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Abstract 

 

Riemannian curvature invariants on hypersurfaces of an almost product-like manifold with constant 

curvature 𝜐 are computed. Various relationships involving sectional curvatures and Ricci curvatures 

have been obtained.  Using the Chen-Ricci inequality, some characterizations are presented. 
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1. Introduction 
 

Riemannian invariants are crucial in the manifold theory because they determine the intrinsic 

properties of Riemannian manifolds. The most popularly studied Riemannian invariants are the 

curvature invariants. Among the Riemann curvature invariants, the classically known are 

sectional, Ricci, and scalar curvatures. In the literature, we expose various studies related to 

fundamental inequalities, including Ricci curvature and squared mean curvature, for dissimilar 

types of submanifolds of real space forms. The first studies in this direction were made by B. 

Y. Chen in [1-4], etc. This kind of inequalities was studied in [5-10], etc. 

 

The theory of statistical manifolds has recently been studied intensively by authors who have 

conducted research on differential geometry and its applications. Some applications can be seen 

in several fields such as image processing, physic, computer science and machine learning [11-

14], etc. The notion of statistical manifolds was firstly introduced by C. R. Rao in [15]. The 

theory of hypersurfaces or submanifolds of statistical manifolds was examined in [16-24], etc.  

 

                                                                 
1 This study is supported by the Scientific and Technological Research Council of Turkey (TÜBiTAK) with project 
number 122F326. 

https://orcid.org/0000-0001-6950-7633
https://orcid.org/0000-0003-0456-6418
https://orcid.org/0009-0008-7411-1498


34 

In the literature, there exist remarkable applications of Riemannian product manifolds [25-34], 

etc. The concept of almost product-like manifolds was introduced as follows [19]: 

 

Let  (𝑀̃, ℎ̃) be a Riemannian manifold with two almost product structures 𝐹 and  𝐹∗ providing 

the condition 

ℎ̃(𝐹𝑌1, 𝑌2) = ℎ̃(𝑌1, 𝐹∗ 𝑌2)                                                                                                                  (1)

for each 𝑌1, 𝑌2 ∈ 𝛤(𝑇𝑀). Then, (𝑀̃, ℎ,̃ 𝐹) is entitled to an almost product-like manifold. We 

remark that an almost product-like manifold is an almost product-like Riemannian manifold if 

𝐹 = 𝐹∗. If an almost product manifold admitting a statistical structure is entitled to an almost 

product-like statistical manifold.   

 

In light of the above-mentioned situations, we derive some relations involving the Riemannian 

curvature invariants on hypersurfaces of almost product-like statistical manifolds and locally 

product-like statistical manifolds. With the help of these equalities and inequalities, we obtain 

some characterizations of these hypersurfaces. 

 

2. Preliminaries 
 

Let (𝑀̃, ℎ̃) be an (𝑛 + 1) −dimensional Riemannian manifold furnished with a Riemannian 

metric ℎ̃ and {𝑍1, 𝑍2, … , 𝑍𝑛+1} be an orthonormal basis on (𝑀̃, ℎ̃). The Ricci curvature at 𝑍𝑖 ,
𝑖 ∈ {1,2, … , 𝑛 + 1} is formulated as 

 

𝑅𝑖𝑐̃0(𝑍𝑖) = ∑  ℎ̃(

𝑛+1

𝑖=1

𝑅̃0(𝑍𝑖 , 𝑍𝑗)𝑍𝑗 , 𝑍𝑖),                                                                                                (2) 

 

where 𝑅̃0 is the Riemannian curvature tensor field. Note that Ricci curvature can be given by 

 

𝑅𝑖𝑐̃0(𝑍𝑖) = ∑  𝐾̃𝑖𝑗
0

𝑛+1

𝑖=1

 ,                                                                                                                            (3) 

 

where 𝐾̃𝑖𝑗
0  indicates the sectional curvature of a plane section spanned by 𝑍𝑖 and 𝑍𝑗 for 𝑖, 𝑗 ∈

{1,2, … , 𝑛 + 1}. The scalar curvature at 𝑝 ∈ 𝑀̃ is formulated as 

 

𝜏̃0(𝑝) = ∑  𝑅𝑖𝑐̃0(𝑍𝑖)

𝑛+1

𝑖=1

.                                                                                                                         (4) 

 

Let (𝑀, ℎ) be an orientable hypersurface of (𝑀̃, ℎ̃) with the induced metric ℎ of  ℎ̃. Suppose 

that 𝑁 is a local unit normal field of 𝑀. The Gauss and Weingarten formulas are indicated by 

 

∇̃𝑌𝑎

0 𝑌𝑏 = ∇𝑌𝑎

0 + g(𝐴𝑁
0 𝑌𝑎, 𝑌𝑏)       and       ∇̃𝑌𝑎

𝑁 = −𝐴𝑁
0 𝑌𝑎                                                                (5) 

 

respectively. The Gauss equation is indicated by 

 

𝑅0(𝑌𝑎, 𝑌𝑏)𝑌𝑐 = 𝑅̃0(𝑌𝑎, 𝑌𝑏)𝑌𝑐 + h(𝐴𝑁
0 𝑌𝑏, 𝑌𝑐)𝐴𝑁

0 𝑌𝑎 − h(𝐴𝑁
0 𝑌𝑎, 𝑌𝑐)𝐴𝑁

0 𝑌𝑏                                       (6) 
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for each 𝑌𝑎, 𝑌𝑏, 𝑌𝑐  ∈  Γ(𝑇𝑀). 
 

Theorem 2.1 (Chen-Ricci inequality) Let 𝑀 be an 𝑛 −dimensional submanifold. Then, we 

have the following situations: 

 

i. For any unit vector field 𝑌, we have 

 

𝑅𝑖𝑐0(𝑌) ≤
1

4
𝑛2‖𝐻‖2 + 𝑅𝑖𝑐̃𝑇𝑝𝑀

0 (𝑌),                                                                                      (7) 

 

where 𝑅𝑖𝑐̃𝑇𝑝𝑀
0  is the 𝑛 −Ricci curvature of  𝑇𝑝𝑀. 

ii. The equality case of (7) is satisfied for each 𝑌 ∈ 𝑇𝑝𝑀 if and only if 𝑀 is totally geodesic 

or 𝑛 = 2 and 𝑀 is totally umbilical. 

 

Now we recall some basic facts related to statistical manifolds: 

 

Let 𝐷̃ indicates a torsion-free connection on (𝑀̃, ℎ,̃ 𝐹). If 𝐷̃ℎ̃ is symmetric, (𝑀̃, ℎ,̃  𝐷,̃ 𝐹) is said 

to be an almost product-like statistical manifold. For any (𝑀̃, ℎ,̃  𝐷,̃ 𝐹), we have 

 

 ℎ ̃(𝐷̃𝑌𝑐
𝑌𝑎, 𝑌𝑏) = 𝑌𝑐ℎ ̃(𝑌𝑎, 𝑌𝑏) − ℎ ̃(𝐷̃𝑌𝑐

∗ 𝑌𝑏, 𝑌𝑎),                                                                                  (8) 

 

where 

 

𝐷̃𝑌𝑎

0 𝑌𝑏 =
1

2
(𝐷̃𝑌𝑎

𝑌𝑏 + 𝐷̃𝑌𝑎

∗ 𝑌𝑏)                                                                                                                  (9) 

 

for any 𝑌𝑎, 𝑌𝑏, 𝑌𝑐  ∈  Γ(𝑇𝑀̃). An almost product-like manifold is entitled to a locally product-

like statistical manifold if 𝐷̃𝐹 = 0. We note that 𝐷̃∗𝐹 = 0 holds for any locally product-like 

statistical manifold [19]. 

 

Denote the Riemannian curvature tensors with regard to 𝐷̃ and 𝐷̃∗ by 𝑅̃  and 𝑅̃∗. It is known 

that 

 

ℎ ̃(𝑅̃(𝑌𝑎, 𝑌𝑏)𝑌𝑑 , 𝑌𝑐) = −ℎ ̃(𝑅̃∗(𝑌𝑎, 𝑌𝑏)𝑌𝑐, 𝑌𝑑)                                                                                  (10) 

 

is satisfied for each 𝑌𝑎, 𝑌𝑏, 𝑌𝑐, 𝑌𝑑  ∈  Γ(𝑇𝑀̃). From (10), it is clear that 𝑅 and 𝑅∗ are not 

symmetric. The manifold (𝑀̃, ℎ,̃  𝐷,̃ 𝐹) is said to have constant curvature 𝜐 if 

 

𝑅̃(𝑌𝑎, 𝑌𝑏)𝑌𝑐 = 𝜐{ℎ ̃(𝑌𝑏, 𝑌𝑐)𝑌𝑎 − ℎ ̃(𝑌𝑎, 𝑌𝑐)𝑌𝑏}                                                                                 (11) 

 

holds. In view of (10) and (11), it follows that (𝑀̃, ℎ,̃  𝐷,̃ 𝐹) is also of constant curvature with 

regard to 𝑅̃∗. We note that Riemannian curvatures are not symmetric. 

 

An almost product manifold of constant curvature 𝜐 = 0 is indicated by 𝑀̃(𝜐). If 𝜐 = 0, 𝑀̃(𝜐) 

is entitled to a Hessian manifold [20]. 

 

For simplicity, we indite 
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𝑅𝑖𝑐̃(𝑍𝑖) = ∑  ℎ̃(

𝑛+1

𝑗=1

𝑅̃(𝑍𝑖 , 𝑍𝑗)𝑍𝑗 , 𝑍𝑖) = ∑ 𝐾̃𝑖𝑗

𝑛+1

𝑗=1

,                                                                               (12) 

𝑅𝑖𝑐̃∗(𝑍𝑖) = ∑  ℎ̃(

𝑛+1

𝑗=1

𝑅̃∗(𝑍𝑖 , 𝑍𝑗)𝑍𝑗 , 𝑍𝑖) = ∑ 𝐾̃𝑖𝑗
∗

𝑛+1

𝑗=1

,                                                                           (13)

       𝜏̃(𝑝) = ∑ 𝑅𝑖𝑐̃(𝑍𝑖)

𝑛+1

𝑖=1

,   𝜏̃∗(𝑝) = ∑ 𝑅𝑖𝑐̃∗

𝑛+1

𝑖=1

(𝑍𝑖).                                                                         (14)  

 

 

3. Hypersurfaces of almost product-like statistical manifolds 
 

Let (𝑀̃, ℎ,̃  𝐷,̃ 𝐹) be an almost product-like statistical manifold and (𝑀, ℎ) be a hypersurface of 

(𝑀̃, ℎ,̃  𝐷,̃ 𝐹). Denote the unit normal vector field of (𝑀, ℎ) by 𝑁. If 𝐹𝑁 and 𝐹∗𝑁 belong to 

Γ(𝑇𝑀), then (𝑀, ℎ) is entitled to a tangential hypersurface. For any tangential hypersurface, 

we write 𝐹𝑁 = 𝜉, 𝐹∗𝑁 = 𝜉∗ and 

 
𝐹𝑌 = 𝜑𝑌 + 𝜇∗(𝑌)𝑁,                                                                                                                            (15)

𝐹∗𝑌 = 𝜑∗𝑌 + 𝜇(𝑌)𝑁                                                                                                                           (16)
 

 

for any 𝑌 ∈ Γ(𝑇𝑀), where 𝜇(𝑌) = ℎ(𝑌, 𝜉) and 𝜇∗(𝑌) = ℎ(𝑌, 𝜉∗). Using (1), (15) and (16), we 

find the following relations: 

 

ℎ(𝜑𝑌𝑎, 𝑌𝑏) = ℎ(𝑌𝑎, 𝜑∗𝑌𝑏),                                                                                                                  (17) 

ℎ(𝜑𝑌𝑎, 𝜑𝑌𝑏) = ℎ(𝑌𝑎, 𝑌𝑏) − 𝜇∗(𝑌𝑎)𝜇(𝑌𝑏),                                                                                       (18) 

𝜑2𝑌𝑎 = 𝑋 − 𝜇∗(𝑌𝑎)𝜉,                                                                                                                           (19) 

𝜂∗(𝜑𝑌𝑎) = 𝜇(𝜑∗𝑌𝑎) = 0,                                                                                                                    (20) 

(𝜑∗)2𝑌𝑎 = 𝑌𝑎 − 𝜇(𝑌𝑎)𝜉∗.                                                                                                                    (21) 

 

The Gauss and Weingarten formulas are indicated by 

 

𝐷̃𝑌𝑎
𝑌𝑏 = 𝐷𝑌𝑎

𝑌𝑏 + ℎ(𝐴𝑁
∗ 𝑌𝑎, 𝑌𝑏)𝑁,                                                                                                       (22) 

𝐷̃𝑌𝑎
𝑁 = −𝐴𝑁𝑌𝑎 + 𝜅(𝑌𝑎)𝑁,                                                                                                                 (23) 

𝐷̃𝑌𝑎

∗ 𝑌𝑏 = 𝐷𝑌𝑎

∗ 𝑌𝑏 + ℎ(𝐴𝑁𝑌𝑎, 𝑌𝑏)𝑁,                                                                                                       (24) 

𝐷̃𝑌𝑎

∗ 𝑁 = −𝐴𝑁
∗ 𝑌𝑎 − 𝜅(𝑌𝑎)𝑁,                                                                                                                 (25) 

 

where 𝐷𝑌𝑎
𝑌𝑏, 𝐷𝑌𝑎

∗ 𝑌𝑏 ∈ Γ(𝑇𝑀),  𝐴𝑁, 𝐴𝑁
∗  are the shape operators with regard to 𝐷̃, 𝐷̃∗, respectively 

and 𝜅 is 1 −form. A tangential hypersurface is entitled to totally geodesic with regard to 𝐷̃ 

(resp. 𝐷̃∗) if 𝐴𝑁 = 0 (resp. 𝐴𝑁
∗ = 0), totally umbilical with regard to 𝐷̃ (resp. 𝐷̃∗)  if there exists 

a smooth function 𝜆 such that 𝐴𝑁𝑌𝑎 =  𝜆 𝑌𝑎 (resp. 𝐴𝑁
∗ 𝑌𝑎 =  𝜆 𝑌𝑎) holds [19]. 

 

The Gauss formulae of a statistical manifold is given by 

 

𝑅(𝑌𝑎, 𝑌𝑏)𝑌𝑐 = 𝑅̃(𝑌𝑎, 𝑌𝑏)𝑌𝑐 − ℎ(𝐴𝑁
∗ 𝑌𝑎, 𝑌𝑐)𝐴𝑁𝑌𝑏 + ℎ(𝐴𝑁

∗ 𝑌𝑏, 𝑌𝑐)𝐴𝑁𝑌𝑎.                                       (26) 

 

An almost product-like statistical manifold is said to have constant curvature 𝜐 if 
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𝑅̃(𝑌𝑎, 𝑌𝑏)𝑌𝑐 = 𝜐{ℎ ̃(𝑌𝑏, 𝑌𝑐)𝑌𝑎 − ℎ ̃(𝑌𝑎, 𝑌𝑐)𝑌𝑏 + ℎ ̃(𝑌𝑏, 𝐹𝑌𝑐)𝑌𝑎 − ℎ ̃(𝑌𝑎, 𝐹𝑌𝑐)𝑌2 + ℎ ̃(𝐹𝑌𝑎, 𝑌𝑏)𝐹𝑌𝑐

− ℎ ̃(𝑌𝑎, 𝐹𝑌𝑏)𝐹𝑌𝑐}                                                                                                      (27) 

 

and 

 

𝑅̃∗(𝑌𝑎, 𝑌𝑏)𝑌𝑐 = 𝜐{ℎ ̃(𝑌𝑏, 𝑌𝑐)𝑌𝑎 − ℎ ̃(𝑌𝑎, 𝑌𝑐)𝑌𝑏 + ℎ ̃(𝑌𝑏, 𝐹∗𝑌𝑐)𝑌𝑎 − ℎ ̃(𝑌𝑎, 𝐹∗𝑌𝑐)𝐹𝑌𝑏

+ ℎ ̃(𝐹∗𝑌𝑎, 𝑌𝑏)𝐹∗𝑌𝑐 − ℎ ̃(𝑌𝑎, 𝐹𝑌𝑏)𝐹∗𝑌𝑐}                                                                (28) 

 

are satisfied [19]. 

 

4. Sectional curvatures 
 

Let 𝑀̃(𝜐) be an almost product-like statistical manifold of constant curvature 𝜐 and let (𝑀, ℎ) 

be an 𝑛 −dimensional tangential hypersurface of 𝑀̃(𝜐). Consider an orthonormal basis 
{𝑍1, 𝑍2, … , 𝑍𝑛−1, 𝑋} such that we write 𝑋 = 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗ for some function 𝑎, 𝑏 defined on 

𝑀̃. In this case, we obtain the following orthogonal decomposition: 

 

𝑇𝑀 = 𝔻0 ⊕ 𝔻1,                                                                                                                                   (29) 

 

where 𝔻0 = 𝑠𝑝𝑎𝑛{𝑍1, 𝑍2, … , 𝑍𝑛−1} and 𝔻1 = 𝑠𝑝𝑎𝑛{𝑋}. Thus, we have 

 

[𝑎(𝑋)]2𝜇(𝜉) + 2𝑎(𝑋)𝑏(𝑋) + [𝑏(𝑋)]2𝜇∗(𝜉∗) = 1,                                                                       (30) 

 

𝜇∗(𝑋) =  𝑎(𝑋) + 𝑏(𝑋)𝜇∗(𝑋)𝜉∗,                                                                                                        (31) 

 

𝜇(𝑋) = 𝑎(𝑋)𝜇(𝜉) + 𝑏(𝑋).                                                                                                                 (32) 

 

Lemma 4.1 For any tangential hypersurface of 𝑀̃(𝜐), we have the following relations for each 

orthonormal vector fields 𝑌1, 𝑌2 ∈  Γ(𝔻0): 
 

ℎ ̃(𝑅̃(𝑌𝑎, 𝑌𝑏)𝑌𝑏, 𝑌𝑎) = 𝜐{1 + ℎ(𝜑𝑌𝑎, 𝑌𝑎)ℎ(𝜑𝑌𝑏, 𝑌𝑏) − 2ℎ2(𝜑∗𝑌𝑎, 𝑌𝑏) 

                                   +ℎ(𝜑𝑌𝑎, 𝑌𝑏)ℎ(𝜑∗𝑌𝑎, 𝑌𝑏)},                                                                           (33) 

 

ℎ ̃(𝑅̃∗(𝑌𝑎, 𝑌𝑏)𝑌𝑏, 𝑌𝑎) = 𝜐{1 + ℎ(𝜑∗𝑌𝑎, 𝑌𝑎)ℎ(𝜑∗𝑌𝑏, 𝑌𝑏) − 2ℎ2(𝜑𝑌𝑎, 𝑌𝑏) 

                                   +ℎ(𝜑𝑌𝑎, 𝑌𝑏)ℎ(𝜑∗𝑌𝑎, 𝑌𝑏)},                                                                           (34) 

 

ℎ ̃(𝑅̃(𝑌𝑎, 𝜉)𝜉, 𝑌𝑎) =  𝜐 𝜇(𝜉),                                                                                                               (35) 

 

ℎ ̃(𝑅̃(𝑌𝑎, 𝜉)𝜉∗, 𝑌𝑎) =  ℎ ̃(𝑅̃(𝑌𝑎, 𝜉∗)𝜉, 𝑌𝑎) =  𝜐,                                                                               (36) 

 

ℎ ̃(𝑅̃(𝑌𝑎, 𝜉∗)𝜉∗, 𝑌𝑎) = 𝜐𝜇∗(𝜉∗),                                                                                                          (37) 

 

ℎ ̃(𝑅̃∗(𝑌𝑎, 𝜉)𝜉, 𝑌𝑎) = 𝜐𝜇(𝜉),                                                                                                                (38) 

 

ℎ ̃(𝑅̃∗(𝑌𝑎, 𝜉∗)𝜉, 𝑌𝑎) = ℎ ̃(𝑅̃∗(𝑌1, 𝜉)𝜉∗, 𝑌𝑎) = 𝜐,                                                                              (39) 

 

ℎ ̃(𝑅̃∗(𝑌𝑎, 𝜉∗)𝜉∗, 𝑌𝑎) = 𝜐𝜇∗(𝜉∗).                                                                                                        (40) 
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Proof. Since 𝑀̃(𝜐) is an almost product-like statistical manifold of constant curvature 𝜐, we 

write 

 

ℎ ̃(𝑅̃(𝑌𝑎, 𝑌𝑏)𝑌𝑐, 𝑌𝑑) = 𝜐{ℎ ̃(𝑌𝑏, 𝑌𝑐)ℎ ̃(𝑌𝑎, 𝑌𝑑) − ℎ ̃(𝑌𝑎, 𝑌𝑐)ℎ ̃(𝑌𝑏, 𝑌𝑑) + ℎ ̃(𝑌𝑏, 𝐹𝑌𝑐)ℎ ̃(𝐹𝑌𝑎, 𝑌𝑑)        

                                      −ℎ ̃(𝑌𝑎, 𝐹 𝑌𝑐)ℎ ̃(𝐹𝑌𝑏, 𝑌𝑑) + ℎ ̃(𝐹𝑌𝑎, 𝑌𝑏)ℎ ̃(𝐹𝑌𝑐 , 𝑌𝑑) 

                                − ℎ̃(𝑌𝑎, 𝐹𝑌𝑏)ℎ ̃(𝐹𝑌𝑐 , 𝑌𝑑)}                                                                                 (41) 

 

and 

 

ℎ ̃(𝑅̃∗(𝑌𝑎, 𝑌𝑏)𝑌𝑐, 𝑌𝑑) = 𝜐{ℎ ̃(𝑌𝑏, 𝑌𝑐)ℎ ̃(𝑌𝑎, 𝑌𝑑) − ℎ ̃(𝑌𝑎, 𝑌𝑐)ℎ ̃(𝑌𝑏, 𝑌𝑑) + ℎ ̃(𝑌𝑏, 𝐹̃∗𝑌𝑐)ℎ ̃(𝐹̃∗𝑌𝑎, 𝑌𝑑)        

                                      −ℎ ̃(𝑌𝑎, 𝐹̃∗ 𝑌𝑐)ℎ ̃(𝐹̃∗𝑌𝑏, 𝑌𝑑) + ℎ ̃(𝐹̃∗𝑌𝑎, 𝑌𝑏)ℎ ̃(𝐹̃∗𝑌𝑐 , 𝑌𝑑) 

                                 − ℎ̃(𝑌𝑎, 𝐹̃∗𝑌𝑏)ℎ ̃(𝐹̃∗𝑌𝑐, 𝑌𝑑)}.                                                                          (42) 

 

By a straightforward computation, the proofs of (33)-(40) are easy to follow.  ∎ 

 

Theorem 4.2 For any tangential hypersurface,  

 

𝐾̃(𝜋) = 𝐾̃∗(𝜋) = 0 

 

is satisfied for any plane section 𝜋 spanned by a vector field Γ(𝔻0) and 𝜉 or 𝜉∗ if and only if 

𝜐 = 0. 

 

Lemma 4.3 For any tangential hypersurface of 𝑀̃(𝜐), we have the following relations for each 

unit vector fields 𝑋 ∈  Γ(𝔻1) and 𝑌 ∈  Γ(𝔻0): 
 

ℎ ̃(𝑅̃(𝑌, 𝑋)𝑋, 𝑌) =  𝜐,                                                                                                                           (44) 

 

ℎ ̃(𝑅̃∗(𝑌, 𝑋)𝑋, 𝑌) =  𝜐.                                                                                                                         (45) 

 

Proof. Putting 𝑌 instead of 𝑌1, 𝑌4 and 𝑋 instead of 𝑌2, 𝑌3 in (41), we have 

 

ℎ ̃(𝑅̃(𝑌, 𝑋)𝑋, 𝑌) = ℎ ̃(𝑅̃(𝑌, 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗)𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗, 𝑌) 

                            =  [𝑎(𝑋)]2ℎ ̃(𝑅̃(𝑌, 𝑋)𝑋, 𝑌) + 𝑎(𝑋)𝑏(𝑋)ℎ ̃(𝑅̃(𝑌, 𝜉)𝜉∗, 𝑌) 

                              +𝑎(𝑋) 𝑏(𝑋)ℎ ̃(𝑅̃(𝑌, 𝜉∗)𝜉, 𝑌) + [𝑏(𝑋)]2ℎ ̃(𝑅̃(𝑌, 𝜉∗)𝜉∗, 𝑌).                      (46) 

 

Substituting (33), (35), (36) and (37) into (46), we obtain (44). Writing 𝑌 instead of 𝑌𝑎, 𝑌𝑑 and 

𝑋 instead of 𝑌𝑏, 𝑌𝑐 in (42), we have 

 

ℎ ̃(𝑅̃∗(𝑌, 𝑋)𝑋, 𝑌) = ℎ ̃(𝑅̃∗(𝑌, 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗)𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗, 𝑌) 

                            =  [𝑎(𝑋)]2ℎ ̃(𝑅̃∗(𝑌, 𝑋)𝑋, 𝑌) + 𝑎(𝑋)𝑏(𝑋)ℎ ̃(𝑅̃∗(𝑌, 𝜉)𝜉∗, 𝑌) 

                              +𝑎(𝑋) 𝑏(𝑋)ℎ ̃(𝑅̃∗(𝑌, 𝜉∗)𝜉, 𝑌) + [𝑏(𝑋)]2ℎ ̃(𝑅̃∗(𝑌, 𝜉∗)𝜉∗, 𝑌).                   (47) 

 

From (30) and substituting (4), (38), (39) and (40) into (47), we obtain (45).   ∎ 

 

From Lemma 4.3, we find 

 

Theorem 4.4 For any tangential hypersurface, we have 
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𝐾̃(𝜋) = 𝐾̃∗(𝜋)                                                                                                                                       (48) 

 

for any plane section 𝜋 spanned by unit vector fields 𝑋 ∈  Γ(𝔻1) and 𝑌 ∈  Γ(𝔻0). 
 

Let 𝜋 = 𝑠𝑝𝑎𝑛{𝑍1, 𝑍2} be a two-dimensional orthonormal plane section of Γ(TM). The 𝐾 − 

sectional curvature is defined by [35] 

 

𝐾̃𝑠(𝜋) =
1

2
{ℎ ̃(𝑅̃(𝑍1, 𝑍2)𝑍2, 𝑍1) + ℎ ̃(𝑅̃∗(𝑍1, 𝑍2)𝑍2, 𝑍1) − ℎ ̃(𝑅̃0(𝑍1, 𝑍2)𝑍2, 𝑍1)}.              (49) 

 

We note that 𝐾̃𝑠 is symmetric and independent of choosing linearly independent vector fields 

on plane section 𝜋. 

 

Theorem 4.5 For any tangential hypersurface (𝑀, ℎ) of 𝑀̃(𝜐), the following relations are 

satisfied: 

 

𝐾̃𝑠(𝜋0) + 𝐾̃0(𝜋0) = 𝜐{1 + ℎ(𝜑𝑌𝑎, 𝑌𝑎)ℎ(𝜑𝑌𝑏, 𝑌𝑏) − ℎ2(𝜑𝑌𝑎, 𝑌𝑏) − ℎ2(𝜑∗𝑌𝑎, 𝑌𝑏) 

                                  ℎ(𝜑𝑌𝑎, 𝑌𝑏) + ℎ(𝜑∗𝑌𝑎, 𝑌𝑏)},                                                                          (50) 

 

where 𝜋0 = 𝑠𝑝𝑎𝑛{𝑌𝑎, 𝑌𝑏} for any 𝑌𝑎, 𝑌𝑏 ∈  Γ(𝔻0) and 𝐾̃0(𝜋0) indicates the sectional curvature 

of 𝜋0. 

 

Proof. In view of (33), (34) and (49), it follows that 

 

𝐾̃𝑠(𝜋0) =
𝜐

2
{1 + ℎ(𝜑𝑌𝑎, 𝑌𝑎)ℎ(𝜑𝑌𝑏, 𝑌𝑏) − 2 ℎ2(𝜑∗𝑌𝑎, 𝑌𝑏) + ℎ(𝜑𝑌𝑎, 𝑌𝑏)ℎ(𝜑∗𝑌𝑎, 𝑌𝑏)} 

     +
𝜐

2
{1 + ℎ(𝜑∗𝑌𝑎, 𝑌𝑎)ℎ(𝜑∗𝑌𝑏, 𝑌𝑏) − 2 ℎ2(𝜑𝑌𝑎, 𝑌𝑏) + ℎ(𝜑𝑌𝑎, 𝑌𝑏)ℎ(𝜑∗𝑌𝑎, 𝑌𝑏)} 

                  −ℎ ̃(𝑅̃0(𝑍1, 𝑍2)𝑍2, 𝑍1), 
 

which is in equivalent to (50).   ∎ 

 

Theorem 4.6 For any tangential hypersurface (𝑀, ℎ) of 𝑀̃(𝜐), the following relations are 

satisfied: 

 

𝐾̃𝑠(𝜋1) + 𝐾̃0(𝜋1) = 𝜐,                                                                                                                        (51) 

 

where 𝜋1 = 𝑠𝑝𝑎𝑛{𝑋, 𝜉} for any 𝑋 ∈  Γ(𝔻1) and 𝐾̃0(𝜋1) indicates the sectional curvature of 𝜋1. 

 

Proof.  The proof of (51) is straightforward based on (44), (45) and (49).   ∎ 

 

Theorem 4.7 Let (𝑀, ℎ) be a tangential hypersurface of  𝑀̃(𝜐) and let 𝜋 be a plane section 

spanned by 𝜉 and 𝜉∗ .Then, we have the following situations: 

 

i. 𝐾̃𝑠(𝜋) + 𝐾̃0(𝜋) > 0 if and only if 𝜐 > 0. 
ii. 𝐾̃𝑠(𝜋) + 𝐾̃0(𝜋) = 0 if and only if 𝑣 = 0. 
iii. 𝐾̃𝑠(𝜋) + 𝐾̃0(𝜋) < 0 if and only if 𝜐 < 0. 

 

Proof. Substituting 𝑎 = 0 and 𝑏 = 1 into (51), we find 
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𝐾̃𝑠(𝜋) + 𝐾̃0(𝜋) = 𝜐𝜇∗(𝜉∗). 
 

The proof is easy to obtain because 𝜇∗(𝜉∗) > 0.   ∎ 

 

It is known that a space form with constant curvature 𝐾̃0 is isometric to 

 

i. the Euclidean space if 𝐾̃0 = 0, 

ii. a sphere if 𝐾̃0 > 0, 

iii. the hyperbolic space if 𝐾̃0 < 0. 
 

As a result of Theorem 4.7, we get 

 

Corollary 4.8 Let (𝑀, ℎ) be a tangential hypersurface of a Hessian manifold. Then, we have 

 

i. 𝐾̃𝑠(𝜋) > 0 if and only if (𝑀, ℎ) is a hypersurface of the hyperbolic space. 

ii. (𝑀, ℎ) is a hypersurface of the Euclidean space. 

iii. (𝑀, ℎ) is a hypersurface of the sphere. 

 

5. Ricci curvatures of tangential hypersurfaces 

 

We begin this section with recalling sub-plane sections of Ricci curvatures of (𝑀̃, ℎ,̃  𝐷,̃ 𝐹). 

 

Let dim 𝑀̃ = 𝑛 + 1 and  𝜋𝑙 be an 𝑙 − dimensional subsection of Γ(T𝑀̃). Suppose that 

{𝑍1, 𝑍2, … , 𝑍𝑙}  is an orthonormal basis of 𝜋𝑙 . Then, the Ricci curvature of 𝜋𝑙 is defined as [2] 

 

𝑅𝑖𝑐̃𝜋𝑙
0 (𝑍𝑚) = ∑ 𝐾̃𝑚𝑗

0

𝑙

𝑗≠𝑚

.                                                                                                                        (52) 

 

Inspired by this definition, we write 

 

𝑅𝑖𝑐̃𝜋𝑙
(𝑍𝑚) = ∑ ℎ ̃(𝑅̃(𝑍𝑚, 𝑍𝑗)𝑍𝑗 , 𝑍𝑚),

𝑙

𝑗=1

                                                                                           (53) 

 

𝑅𝑖𝑐̃𝜋𝑙
∗ (𝑍𝑚) = ∑ ℎ ̃(𝑅̃∗(𝑍𝑚, 𝑍𝑗)𝑍𝑗 , 𝑍𝑚) 

𝑙

𝑗=1

                                                                                         (54) 

 

and 

 

𝑅𝑖𝑐̃𝜋𝑙
𝑠 (𝑍𝑚) = ∑ 𝐾̃𝑚𝑗

𝑠

𝑙

𝑗=1

.                                                                                                                         (55) 

 

We call 𝑅𝑖𝑐̃𝜋𝑙
𝑠  the 𝑠 −Ricci curvature of 𝜋𝑙. For 𝑙 = 𝑛,  𝜋𝑙 = 𝑇𝑝𝑀 for 𝑝 ∈ 𝑀 and 
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𝑅𝑖𝑐̃𝑇𝑝𝑀
0 (𝑍𝑚) = ∑ 𝐾̃𝑚𝑗

0

𝑛

𝑗≠𝑚

,                                                                                                                     (56) 

𝑅𝑖𝑐̃𝑇𝑝𝑀(𝑍𝑚) = ∑ ℎ ̃(𝑅̃(𝑍𝑚, 𝑍𝑗)𝑍𝑗 , 𝑍𝑚),

𝑛

𝑗=1

                                                                                        (57) 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
∗ (𝑍𝑚) = ∑ ℎ ̃(𝑅̃∗(𝑍𝑚, 𝑍𝑗)𝑍𝑗 , 𝑍𝑚) 

𝑛

𝑗=1

                                                                                      (58) 

 

and 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
𝑠 (𝑍𝑚) = ∑ 𝐾̃𝑚𝑗

𝑠 .

𝑛

𝑗=1

                                                                                                                      (59) 

 

We call 𝑅𝑖𝑐̃𝑇𝑝𝑀
𝑠  the 𝑠 −Ricci curvature of 𝑇𝑝𝑀. 

 

Lemma 5.1 For any tangential hypersurface of 𝑀̃(𝜐), we have the following relations: 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀(𝑌𝑎) = 𝜐{𝑛 + 1 + ℎ(𝜑𝑌𝑎, 𝑌𝑎)[𝑡𝑟𝑎𝑐𝑒 𝜑 − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝜉∗, 𝜉)] − 2‖𝜑∗𝑌𝑎‖4 

                       −2[𝑎(𝑋)]2ℎ2(𝜑∗𝑌𝑎, 𝜉∗) − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝑌𝑎, 𝜉)ℎ(𝜑∗𝑌1𝑎, 𝜉∗)},                        (60) 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
∗ (𝑌𝑎) = 𝜐{𝑛 + 1 + ℎ(𝜑∗𝑌𝑎, 𝑌𝑎)[𝑡𝑟𝑎𝑐𝑒 𝜑∗ − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑∗𝜉, 𝜉∗)] − 2‖𝜑𝑌𝑎‖4 

                       −2[𝑎(𝑋)]2ℎ2(𝜑𝑌𝑎, 𝜉) − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝑌𝑎, 𝜉)ℎ(𝜑∗𝑌𝑎, 𝜉∗)},                              (61) 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀(𝑋) = 𝜐 {𝑛 − 1 + ∑ ℎ(𝜑𝑍𝑗 , 𝑍𝑗)ℎ(𝜑𝜉∗, 𝜉)

𝑛−1

𝑗=1

+ ∑ ℎ(𝜑∗𝑍𝑗 , 𝜉∗)ℎ(𝜑∗𝜉, 𝑍𝑗)

𝑛−1

𝑗=1

 

                       +[𝑎(𝑋)]2 ∑ ℎ(𝜑∗𝑍𝑗 , 𝜉)ℎ(𝜑𝑍𝑗 , 𝜉) − 2[𝑎(𝑋)]2 ∑ ℎ2(𝜑𝑍𝑗 , 𝜉)

𝑛−1

𝑗=1

𝑛−1

𝑗=1

},                     (62) 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
∗ (𝑋) = 𝜐 {𝑛 − 1 + ∑ ℎ(𝜑∗𝑍𝑗 , 𝑍𝑗)ℎ(𝜑∗𝜉, 𝜉)

𝑛−1

𝑗=1

+ ∑ ℎ(𝜑𝑍𝑗 , 𝜉)ℎ(𝜑𝜉∗, 𝑍𝑗)

𝑛−1

𝑗=1

 

                       +[𝑎(𝑋)]2 ∑ ℎ(𝜑∗𝑍𝑗 , 𝜉)ℎ(𝜑𝑍𝑗 , 𝜉) − 2[𝑎(𝑋)]2 ∑ ℎ2(𝜑∗𝑍𝑗 , 𝜉)

𝑛−1

𝑗=1

𝑛−1

𝑗=1

}                    (63) 

 

for each unit vector fields 𝑌1 ∈  Γ(𝔻0) and 𝑋 ∈  Γ(𝔻1). 
 

Proof. Let {𝑍1, 𝑍2, … , 𝑍𝑛−1} be an orthonormal frame field of Γ(𝑇𝑀). From (33), (44) and (57), 

we have 
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𝑅𝑖𝑐̃𝑇𝑝𝑀(𝑍1)     = ∑ ℎ ̃(𝑅̃(𝑍1, 𝑍𝑗)𝑍𝑗 , 𝑍1) + ℎ ̃(𝑅̃(𝑍1, 𝑋)𝑋, 𝑍1)

𝑛−1

𝑗=1

= ∑ 𝜐{2 + ℎ(𝜑𝑍1, 𝑍1)ℎ(𝜑𝑍𝑗 , 𝑍𝑗) − 2ℎ2(𝜑∗𝑍1, 𝑍𝑗) + ℎ(𝜑𝑍1, 𝑍𝑗)ℎ(𝜑∗𝑍1, 𝑍𝑗)}

𝑛−1

𝑗=1

 

                          = 𝜐 {2(𝑛 − 1) + ∑ ℎ(𝜑𝑍1, 𝑍1)ℎ(𝜑𝑍𝑗 , 𝑍𝑗) − 2 ∑ ℎ2(𝜑∗𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

𝑛−1

𝑗=1

                

+ ∑ ℎ(𝜑𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

ℎ(𝜑∗𝑍1, 𝑍𝑗)}.                                                                             (64) 

 

Since 

 

∑ ℎ(𝜑𝑍1, 𝑍𝑗) = ∑ ℎ(𝜑𝑍𝑗 , 𝑍𝑗) + ℎ(𝜑𝑋, 𝑋) −

𝑛−1

𝑗=1

𝑛−1

𝑗=1

ℎ(𝜑𝑋, 𝑋) 

 

         ℎ(𝜑𝑋, 𝑋) = ℎ(𝜑(𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗), 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗) 

                           = 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝜉∗, 𝜉), 
 

we have 

 

∑ ℎ(𝜑𝑍𝑗 , 𝑍𝑗) = 𝑡𝑟𝑎𝑐𝑒 𝜑 − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝜉∗, 𝜉).                                                                        (65)

𝑛−1

𝑗=1

 

 

Furthermore, we have 

 

∑ ℎ(𝜑∗𝑍1, 𝑍𝑗) =

𝑛−1

𝑗=1

∑ ℎ(𝜑∗𝑍1, 𝑍𝑗) + ℎ(𝜑∗𝑍1, 𝑋) − ℎ(𝜑∗𝑍1, 𝑋),

𝑛−1

𝑗=1

 

 

ℎ(𝜑∗𝑍1, 𝑋) = ℎ(𝜑∗𝑍1, 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗) = 𝑏(𝑋)ℎ(𝜑∗𝑍1, 𝜉∗). 
 

From the above equations, we get 

 

∑ ℎ2(𝜑∗𝑍1, 𝑍𝑗) = ‖𝜑∗𝑍1‖4 − 𝑏2(𝑋)ℎ2(𝜑∗𝑍1, 𝜉∗),                                                                    (66)

𝑛−1

𝑗=1

 

 

∑ ℎ(𝜑𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

ℎ(𝜑∗𝑍1, 𝑍𝑗) = ∑ ℎ(𝜑𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

ℎ(𝜑∗𝑍1, 𝑍𝑗) + ℎ(𝜑𝑍1, 𝑋)ℎ(𝜑∗𝑍1, 𝑋) 

                                                         −ℎ(𝜑𝑍1, 𝑋)ℎ(𝜑∗𝑍1, 𝑋), 

 

ℎ(𝜑𝑍1, 𝑋)ℎ(𝜑∗𝑍1, 𝑋) = ℎ(𝜑𝑍1, 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗)ℎ(𝜑∗𝑍1, 𝑎(𝑋)𝜉 + 𝑏(𝑋)𝜉∗) 

                                    = 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝑍1, 𝜉) ℎ(𝜑∗𝑍1, 𝜉∗), 
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∑ ℎ(𝜑𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

ℎ(𝜑∗𝑍1, 𝑍𝑗) = 1 − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝑍1, 𝜉)ℎ(𝜑∗𝑍1, 𝜉∗).                                       (67) 

 

By considering (65), (66) and (67) in (64), we find (60). The proofs of (61), (62) and (63) can 

be obtained using a similar proof technique of (60).   ∎ 

 

Lemma 5.2 For any tangential hypersurface of 𝑀̃(𝜐), we have 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
𝑠 (𝑍1) = 𝜐{𝑛 + 1 +  ℎ(𝜑𝑍1, 𝑍1)[𝑡𝑟𝑎𝑐𝑒 𝜑 − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝜉∗, 𝜉)] + ‖𝜑𝑍1‖4 

                        −[𝑏(𝑋)]2ℎ2(𝜑𝑍1, 𝜉) + ‖𝜑∗𝑍1‖4 − [𝑏(𝑋)]2ℎ2(𝜑∗𝑍1, 𝜉) 

                        −𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝑍1, 𝜉)ℎ(𝜑∗𝑍1, 𝜉∗)}.                                                                      (68) 

 

Proof. From (56) and (59), it follows that 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
𝑠 (𝑍1) = ∑ 𝐾̃1𝑗

𝑠 + 𝐾̃(𝑍1, 𝑋)

𝑛−1

𝑗=1

= 𝜐 {𝑛 + ∑  ℎ(𝜑𝑍1, 𝑍1) ℎ(𝜑𝑍𝑗 , 𝑍𝑗)

𝑛−1

𝑗=1

+ ∑ ℎ2(𝜑𝑍1, 𝑍𝑗) + ∑ ℎ2(𝜑∗𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

𝑛−1

𝑗=1

= ∑  ℎ(𝜑𝑍1, 𝑍𝑗) ℎ(𝜑∗𝑍1, 𝑍𝑗)

𝑛−1

𝑗=1

} − 𝑅𝑖𝑐̃𝑇𝑝𝑀
0 (𝑍1).                                                 (69) 

         

Using a technique similar to that of Lemma 5.1, the proof of (68) is straightforward.  ∎ 

 

Theorem 5.3 Let (𝑀, ℎ) be an 𝑛 −dimensional hypersurface of 𝑀̃(𝜐), we have 

 

𝑅𝑖𝑐0(𝑌𝑎) ≤
1

4
𝑛2‖𝐻‖2 + 𝜐{𝑛 + 1 + ℎ(𝜑𝑌𝑎, 𝑌𝑎)[𝑡𝑟𝑎𝑐𝑒 𝜑 − 𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝜉∗, 𝜉)] + ‖𝜑𝑌𝑎‖4 

                   −[𝑏(𝑋)]2ℎ2(𝜑𝑌𝑎, 𝜉) + ‖𝜑∗𝑌𝑎‖4 − [𝑏(𝑋)]2ℎ2(𝜑∗𝑌𝑎, 𝜉) 

                   −𝑎(𝑋)𝑏(𝑋)ℎ(𝜑𝑌𝑎, 𝜉)ℎ(𝜑∗𝑌𝑎, 𝜉∗)}                                                                              (70) 

 

for each unit vector field 𝑌𝑎 ∈ Γ(𝔻0). The equality case (70) is satisfied for each unit vector 

field 𝑌𝑎 ∈ Γ(𝔻0) if and only if 𝑀 is 𝔻0 −geodesic or 𝑛 = 2 and 𝑀 is 𝔻0 −totally umbilical. 

 

Proof. Using (68) in (7), (70) is satisfied for any 𝑌𝑎 ∈ Γ(𝔻0). In the equality case, we obtain 

from Theorem 2.1 (Chen-Ricci inequality) that 𝐴𝑁
0 = 0 on 𝔻0 or there is a smooth function 𝜆 

such that 𝐴𝑁
0 𝑌𝑎 = 𝜆𝑌𝑎. This completes the proof.   ∎ 

 

Lemma 5.4 For any tangential hypersurface of 𝑀̃(𝜐), we have for each unit vector field 𝑋 ∈
Γ(𝔻1) that 

 

𝑅𝑖𝑐̃𝑇𝑝𝑀
𝑠 (𝑋) + 𝑅𝑖𝑐̃𝑇𝑝𝑀

0 (𝑋) = (𝑛 − 1)𝜐.                                                                                              (71) 

 

Theorem 5.5 Let (𝑀, 𝑔) be an 𝑛 −dimensional hypersurface of 𝑀̃(𝜐), we have 
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𝑅𝑖𝑐0(𝑋) ≤
1

4
𝑛2‖𝐻‖2 + (𝑛 − 1)𝜐 − 𝑅𝑖𝑐̃𝑇𝑝𝑀

𝑠 (𝑋)                                                                           (72) 

 

for each unit vector field 𝑋 ∈ Γ(𝔻1). The equality case of (72) is satisfied for each unit vector 

field 𝑋 ∈ Γ(𝔻1) ⇔ 𝑀 is 𝔻1 −geodesic or 𝑛 = 2 and 𝑀 is 𝔻1 −totally umbilical. 

 

Proof. From (71) in (7), we find (72) is satisfied for any 𝑋 ∈ Γ(𝔻1). From Theorem 2.1 (Chen-

Ricci inequality), we obtain 𝐴𝑁
0 = 0 on 𝔻1 or 𝑛 = 2 and there is a smooth function 𝜆 such that 

𝐴𝑁
0 𝑋 = 𝜆 𝑋. This completes the proof.   ∎ 

 

Corollary 5.6 Let (𝑀, 𝑔) be an 𝑛 −dimensional hypersurface of a Hessian manifold. Then, we 

have 

 

𝑅𝑖𝑐0(𝑋) ≤
1

4
𝑛2‖𝐻‖2 − 𝑅𝑖𝑐̃𝑇𝑝𝑀

𝑠 (𝑋)                                                                                                 (73) 

 

for each unit vector field 𝑋 ∈ Γ(𝔻1). The equality case of (73) is satisfied for each unit vector 

field  𝑋 ∈ Γ(𝔻1)  ⇔ 𝑀 is 𝔻1 −geodesic or 𝑛 = 2 and 𝑀 is 𝔻1 −totally umbilical. 

 

Corollary 5.7 Let (𝑀, 𝑔) be an 𝑛 −dimensional minimal hypersurface of a Hessian manifold. 

Then, we have 

 

𝑅𝑖𝑐0(𝑋) ≥ 𝑅𝑖𝑐̃𝑇𝑝𝑀
𝑠 (𝑋)                                                                                                                         (74) 

 

for each unit vector field 𝑋 ∈ Γ(𝔻1). The equality case of (74) is satisfied for each unit vector 

field 𝑋 ∈ Γ(𝔻1)  ⇔ 𝑀 is 𝔻1 −geodesic or 𝑛 = 2 and 𝑀 is 𝔻1 −totally umbilical. 
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