
KSÜ Tarım ve Doğa Derg 27 (Ek Sayı 1), 243-253, 2024 

KSU J. Agric Nat  27 (Suppl 1), 243-253, 2024 

https://doi.org/10.18016/ksutarimdoga.vi.1486797 

 

 

 

 

Comparative Analysis of CNN Algorithms for Mushroom Classification with Proposed 

Lightweight CNN Model 
 

Ahmet NAMLI1, Didem ÖLÇER2  
1,2 Department of Computer Engineering, Faculty of Engineering, Ankara, Türkiye 
1https://orcid.org/0000-0002-4649-3299, 2https://orcid.org/0000-0001-7736-1021 

: ahmetnamlics@gmail.com 

 

ABSTRACT  

The classification of mushroom species presents significant ecologic and 

health-related challenges; advancement in classification techniques is 

required to gain reliable identifications. This study aims to explain a 

methodology that was devised and evaluated in the development of a 

novel, lightweight Convolutional Neural Network (CNN) designed 

specifically for the task of mushroom classification. The paper provides a 

custom CNN model that is computationally cost-effective and capable of 

high-precision classification, fit for real-time usage. Hence, the proposed 

model was evaluated on this dataset of curated mushroom images with 

traditional classifiers and state-of-the-art CNN architectures, such as 

EfficientNet-B7, ResNet50, InceptionV3, and MobileNetV2. The custom 

model is depth-wise separations engineered in such a way that while they 

reduce the computational load, they don't compromise the effectiveness 

of the model. The custom model achieved a test score of 0.68, which is 

moderate compared to more established models such as EfficientNet-B7 

or ResNet50. This approach helps the model function effectively even on 

platforms having low computational resources. A comprehensive 

evaluation reveals that a custom CNN has reasonable accuracy in the 

identification of different mushroom species vis-à-vis existing models, but 

also significantly lightens the classification process.  
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CNN Algoritmalarının Mantar Sınıflandırmada Önerilen Hafif CNN Modeli ile Karşılaştırmalı Analizi 
 

ÖZET 

Mantar türlerinin sınıflandırılması, ekolojik ve sağlıkla ilgili önemli 

zorluklar ortaya koymaktadır; güvenilir tanımlamalar elde etmek için 

sınıflandırma tekniklerinde ilerleme kaydedilmesi gerekmektedir. Bu 

çalışma, mantar sınıflandırma görevi için özel olarak tasarlanmış yeni, 

hafif bir Evrişimsel Sinir Ağının (CNN) geliştirilmesi üzere tasarlanan 

ve değerlendirilen bir metodolojiyi açıklamayı amaçlamaktadır. Makale, 

hesaplama açısından uygun maliyetli ve yüksek hassasiyetli 

sınıflandırma yapabilen, gerçek zamanlı kullanıma uygun özel bir CNN 

modeli sunmaktadır. Bu nedenle, önerilen model, geleneksel 

sınıflandırıcılar ve EfficientNet-B7, ResNet50, InceptionV3 ve 

MobileNetV2 gibi son teknoloji CNN mimarileri ile mantar 

görüntülerinden oluşan bu veri kümesi üzerinde değerlendirilmiştir. 

Özel modelin, hesaplama karmaşıklığını azaltırken modelin 

etkinliğinden ve yeteneğinden ödün vermeyecek şekilde tasarlanmasına 

özen gösterilmiştir. Özel model, EfficientNet-B7 veya ResNet50 gibi daha 

yerleşik modellerle karşılaştırıldığında orta düzeyde bir değer olan 

0,68'lik bir test puanı elde etti. Bu yaklaşım, modelin düşük hesaplama 

kaynaklarına sahip platformlarda bile etkili bir şekilde çalışmasına 

yardımcı olur. Kapsamlı bir değerlendirme, tasarlanan CNN'in yalnızca 

mevcut modellere kıyasla farklı mantar türlerinin tanımlanmasında 

makul bir doğruluğa sahip olduğunu değil, aynı zamanda sınıflandırma 

sürecini de önemli ölçüde hafiflettiğini ortaya koymaktadır. 
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INTRODUCTION 

A mushroom is the edible reproductive structure of 

various types of fungi that are attached to 

basidiomycetes and grow on the surface of the ground. 

Fungi are a diverse and integral part of ecological 

systems, closely linked to living beings (Hibbett et al., 

2007; Liu et al., 2016; Wang, 2022; Zahan et al., 2021; 

Zhang et al., 2021). The presence of diverse fungi is 

essential for comprehending these organisms’ complex 

nature and importance in our ecosystems. Although 

there have been recent advancements in the 

identification of fungal species, only a small fraction, 

specifically 5%, of the estimated 3.8 million fungal 

species have been identified (Hawksworth & Lücking, 

2017). Approximately 14,000 (Zahan et al., 2021) - 

19,000 (Hawksworth & Lücking, 2017) mushroom 

species have been identified, while experts concur that 

there are still several undiscovered species. The 

delicate balance between edible and poisonous 

mushrooms emphasizes the significance of meticulous 

species identification. While certain edible mushrooms 

may not possess a pleasant taste, there exist 

compelling reasons to consume them. These reasons 

include the fact that edible mushrooms possess notable 

advantages, such as their ability to eradicate cancer 

cells, combat infections, and enhance the human 

immune system. In addition, mushrooms are 

exceptionally nourishing, serving as a valuable protein 

source, containing few calories and unsaturated fats, 

and offering a substantial supply of vitamins and iron 

(Ria et al., 2021). Edible mushrooms are favored for 

their delectable flavor and abundant nutritional 

content. Mushrooms are a common dietary source that 

is rich in protein and low in fat (Dan, 2020; Yan et al., 

2023; Yu et al., 2020). Therefore, mushrooms provide a 

more nutritious substitute for conventional sources of 

protein. The therapeutic potential of mushrooms 

highlights their usefulness beyond their nutritional 

composition. Moreover, due to a lack of awareness 

regarding toxic mushrooms, a significant number of 

individuals perish as a result of consuming them. This 

highlights the necessity for enhanced public knowledge 

and education regarding mushroom species. 

Presumably, mushrooms with flawless cellular 

structure, vibrant colors, and no interaction with birds 

and insects are toxic (Zahan et al., 2021). When 

discussing the hazards of eating mushrooms, it is 

crucial to emphasize the problems linked to poisonous 

species. The distinctive morphological characteristics 

of poisonous mushrooms include vibrant and colorful 

scales on the cap and a ring-shaped structure beneath 

the top. Novice gatherers are prone to committing 

errors. Toxic mushrooms have a detrimental impact on 

the neurological system, perhaps resulting in fatalities 

when ingested in large amounts (Ketwongsa et al., 

2022; Zahan et al., 2021). Therefore, precise 

identification is essential for ensuring safety. 

Performing biochemical tests and interpreting 

morphological traits might be challenging for non-

specialists in everyday life. These issues require the 

creation of identifying systems that are easier for users 

to understand and utilize. Consequently, numerous 

researchers have dedicated their efforts to developing 

various models and methodologies (Tutuncu et al., 

2022). These endeavors are a reaction to the increasing 

demand for easily accessible resources for identifying 

mushrooms. 

The majority of the existing articles on the 

categorization of wild mushrooms employ machine 

learning (ML) techniques. These strategies offer a 

more easily understood and attainable method for 

identifying mushrooms. The literature employs many 

ML techniques, such as decision trees, simple 

Bayesian, AdaBoost, and support vector machine 

(SVM) methods (Tutuncu et al., 2022). Each of these 

strategies possesses unique advantages and 

constraints. Nevertheless, these techniques depend on 

manually labeled features, and the algorithm acquires 

knowledge about the labeled wild mushroom data 

rather than the gathered visual data for classification 

(Peng et al., 2023). The reliance on manual labeling is 

a constraint that could be overcome by employing more 

sophisticated methods, such as deep learning DL. The 

wide-ranging applications exemplify the extensive 

influence of DL. DL techniques offer notable benefits 

in the field of pattern recognition because they can 

extract the most useful information from complex and 

multidimensional data. For this reason, it is especially 

pertinent when it comes to identifying mushrooms. 

Possessing this skill is essential for precisely 

discerning the species of mushrooms. 

Several studies have utilized artificial intelligence to 

analyze the features of mushrooms and create models 

that aid consumers in identifying various mushroom 

species and preventing mushroom poisoning. 

Tarawneh et al. (Tarawneh et al., 2023) developed an 

innovative model that integrates Decision Trees, Naive 

Bayes, and SVM to distinguish between edible and 

poisonous mushrooms, achieving an impressive 

accuracy of 94%. This integrated approach leverages 

the strengths of individual ML algorithms to 

synthesize a more reliable decision framework, 
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utilizing the UCI Mushroom Dataset to validate its 

efficacy. Similarly, Tutuncu et al. (2022) employed a 

combination of Decision Tree, Naïve Bayes, SVM, and 

AdaBoost algorithms, with AdaBoost achieving %100 

classification accuracy. This study underscores the 

potential of ensemble methods in enhancing the 

predictive capabilities of ML models, particularly in 

applications where public health is at stake. The study 

of Ria et al. (2021) further illustrates the role of neural 

networks in mushroom classification. By reviewing 

various supervised learning approaches (Ma et al., 

2020), including Random Forest and K-Nearest 

Neighbour alongside artificial neural network (ANN), 

the study highlights ANN's superior ability to manage 

complex data patterns, thereby enhancing 

classification processes. 

In an innovative shift towards deep learning, Peng et 

al. (2023) proposed a multidimensional feature fusion 

attention network that combines the strengths of 

CNNs and Vision Transformers. This approach, 

validated on two comprehensive datasets, showcases 

superior accuracy and model robustness, setting a new 

benchmark in the field. Complementing these studies, 

Zhao et al. (2021) explored the use of an ensemble of 

CNNs through a bagging algorithm to improve 

classification accuracy. This research highlights a 

paradigm shift in biological classifications, 

emphasizing the transition towards DL models that 

are capable of handling complex image data and 

achieving high levels of accuracy. Wang (2022) utilized 

a Vision Transformer model for mushroom 

classification, achieving a remarkable 95.97% 

accuracy. This study not only marks a significant 

advancement in the application of transformer-based 

models but also demonstrates their effectiveness in 

reducing intraclass variability and enhancing feature 

discrimination. Additionally, Zahan et al. (2021) 

demonstrated the efficacy of CNNs in recognizing 

complex patterns inherent in biological entities, 

including fungi. They employed InceptionV3, VGG16, 

and ResNet50 models to classify mushrooms, 

showcasing InceptionV3's superior performance on a 

contrast-enhanced dataset, thus highlighting the 

importance of preprocessing techniques and 

architectural choices. Long et al. (2023) developed an 

advanced ML model using the MobileViT architecture, 

optimized for efficiency and accuracy in mobile 

applications. This research addresses the challenge of 

large variance within mushroom classes by 

implementing an innovative separable self-attention 

mechanism, resulting in improved computational 

efficiency and classification accuracy. 

These collective efforts in applying ML and DL models 

to mushroom classification not only advance our 

understanding of fungal biodiversity but also 

significantly contribute to public health by improving 

the accuracy and reliability of identifying edible and 

poisonous mushrooms. The ongoing development of 

these technologies promises further enhancements in 

food safety and ecological research, underpinning the 

critical role of interdisciplinary approaches in modern 

scientific inquiries. 

The widespread adoption of ML techniques has led to 

the development of numerous applications across 

various domains. ML algorithms can independently 

acquire real-world knowledge by emulating human 

learning processes, making them useful in various 

fields (Portugal et al., 2018). In agriculture, ML 

approaches have been used for different areas (Boyacı 

et al., 2023; Karadaş&Bulut, 2024). ML approaches 

have been primarily used to categorize mushrooms 

(Kamilaris & Prenafeta-Boldú, 2018), but many 

methods require extensive training and testing, 

leading to limited precision. Previous studies have 

explored ML strategies like Decision Trees, Naïve 

Bayes, AdaBoost, and SVMs, but these often rely on 

manually labeled features, which limits their 

generalizability to new datasets (Zhao et al., 2021). 

Additionally, complex models in CNNs require high 

processing power and hardware requirements, and 

there is a lack of research comparing the efficacy of 

commonly used models in mushroom classification. 

This study aims to achieve similar results using a more 

lightweight model to address these challenges and 

improve the effectiveness of ML in mushroom 

classification. 

The study presents a significant advancement in the 

use of CNNs for classifying mushrooms, focusing on 

the application of artificial intelligence (AI) in 

addressing biological classification issues. It creates a 

specialized CNN model to identify 11 specific 

mushroom species, enhancing the accuracy of species 

identification. The methodology used in the study 

provides a comprehensive framework for future 

research in related domains, offering a repeatable 

model for researchers interested in using ML 

techniques for mushroom classification. One of the 

contributions of the study is the comparison study 

between the custom CNN model and well-established 

models like EfficientNet-B7, ResNet50, InceptionV3, 

and MobileNetV2 enhances discussions on the efficacy 

of different neural network architectures in dealing 

with highly specialized classification tasks. The 

smaller size of the custom model results in a decreased 

computational load, which can significantly speed up 

the training and inference processes, especially on less 

powerful hardware. The study also addresses the 

problem of data imbalance when training ML models, 

emphasizing the importance of constructing a robust 

dataset and proposing techniques to improve data 

representation. The paper offers a basis for creating 

lightweight systems that can assist mycologists, 

ecologists, and the public in rapidly and precisely 

identifying mushroom species, promoting biodiversity 
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monitoring, and public safety. 
 

MATERIAL and METHOD 

The dataset (Zhecheng, 2023) used in this study 

consists of 7,767 photos, with each image representing 

one of 11 different mushroom species. The species are 

classified into the following categories: Lactarius, 

Russula, Boletus, Cortinarius, Amanita, Inocybe, 

Exidia, Entoloma, Agaricus, Hygrocybe, and Suillus. 

The dataset was thoroughly examined to identify 

authentic photos, excluding seven unsuitable files. 74 

exact duplicates and eight nearly identical pairs were 

identified. Quality control included removing blurry, 

dark, black-and-white, bright, and low-informational 

images. The dataset was filtered to 7,671 photos, a 

valuable resource for training machine learning 

models. Table 1 shows the class distributions of the 

images. 
 

Table 1. Number of samples from each mushroom 

species 

Çizelge 1. Her mantar türünden örnek sayısı 

Mushroom Species Number of Samples 

Lactarius 1498 

Russula 1141 

Boletus 1069 

Cortinarius 834 

Amanita 748 

Inocybe 611 

Exidia 432 

Entoloma 363 

Agaricus 351 

Hygrocybe 314 

Suillus 310 
 

Dataset Splits 

One often-used approach to assess the performance of 

these models is to divide the dataset into several 

subsets that are used for training, validation, and 

testing. The test set is not used throughout the model 

training process but is instead kept aside for a final 

evaluation. The approach was to assign 10% of the 

dataset for the testing phase which corresponds to 768 

images. The remaining 90% of the data is utilized for 

training and validating the model. However, 

employing a random data split into training and 

validation sets might result in notable issues, 

particularly when dealing with imbalanced datasets 

characterized by the underrepresentation of certain 

classes. To tackle this problem, the technique of 

Stratified K-Fold Cross-Validation is utilized. 
 

Dataset Pre-processing 

In that study, a methodological approach was adopted 

where image pre-processing steps were integral, 

utilizing specific functions associated with several 

well-established CNN models provided by the 

TensorFlow Keras applications module (Chollet, 2015; 

Abadi et al., 2015). These models included ResNet50, 

InceptionV3, EfficientNetB7, and MobileNetV2, each 

requiring tailored pre-processing to conform input 

images to the conditions that optimally match each 

model’s training environment. Additionally, the study 

introduced a novel CNN architecture for which, rather 

than developing a new pre-processing function, the 

‘preprocessing_input’ function which is meant to 

adequate your image to the format the model requires 

from ‘tensorflow.keras.applications.resnet50’ (Chollet, 

2015; Abadi et al., 2015)  was adopted. This choice not 

only facilitated consistency in handling input data but 

also strategically leveraged established pre-processing 

norms to ensure the robustness and reliability of the 

new model under test conditions. 
 

Methods 

In the realm of mushroom classification using CNNs, 

several well-known models have demonstrated 

substantial efficacy, including ResNet50 (He et al., 

2016), InceptionV3 (Szegedy et al., 2016), 

EfficientNetB7 (Tan & Le, 2019), and MobileNetV2 

(Sandler et al., 2018). These models, utilizing DL 

architectures, will be tested one by one in this study for 

their ability to handle the inherent complexity of 

identifying and classifying various mushroom species 

from images, and will be compared with the model 

subject to the study. 

In the process of fine-tuning various deep learning 

architectures such as ResNet50, InceptionV3, 

EfficientNetB7, and MobileNetV2 for a specific 

classification task with 11 output classes, several 

strategic modifications are implemented to adapt these 

models more effectively to the task. Initially, a 2D 

Global Average Pooling layer is introduced after the 

final convolutional layer of each model. This layer 

aggregates the features into a single 2D map per 

channel, effectively reducing the spatial dimensions 

and the complexity of the model while retaining 

essential spatial information. 

Following this dimensionality reduction, two fully 

connected Dense layers with 128 and 256 neurons are 

added respectively. Each of these layers employs a 

Rectified Linear Unit (ReLU) activation function to 

introduce non-linearity, enhancing the model's ability 

to capture and learn complex patterns from the data. 

To further improve the training dynamics and stabilize 

the learning process, batch normalization layers follow 

each dense layer. These layers normalize the inputs for 

each layer, centering the mean output close to zero and 

the standard deviation close to one, which helps in 

mitigating issues related to input variation sensitivity. 

To combat the risk of overfitting, a dropout layer 

follows each batch normalization step. During 

training, these dropout layers randomly nullify a 
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fraction of the input units, ensuring that the model 

does not overly depend on any specific neuron and 

thereby promoting a more generalized learning 

outcome. The culmination of this fine-tuning process is 

a final dense layer with 11 units, corresponding to the 

number of classification classes, which utilizes a 

softmax activation function to yield the probability 

distribution across the classes. 

These enhancements collectively tailor the original 

architectures of ResNet50, InceptionV3, 

EfficientNetB7, and MobileNetV2, optimizing them for 

improved performance on the dataset in question by 

effectively balancing complexity, computational 

efficiency, and generalization capability. 

Regarding the model constructed which is the focus of 

the study, in constructing the CNN described, the 

architecture is meticulously organized into sequential 

layers, each designed to handle specific 

transformations of the input data for effective feature 

learning and classification. The model adopts 10 

convolutional layers arranged in increasing complexity 

with filters ranging from 16 to 256. Each convolutional 

layer utilizes a (3, 3) kernel size and employs 'same' 

padding to ensure that the spatial dimensions of the 

output feature maps remain unchanged, thus 

preserving edge information across the network's 

depth. 

The activation function selected for this model is the 

Exponential Linear Unit (ELU), which presents 

several advantages over the commonly used ReLU. 

According to research by Clevert et al. (2016), ELU can 

help reduce the vanishing gradient problem common 

in deep neural networks by maintaining mean 

activations closer to zero, which facilitates a faster and 

more effective learning process. The ELU function is 

particularly effective in DL architectures as it allows 

for negative outputs, contributing to a more robust 

learning mechanism by adding slight perturbations to 

the activation map, thereby enhancing generalization. 

Weight initialization in this model is performed using 

the “He uniform” method, which is particularly suited 

to networks employing ELU activation functions. He et 

al. (2015) demonstrated that this initializer could 

significantly impact the network's ability to learn 

efficiently by maintaining the variance of activations 

throughout the layers. By initializing weights from a 

uniform distribution within a range derived from the 

number of input units, the “He uniform” initializer 

ensures that the gradient magnitudes are neither too 

small (causing vanishing gradients) nor too large 

(leading to exploding gradients), thus facilitating 

stable and rapid convergence during training. 

Batch normalization is applied consistently after each 

convolutional operation. This technique, as expounded 

by Ioffe and Szegedy (2015), normalizes the outputs of 

the previous layers by recalibrating the mean and 

variance. Such normalization stabilizes the learning 

process and allows for higher learning rates, reducing 

the model's training time significantly. Additionally, it 

provides a form of regularization, albeit indirectly, by 

smoothing the optimization landscape. 

Dropout is strategically incorporated at various stages 

within the network with rates determined through 

hyper-parameter tuning, which helps in identifying 

optimal values that prevent overfitting while allowing 

the network to retain a significant capacity for 

learning patterns in the data. Srivastava et al. (2014) 

first introduced this technique, demonstrating its 

effectiveness in reducing overfitting by randomly 

omitting subsets of features at each training stage, 

thereby compelling the network to learn more robust 

features. The varying dropout rates from 0.1 to 0.7 

reflect a targeted approach, with higher rates likely 

used in layers that are more prone to overfitting due to 

their complexity and capacity. 

The inclusion of pooling layers, specifically max 

pooling, serves to reduce the dimensionality of the 

feature maps, thus decreasing the computational load 

and the number of parameters in the network. This 

reduction not only speeds up the training process but 

also minimizes overfitting by abstracting the highest-

valued features from the preceding feature maps. 

Towards the end of the model, global average pooling 

is utilized to convert each feature map to a single 

value, effectively summarizing the spatial information, 

which is critical for maintaining the most relevant 

features for classification tasks. Following this, dense 

layers with ELU activation and additional dropout are 

employed to finalize the feature processing and lead to 

a classification decision made by a softmax-activated 

output layer. This layer distributes the probability 

across the various classes, facilitating a multi-class 

classification. 

All CNN configurations are compiled with the Adam 

optimizer, known for its efficiency in handling sparse 

gradients and adapting the learning rate during 

training, and it employs categorical cross-entropy as a 

loss function, ideal for multi-class problems where 

each class is mutually exclusive. 

In sum, as indicated in Figure 1, the detailed 

architectural choices and parameter settings in 

mentioned CNN are aligned with current best 

practices in DL for image classification, emphasizing 

stability, efficiency, and robustness in learning. The 

integration of advanced techniques like ELU, He 

initialization, and batch normalization alongside 

strategic dropout application underpins the model's 

capability to perform effectively in complex visual 

recognition tasks.  

When creating the model, care was taken to make it 

lightweight. The custom model created for this study 

consists of 1,450,523 parameters, occupying 
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approximately 5.53 MB of memory. The parameter 

counts and memory requirements of other models, 

such as EfficientNet-B7 (64,462,882 parameters, 

245.91 MB), ResNet50 (23,887,371 parameters, 91.12 

MB), InceptionV3 (22,102,443 parameters, 84.31 MB), 

and MobileNetV2 (2,459,339 parameters, 9.38 MB), 

are significantly higher than this. The smaller size of 

the custom model results in a decreased computational 

load, which can significantly speed up the training and 

inference processes, especially on less powerful 

hardware. 

 
Figure 1. Custom CNN model architecture 

Şekil 1. Tasarlanan CNN model mimarisi 
 

 
Figure 2. Pseudocode of training process  

Şekil 2. Eğitim sürecinin sözde kodu 
 

In this study, 10-fold cross-validation was employed, 

considering the specific attributes of the dataset. The 

batch size was set to 32 for training iterations, 

balancing computational efficiency and maintaining a 

sufficiently stochastic gradient estimation. The 

training was conducted over 75 epochs to allow the 

network sufficient iterations to adequately learn and 

adapt to the dataset without overfitting. 

During each fold of cross-validation, models were 

monitored for validation accuracy improvements, and 

the best-performing weights were saved. These 

methodological choices ensure the training process is 

both efficient and robust, leading to a CNN well-tuned 

for generalization beyond the training dataset. The 

same methodology, as described in Figure 2, was used 

for all CNN models used, only the models themselves 

were changed. By keeping the other variables 

constant, the aim was to observe the performance of 

the models under identical situations. After 

successfully training and identifying the best-

performing model across various validation folds, the 

research focus shifts towards evaluating the model's 

practical efficacy on unseen data and ensuring the 

robustness of its predictive capabilities. The model is 

systematically evaluated against the test data to 

ascertain its performance metrics, notably accuracy 

and loss. During the test phase, similar to the training 

phase, all the models were treated uniformly and 

exposed to identical testing procedures.   
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RESULTS and DISCUSSION 

This chapter presents all the outcomes of the process 

of model training, validation, and testing. The results 

of the setup are thoroughly examined, and detailed 

comparisons and illustrations are provided. 

Figure 3 displays the training and validation metrics 

of the most successful fold of the model, which is 

retained for the testing phase. Upon analysis, it is 

evident that the training and validation accuracies 

exhibit a consistent upward trend. However, despite 

the inability to reach the same level of continuity, it is 

evident that the training and validation losses are 

decreasing. However, there is a gradual widening of 

the gap between them. With this information, the 

validation accuracies of each fold of the model and the 

average validation accuracy are shown in Table 2 

below. 

 

 
Figure 3. Training and validation metrics graph  

Şekil 3. Eğitim ve doğrulama metrikleri grafiği 

 

 

 

Table 2. Validation accuracies of the model in folds 

Çizelge 2. Modelin katlamalardaki validasyon doğrulukları 

Fold Number: 1 2 3 4 5 6 7 8 9 10 Average 

Validation Accuracy: 0.67 0.70 0.69 0.62 0.68 0.65 0.67 0.67 0.68 0.70 0.67 
 

As a result of the cross-validation, the model trained 

on the most successful fold was passed to the test step 

in which the images (%10 of the dataset) that were 

never seen in the training phase were used. The tests 

yielded a prediction accuracy rate of 0.68. 

Table 3 displays the precision, recall, and F1-score 

values for each mushroom species, together with the 

corresponding number of samples representing these 

species in the test dataset. Precision, measuring the 

accuracy of positive predictions, shows substantial 

variability across classes. For instance, Hygrocybe 

achieves perfect precision, indicating precise 

predictions, but has low recall. In contrast, Agaricus 

and Suillus show lower precision, highlighting issues 

with false positives. Recall evaluates the model's 

ability to detect all relevant examples in a class. 

Boletus excels in recall, capturing most instances, 

whereas Hygrocybe performs poorly, missing many 

true instances. The F1 score combines precision and 

recall, offering a unified measure of performance. 

Boletus has a high F1 score, indicating balanced 

precision and recall, while Suillus has a notably low 

score, suggesting areas for improvement. According to 

Table 3 and Table 4, the model exhibits varied 

proficiency across classes, with strong results in some 

and underperformance in others. These findings could 

inform targeted improvements or training 

adjustments to boost accuracy and recall across all 

categories, ensuring robust performance irrespective of 

class distribution. 

The confusion matrix which is given in Figure 4 offers 

a comprehensive evaluation of a model's performance 

for each class by classifying predictions into true 

positives, true negatives, false positives, and false 

negatives, and this is an important key to 

understanding the precision, recall, and F1-score 

metrics mentioned earlier. This comprehensive data is 

essential for discerning the model's distinct 

advantages and disadvantages, demonstrating its 

effectiveness in other domains, and revealing any 

inclinations to inaccurately classify one category as 

another. 

Stratified k-fold cross-validation ensures that there is 

minimal variation in the validation accuracies, but 

results showed that some classes did not achieve the 

desired level of success in fulfilling the model's purpose 

due to the distribution of the dataset. When the 

dataset is analyzed, as indicated in Table 1, it is seen 

that there is a linear proportionality between recall 

scores and image distributions. In the rigorous 

assessment of CNNs applied to an 11-class mushroom 

classification task, various established and custom 

models were evaluated using stratified 10-fold cross-

validation to gauge their performance during the 

training phase and subsequently tested with 

independent test data to verify their generalization 

capabilities. 

During the training phase, as indicated in Table 5, the 

EfficientNet-B7 model demonstrated the highest 

efficacy, in best fold validation accuracy and average 

accuracy across folds. This superior performance 

suggests that EfficientNet-B7's methodical approach 

to scaling network dimensions systematically is highly 

effective for this task. In contrast, the InceptionV3 

model, despite its sophisticated architecture that 

allows for complex feature extraction through varied 

convolutional filter sizes, lagged in performance, in 

best fold accuracy and an average of 63.78%. Test 
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scores of each model are shown in Table 5. 

EfficientNet-B7 continued to outperform the other 

models in test scores. ResNet50, known for its deep 

residual learning framework that facilitates the 

training of deeper networks by addressing the 

vanishing gradient problem, also performed 

commendably in both the validation and testing 

phases. This indicates its effectiveness in capturing 

and generalizing the underlying patterns of the 

dataset. 
 

Table 3. Custom model’s test scores by species 

Çizelge 3. Tasarlanan modelin türlere göre test sonuçları 

Mushroom species Precision Recall F1-Score Sample 

Agaricus 0.49 0.49 0.489 39 

Amanita 0.84 0.61 0.71 77 

Boletus 0.77 0.92 0.84 104 

Cortinarius 0.55 0.68 0.61 81 

Entoloma 0.43 0.69 0.53 32 

Exidia 0.87 0.75 0.81 36 

Hygrocybe 1.0 0.40 0.57 30 

Inocybe 0.66 0.61 0.63 67 

Lactarius 0.67 0.64 0.65 146 

Russula 0.74 0.76 0.75 132 

Suillus 0.47 0.33 0.39 24 
 

Table 4. Metrics of custom CNN model 

Çizelge 4. Tasarlanan CNN modelinin ölçümleri 

Metrics Precision Recall F1-Score Sample 

Macro average 0.68 0.62 0.63 768 

Weighted average 0.70 0.68 0.68 768 
 

 
Figure 4. Confusion matrix of custom CNN model 

Şekil 4. Tasarlanan CNN modelinin karmaşıklık 
matrisi 

 

 

Conversely, the Custom Model and InceptionV3 

showed moderate to low performance in both phases. 

These outcomes may signal the need for further model 

refinement or a re-evaluation of their network 

architectures and training parameters to better suit 

the classification task at hand. MobileNetV2, designed 

for efficiency in mobile environments, achieved 

reasonable success. Its performance indicates a 

balanced trade-off between computational efficiency 

and predictive accuracy, making it a viable option for 

applications where deployment constraints are a 

factor. 

For macro averages, which are given in Table 6, which 

treat all classes equally, the EfficientNet-B7 model 

demonstrates superior performance in F1-score, 

precision, and recall. This suggests that EfficientNet-

B7 is exceptionally consistent across all classes, 

balancing accuracy and coverage effectively. ResNet50 

follows with a solid F1-score, indicating reliable 

performance, though slightly less consistent across 

classes compared to EfficientNet-B7.  

Table 5. Comparison of models by validation accuracies and test scores 

Çizelge 5. Modellerin validasyon doğrulukları ve test puanlarına göre karşılaştırılması  

Model 
Best Fold’s 

Validation Accuracy 

Average Validation 

Accuracy 

Test Score 

Custom model 0.70 0.67 0.68 

ResNet50 0.82 0.79 0.75 

EfficientNet-B7 0.82 0.80 0.81 

InceptionV3 0.68 0.64 0.64 

MobileNetV2 0.75 0.72 0.72 



KSÜ Tarım ve Doğa Derg 27 (Ek Sayı 1), 243-253, 2024 

KSU J. Agric Nat  27 (Suppl 1), 243-253, 2024 

Araştırma Makalesi 

Research Article 
 

251 

 

Table 6. Comparison of models by macro average 

Çizelge 6. Modellerin makro ortalamaya göre 
karşılaştırılması 

Model Precision Recall F1-Score 
Custom model 0.68 0.63 0.64 

ResNet50 0.78 0.74 0.75 

EfficientNet-B7 0.81 0.80 0.80 

InceptionV3 0.65 0.60 0.61 

MobileNetV2 0.70 0.72 0.70 

 

The Custom Model, InceptionV3, and MobileNetV2 

show lower effectiveness, in macro average F1-scores. 

These scores indicate challenges in either precision or 

recall, which could be due to various factors such as 

model architecture limitations, insufficient training, or 

the intrinsic difficulty of some classes that could not be 

effectively learned by these models. 

When considering the weighted averages, as indicated 

in Table 7, which account for the prevalence of each 

class, a similar pattern emerges. EfficientNet-B7 

maintains its lead in F1-score, highlighting its 

robustness and ability to generalize well across the 

varied sizes of the classes. It is followed by ResNet50 

and MobileNetV2, which also show competent 

performance with weighted F1 scores. This indicates 

that while these models perform well on more populous 

classes, there might be room for improvement in 

handling less represented classes.  

 

Table 7. Comparison of models by weighted average 

Çizelge 7. Modellerin ağırlıklı ortalamaya göre 
karşılaştırılması 

Model Precision Recall F1-Score 

Custom model 0.70 0.68 0.68 

ResNet50 0.77 0.75 0.75 

EfficientNet-B7 0.82 0.82 0.81 

InceptionV3 0.66 0.65 0.64 

MobileNetV2 0.73 0.72 0.72 

 

The Custom Model and InceptionV3 exhibit less 

optimal results with weighted F1 scores. These 

outcomes suggest that these models, while reasonably 

effective for some classes, struggle with achieving high 

accuracy and coverage across all classes, particularly 

those that are less frequent in the dataset. The data 

suggests that while some models like EfficientNet-B7 

and ResNet50 are capable of delivering robust and 

balanced performances across diverse class 

distributions, others such as the Custom Model and 

InceptionV3 may benefit from further tuning and 

training to enhance their precision and recall 

capabilities, ensuring more consistent performance 

across all classes. In addition, it was observed that the 

custom model showed more accurate values than 

InceptionV3, although it showed lower accuracies than 

the other 3 models. Considering the number of model 

variables and their complexity, it can be concluded that 

the results are promising, although not completely 

satisfactory. 

Finally, EfficientNet-B7’s performance across various 

fungal classes, which is observed to be the most 

successful in the light of the results mentioned, as 

evidenced by the detailed metrics for precision, recall, 

and F1-score, showcases a complex landscape of 

effectiveness that varies significantly from one class to 

another. These results provide a more granular insight 

into the model's capacity to accurately identify and 

classify instances within a multi-class framework. 
 

CONCLUSION 

The study explores the application of CNNs for 

mushroom classification, focusing on developing a 

customized model capable of accurately categorizing 11 

different mushroom classes. The custom model 

demonstrates a feasible approach to mushroom 

classification, especially suitable for scenarios where 

computational efficiency is a priority given its 

relatively simpler architecture compared to deeper, 

more computationally expensive models. The model's 

performance, particularly in the testing phase, reveals 

significant insights for both academic and practical 

applications in mycological classification. The custom 

model achieved a test score of 0.68, which is moderate 

compared to more established models like 

EfficientNet-B7 or ResNet50, known for their complex 

architecture and ability to achieve higher accuracy in 

image-based tasks. However, the model faced 

difficulties with the Suillus class, resulting in a lower 

F1-score of 0.39. The uneven distribution of training 

data contributed to the variation in findings, 

suggesting that the model struggles with under-

represented categories. The results indicate a direct 

relationship between class representation in the 

training data and the model's performance. Classes 

with fewer examples tended to yield poorer recall and 

precision, suggesting that the model struggles with 

under-represented categories. The testing phase also 

highlighted a consistent average validation accuracy of 

about 0.67, pointing to the model's stability but 

highlighting its limited capability to transcend its 

training when faced with new, unseen data. Advanced 

models like EfficientNet-B7, ResNet50, and 

MobileNetV2 have the potential to significantly 

improve performance, incorporating advanced 

methods like compound scaling and residual learning. 

However, the model's applicability is limited by its 

moderate accuracy and the need for enhanced training 

strategies to improve its generalization capabilities 

across all mushroom classes. Despite all this 
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considering the number of model variables and their 

complexity, it can be concluded that the results are 

promising, although not completely satisfactory. The 

model was found to achieve better results than the 

much more complex InceptionV3. This is promising for 

future studies. The results highlight the importance of 

a well-prepared dataset in training a successful ML 

model. At the same time, dataset augmentation 

strategies to increase the robustness of the model are 

planned for future work. In conclusion, the process of 

refining and optimizing CNNs for mushroom 

classification is still in progress, offering a strong 

foundation for further research. This study provides a 

good foundation and a strong starting point for further 

research that aims to expand the capabilities of these 

advanced ML models in mushroom classification. The 

ultimate goal is to develop a model that not only 

achieves high accuracy across all mushroom classes 

but also serves as a reliable tool for mycologists and 

enthusiasts in the field, marrying the technical 

prowess of CNNs with the intricate beauty of 

mushroom species. 
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