}
such that

C · ∇̃σ =z4Q
(
S, ∇̃σ

)
.

If z4 = 0 specifically, N is called a concircular 2−Ricci generalized semiparallel submanifold.

Theorem 3.9. Let N be the invariant submanifold of the (2n+1)−dimensional an almost Kenmotsu (κ,µ,ν)−space
Ñ2n+1 (φ ,ξ ,η ,g). If N is concircular 2−Ricci generalized pseudoparallel submanifold, then N is either a total geodesic
submanifold or

z4 =
1
2n

(
1∓ 2n(2n+1)

2n(2n+1)κ− r

√
(κ +1)(ν2−µ2)

)
,µ ·ν (κ +1) = 0.

Proof. The proof of the theorem can be easily done similar to the proof of the previous theorem.

4. Conclusion

In this article, pseudoparallel submanifolds for almost Kenmotsu (κ,µ,ν)−space are investigated. The almost Kenmotsu
(κ,µ,ν)−space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such
as concircular pseudoparallel, concircular 2−pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular
2−Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant
submanifolds of almost Kenmotsu (κ,µ,ν)−space to be total geodesic according to the behavior of the κ,µ,ν functions.
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[6] M. Atçeken, Certain results on invariant submanifolds of an almost Kenmotsu (κ,µ,ν)−space, Arab. J. Math., 10 (2021), 543-554.
[7] A. Bejancu, N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, Annal Alexandru Ioan Cuza Univ. Iaşi Math., 27 (1981), 163-170.
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[8] M. Atçeken, P. Uygun, Characterizations for totally geodesic submanifolds of (κ,µ)−paracontact metric manifolds, Korean J. Math., 28(3) (2021),
555-571.

[9] A. De, A note on the paper on invariant submanifolds of LP-Sasakian manifolds, Extracta Math., 28(1) (2013), 33-36.
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[17] M. Atçeken, G. Yüca, Some results on invariant submanifolds of an almost Kenmotsu (κ,µ,ν)−space, Honam Math. J., 43(4) (2021), 655-665.
[18] R. Prasad, PAnkaj, On (k,µ)−Manifolds with Quasi-conformal Curvature Tensor, Int. J. Contemp. Math. Sciences, 34(5) 2010, 1663- 1676.


	Introduction
	Preliminary
	Invariant Pseudoparalel Submanifolds of an Almost Kenmotsu ( ,,) -Space
	Conclusion

