Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers

Yıl 2023, Cilt: 47 Sayı: 1, 73 - 85, 25.04.2023
https://doi.org/10.16970/entoted.1217238

Öz

In this study, insecticide residues on “Bayramiç Beyazı” nectarines were investigated with the use of QuEChERS method and LC-MS/MS analysis. Analytical method was verified through SANTE 11312/2021 Guidelines. The limit of quantification were below the MRLs for 12 insecticides. Method recovery was identified as 89.6%. Such a value was within the SANTE recovery (60-140%) limits. Nectarine samples were collected from Çanakkale open markets between 15 June-30 September, 2022 and analyzed at ÇOMÜ Agriculture Faculty-Pesticide Laboratory (Çanakkale-Türkiye). Abamectin, acetamiprid, deltamethrin, etoxazole, novaluron, pyriproxyfen, spirodiclofen, tetramethrin and thiacloprid residue levels were below the MRLs. On the other hand, dimethoate, imidacloprid and omethoate residues exceeded their MRLs only in one sample each. The maximum residues of acetamiprid, deltamethrin, etoxazole and novaluron were about 1/2, 1/5, 1/10, and 1/70 of the MRLs in one sample, respectively. Risk assessments revealed that exposure levels for adults were low (hazard quotient, HQ ≤ 1), with the exception of omehoate residues. Omethoate posed a chronic risk to human health through consumption of nectarines. For the remaining 11 insecticides, there was no risk for human health. However, the highest acute HQ were found for dimethoate even though its HQ was less than or equal to 1 The use of dimethoate is in the process of being banned in Türkiye, while omethoate (metabolite of dimethoate) is already banned. Presence of omethoate residue may be due to the degradation product of dimethoate.

Destekleyen Kurum

Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit,

Proje Numarası

Project number: FYL-2022-4047

Teşekkür

This study was supported by Scientific Research Projects Department of Çanakkale Onsekiz Mart University (Project number: FYL-2022 4047). This article is a part of the master degree thesis of the first author. The authors are also grateful to Prof. Dr. Zeki Gökalp (Certifed English Translator) for his critical reading and through syntactic corrections of the manuscript. Thanks, are also extended to analists of Çanakkale Food Control Directorate - Pesticide Residue Laboratory for LC-MS/MS analyses.

Kaynakça

  • Ambrus, A., J. Szenczi-Cseh, V. V. N. Doan & A. Vasarhelyi, 2023. Evaluation of monitoring data in foods. Agrochemicals, 2 (1): 69-95
  • Anastassiades, M., S. J. Lehotay, D. Stajnbaher & F. J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal AOAC International, 86 (2): 412-431.
  • Anonymous, 2022 Bayramiç Beyazı Hasat Etkinliği Düzenlendi (Web page: https://canakkale.tarimorman.gov.tr/Haber/ 501/Bayramic-Beyazi-Hasat-Etkinligi-Duzenlendi) (Date accessed: December 2022).
  • AOAC, 2007. Official method 2007.01: Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. Journal of AOAC International, 90 (2): 485-520.
  • Balkan, T. & Ö. Yılmaz, 2022a. Investigation of insecticide residues in potato grown in Türkiye by LC-MS/MS and GC-MS and health risk assessment. Turkish Journal of Entomology, 46 (4): 481-500.
  • Balkan, T. & Ö. Yılmaz, 2022b Method validation, residue and risk assessment of 260 pesticides in some leafy vegetables using liquid chromatography coupled to tandem mass spectrometry. Food Chemistry, 384: 132516.
  • BKÜ, 2023a. BKÜ Veri Tabanı, Tavsiye Arama (Web page: https://bku.tarimorman.gov.tr/Kullanim/TavsiyeArama? csrt=11841641984404194768) (Date accessed: December 2022).
  • BKÜ, 2023b. BKÜ Veri Tabanı, Yasaklı veya Kısıtlı Aktif Madde Listeleri. (Web page: https://bku.tarimorman.gov.tr/ AktifMadde/YasakliKisitliExcelFileList?csrt=4249106729254166320) (Date accessed: December 2022).
  • CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: December 2022).
  • Calderon, R., J. García-Hernandez, P. Palma, J. B. Leyva-Morales, M. Zambrano-Soria, P. J. Bastidas-Bastidas & M. Godoy, 2022. Assessment of pesticide residues in vegetables commonly consumed in Chile and Mexico: Potential impacts for public health. Journal of Food Composition and Analysis, 108: 104420.
  • Camara, M. A., S. Cermeño, G. Martínez & J. Oliva, 2020. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chemistry, 325 (2020): 126936.
  • Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
  • Chatzicharisis, I., T. Thomidis, C. Tsipouridis, E. Mourkidou-Papadopoulou & Z. Vryzas, 2012. Residues of six pesticides in fresh peach-nectarine fruits after preharvest treatment. Phytoparasitica, 40 (4): 311-317.
  • Chen, C., Y. Qian, Q. Chen, C. Tao, C. Li & Y. Li, 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control, 22 (7): 1114-1120.
  • Chen, R., X. Xue, G. Wang & J. Wang, 2021. Determination and dietary intake risk assessment of 14 pesticide residues in apples of China. Food Chemistry, 351: 129266.
  • Choi, J. H., M. I. R. Mamun, J. H. Park, E. H. Shin & J. H. Shim, 2011. Determination of field-incurred chlorfluazuron residues in the peach. Bulletin of Environmental Contamination and Toxicology, 86: 331-335.
  • Dülger, H. & O. Tiryaki, 2021. Investigation of pesticide residues in peach and nectarine sampled from Çanakkale, Turkey, and consumer dietary risk assessment. Environmental Monitoring and Assessment, 193 (9): 561 (1-10).
  • EFSA, 2007. The EFSA's 7th Scientific Colloquium Report‐Cumulative Risk Assessment of pesticides to human health: The Way forward. EFSA Supporting Publication, 4 (5): EN‐117-160. (Web page: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2007.EN-117) (Date accessed: December 2022).
  • EFSA, 2019. Pesticide Residue intake model- EFSA PRIMo revision 3.1. EFSA Supporting Publications. (Web page: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2019.EN-1605) (Date accessed: December 2022).
  • EFSA, 2020. Setting of import tolerances for abamectin in various crops. EFSA Journal,18 (7): 6173. (Web page: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2020.6173) (Date accessed: December 2022).
  • Ersoy, N., Ö. Tatlı, S. Özcan, E. Evcil, L. Ş. Coşkun & E. Erdoğan, 2011. Some pesticide residues of stone and nuts fruit species. Selcuk Journal of Agriculture and Food Sciences, 25 (1): 75-83.
  • EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition. (Web page https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf) (Date accessed: December, 2022).
  • Galietta, G., E. Egaña, F. Gemelli, D. Maeso, N. Casco, P. Conde & S. Nuñez, 2011. Pesticide dissipation curves in peach, pear and tomato crops in Uruguay. Journal of Environmental Science and Health, Part B, 46 (1): 35-40.
  • Gebara, A. B., C. H. P. Ciscato, S. H. Monteiro & G. S. Souza, 2011. Pesticide residues in some commodities: Dietary risk for children. Bulletin of Environmental Contamination and Toxicology, 86: 506-510.
  • Kanbolat, M., K. Kara & T. Balkan 2023. Verification of QuEChERS method for the analysis of pesticide residues and their risk assessment in some fruits grown in Tokat, Turkey. Journal of Agricultural Sciences, 29 (2): 573-588.
  • Kaya, T. & A. L. Tuna, 2019. İzmir ilindeki üç halk pazarından alınan meyve ve sebze örneklerindeki pestisit kalıntı miktarının araştırılması. Türkiye Tarımsal Araştırmalar Dergisi, 6 (1): 32-38.
  • Lehotay, S. J., K., Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to ımprove results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.
  • Liu Y., D. Shen, S. Li, Z. Ni, M. Ding, C. Ye & F. Tang, 2016. Residue levels and risk assessment of pesticides in nuts of China. Chemosphere, 144: 645-651.
  • Malhat, F., O. Abdallah, F. Ahmed, S.-A. Salam, C. Anagnostopoulos & M.-T. Ahmed, 2021. Dissipation behavior of thiophanate-methyl in strawberry under open field condition in Egypt and consumer risk assessment. Environmental Science and Pollution Research, 28: 1029-1039.
  • Marete, G. M., V. O. Shikuku, J. O. Lalah & V. W. Wekasa, 2020. Occurrence of pesticides residues in French beans, tomatoes, and kale in Kenya, and their human health risk indicators. Environmental Monitoring and Assessment, 192: 692.
  • Omeroglu, P. Y., D. Boyacioglu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (5): 1469-1480.
  • Osaili, M. T., M. S. Sallagi, D. K. Dhanasekaran, W. A. M. Bani Odeh, H. J. Ali, A. A. S. A. Ali, L. C. Ismail, K. O. Mehri, V. A. Pisharath, R. Holley & R.S. Obaid, 2022. Pesticide residues in fresh fruits imported into the United Arab Emirates. Heliyon, 8 (12): e11946.
  • Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional grown and IPM- grown tomato by using QuEChERS method. Journal of Environmental Science and Health, Part B, 54 (2): 112-117.
  • Polat, B., 2021. Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45 (1): 125-137.
  • Poole, C. F., 2007. Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. Journal of Chromatography A, 1158: 241-250.
  • PPDB, 2022. IUPAC Pesticides Properties DataBase. (Web page: http://sitem.herts.ac.uk/aeru/iupac/) (Date accessed: December 2022).
  • RASFF, 2023. The Rapid Alert System for Food and Feed (RASFF Window). (Web page: https://webgate.ec.europa.eu/rasff-window/screen/list) (Date accessed: January, 2023)
  • SANTE, 2021. Analytical quality control and method validation procedures for pesticide residues analysis ın food and feed. SANTE 11312/2021. (Web page: https://www.accredia.it/en/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/) (Date accessed: December, 2022)
  • Soydan, D. K., N. Turgut, M. Yalçın, C. Turgut & P. B. K. Karakus, 2021. Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. Environmental Science and Pollution Research, 28 (22): 27511-27519.
  • Tiryaki, O., 2016. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties. Journal Environmental Science and Health, Part B, 51 (10): 722-729.
  • TSI, 2022. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: December 2022) (in Turkish).
  • TURKAK, 2022. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/TURKAKSITE/docs/bilgilendirme_kilavuzlari/METODUN_GE%C3%87ERL%C4%B0_KILINMASI_VE_DOGRULANMASI_ICIN_BILGILENDIRME_KILAVUZU_30122022.pdf) (Date accessed: January, 2023).
  • WHO, 2019. The WHO Recommended classification of pesticides by hazard and guidelines to classification. (Web page: https://apps.who.int/iris/rest/bitstreams/1278712/retrieve) (Date accessed: December, 2022).
  • WHO, 2021. Human health risk assessment toolkit: chemical hazards, Second edition, Harmonization Project Document No. 8. (Web page: https://www.who.int/publications/i/item/9789240035720) (Date accessed: December, 2022).
  • Yousefi, S., H. Aslani, M. Shakerkhatibi, Y. Mohammadia & G. H. Safari, 2022. Combined health risk assessment of organophosphates pesticide residues in greenhouse cucumber in the Northwestern of Iran based on Monte Carlo Simulations. International Journal of Environmental Analytical Chemistry, 102: 1-16.
  • Zhang, Y., W. Si, L. Chen, G. Shen, B. Bai & C. Zhou, 2021. Determination and dietary risk assessment of 284 pesticide residues in local fruit cultivars in Shanghai, China. Scientifc Reports, 11: 9681.

“Bayramiç Beyazı” nektarinlerde insektisit kalıntılarının belirlenmesi ve tüketiciler için risk analizi

Yıl 2023, Cilt: 47 Sayı: 1, 73 - 85, 25.04.2023
https://doi.org/10.16970/entoted.1217238

Öz

Bu çalışmada QuEChERS yöntemi ile “Bayramiç Beyazı” nektarinlerde insektisit kalıntıları araştırılmıştır. Analiz metodu SANTE 11312/2021’e göre doğrulanmıştır. 12 adet insektisitin LOQ limiti, MRL değerlerinin altında bulunmuştur. Metodun geri kazanımı %89.6 olmuştur. Bu rakamlar SANTE geri alımları (%60-140) ile uyumludur. Nektarin örnekleri 15 Haziran-30 Eylül 2022 arasında Çanakkale pazarından toplanmış ve ÇOMÜ Ziraat Fakültesi-Pestisit Laboratuvarı(Çanakkale-Türkiye)’nda analizleri yapılmıştır. Abamectin, acetamiprid, deltamethrin, etoxazole, novaluron, pyriproxyfen, spirodiclofen, tetramethrin ve thiacloprid kalıntı seviyeleri MRL değerlerinin altındadır. Öte yandan, sadece birer örnekte dimethoate, imidacloprid ve omethoate kalıntıları MRL değerlerini aşmıştır. Acetamiprid, deltamethrin, etoxazole ve novaluronun kalıntıları, birer örnekde MRL'lerin sırasıyla 1/2, 1/5, 1/10 ve 1/70'i olarak bulunmuştur. Risk değerlendirmeleri, yetişkinler için, omehoate hariç, maruz kalma düzeylerinin düşük olduğunu ortaya çıkarmıştır (tehlike katsayısı, HQ ≤ 1). Nektarin tüketiminde insan sağlığı açısından omethoate riskli bulunmuştur. Geri kalan 11 insektisit için insan sağlığı açısından herhangi bir risk bulunmamıştır. Bununla birlikte, HQ≤1 olmasına rağmen en yüksek akut HQ dimethoate için bulunmuştur. Zaten Türkiye’de dimethoate yasaklanma sürecindedir, dimethoate’ın metaboliti olan omethoate kullanımı ise yasaklanmıştır, Omethoate kalıntısı bulunması dimethoate'ın parçalanma ürünü olmasından kaynaklanabilir.

Proje Numarası

Project number: FYL-2022-4047

Kaynakça

  • Ambrus, A., J. Szenczi-Cseh, V. V. N. Doan & A. Vasarhelyi, 2023. Evaluation of monitoring data in foods. Agrochemicals, 2 (1): 69-95
  • Anastassiades, M., S. J. Lehotay, D. Stajnbaher & F. J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal AOAC International, 86 (2): 412-431.
  • Anonymous, 2022 Bayramiç Beyazı Hasat Etkinliği Düzenlendi (Web page: https://canakkale.tarimorman.gov.tr/Haber/ 501/Bayramic-Beyazi-Hasat-Etkinligi-Duzenlendi) (Date accessed: December 2022).
  • AOAC, 2007. Official method 2007.01: Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. Journal of AOAC International, 90 (2): 485-520.
  • Balkan, T. & Ö. Yılmaz, 2022a. Investigation of insecticide residues in potato grown in Türkiye by LC-MS/MS and GC-MS and health risk assessment. Turkish Journal of Entomology, 46 (4): 481-500.
  • Balkan, T. & Ö. Yılmaz, 2022b Method validation, residue and risk assessment of 260 pesticides in some leafy vegetables using liquid chromatography coupled to tandem mass spectrometry. Food Chemistry, 384: 132516.
  • BKÜ, 2023a. BKÜ Veri Tabanı, Tavsiye Arama (Web page: https://bku.tarimorman.gov.tr/Kullanim/TavsiyeArama? csrt=11841641984404194768) (Date accessed: December 2022).
  • BKÜ, 2023b. BKÜ Veri Tabanı, Yasaklı veya Kısıtlı Aktif Madde Listeleri. (Web page: https://bku.tarimorman.gov.tr/ AktifMadde/YasakliKisitliExcelFileList?csrt=4249106729254166320) (Date accessed: December 2022).
  • CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: December 2022).
  • Calderon, R., J. García-Hernandez, P. Palma, J. B. Leyva-Morales, M. Zambrano-Soria, P. J. Bastidas-Bastidas & M. Godoy, 2022. Assessment of pesticide residues in vegetables commonly consumed in Chile and Mexico: Potential impacts for public health. Journal of Food Composition and Analysis, 108: 104420.
  • Camara, M. A., S. Cermeño, G. Martínez & J. Oliva, 2020. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chemistry, 325 (2020): 126936.
  • Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
  • Chatzicharisis, I., T. Thomidis, C. Tsipouridis, E. Mourkidou-Papadopoulou & Z. Vryzas, 2012. Residues of six pesticides in fresh peach-nectarine fruits after preharvest treatment. Phytoparasitica, 40 (4): 311-317.
  • Chen, C., Y. Qian, Q. Chen, C. Tao, C. Li & Y. Li, 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control, 22 (7): 1114-1120.
  • Chen, R., X. Xue, G. Wang & J. Wang, 2021. Determination and dietary intake risk assessment of 14 pesticide residues in apples of China. Food Chemistry, 351: 129266.
  • Choi, J. H., M. I. R. Mamun, J. H. Park, E. H. Shin & J. H. Shim, 2011. Determination of field-incurred chlorfluazuron residues in the peach. Bulletin of Environmental Contamination and Toxicology, 86: 331-335.
  • Dülger, H. & O. Tiryaki, 2021. Investigation of pesticide residues in peach and nectarine sampled from Çanakkale, Turkey, and consumer dietary risk assessment. Environmental Monitoring and Assessment, 193 (9): 561 (1-10).
  • EFSA, 2007. The EFSA's 7th Scientific Colloquium Report‐Cumulative Risk Assessment of pesticides to human health: The Way forward. EFSA Supporting Publication, 4 (5): EN‐117-160. (Web page: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2007.EN-117) (Date accessed: December 2022).
  • EFSA, 2019. Pesticide Residue intake model- EFSA PRIMo revision 3.1. EFSA Supporting Publications. (Web page: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2019.EN-1605) (Date accessed: December 2022).
  • EFSA, 2020. Setting of import tolerances for abamectin in various crops. EFSA Journal,18 (7): 6173. (Web page: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2020.6173) (Date accessed: December 2022).
  • Ersoy, N., Ö. Tatlı, S. Özcan, E. Evcil, L. Ş. Coşkun & E. Erdoğan, 2011. Some pesticide residues of stone and nuts fruit species. Selcuk Journal of Agriculture and Food Sciences, 25 (1): 75-83.
  • EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition. (Web page https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf) (Date accessed: December, 2022).
  • Galietta, G., E. Egaña, F. Gemelli, D. Maeso, N. Casco, P. Conde & S. Nuñez, 2011. Pesticide dissipation curves in peach, pear and tomato crops in Uruguay. Journal of Environmental Science and Health, Part B, 46 (1): 35-40.
  • Gebara, A. B., C. H. P. Ciscato, S. H. Monteiro & G. S. Souza, 2011. Pesticide residues in some commodities: Dietary risk for children. Bulletin of Environmental Contamination and Toxicology, 86: 506-510.
  • Kanbolat, M., K. Kara & T. Balkan 2023. Verification of QuEChERS method for the analysis of pesticide residues and their risk assessment in some fruits grown in Tokat, Turkey. Journal of Agricultural Sciences, 29 (2): 573-588.
  • Kaya, T. & A. L. Tuna, 2019. İzmir ilindeki üç halk pazarından alınan meyve ve sebze örneklerindeki pestisit kalıntı miktarının araştırılması. Türkiye Tarımsal Araştırmalar Dergisi, 6 (1): 32-38.
  • Lehotay, S. J., K., Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to ımprove results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.
  • Liu Y., D. Shen, S. Li, Z. Ni, M. Ding, C. Ye & F. Tang, 2016. Residue levels and risk assessment of pesticides in nuts of China. Chemosphere, 144: 645-651.
  • Malhat, F., O. Abdallah, F. Ahmed, S.-A. Salam, C. Anagnostopoulos & M.-T. Ahmed, 2021. Dissipation behavior of thiophanate-methyl in strawberry under open field condition in Egypt and consumer risk assessment. Environmental Science and Pollution Research, 28: 1029-1039.
  • Marete, G. M., V. O. Shikuku, J. O. Lalah & V. W. Wekasa, 2020. Occurrence of pesticides residues in French beans, tomatoes, and kale in Kenya, and their human health risk indicators. Environmental Monitoring and Assessment, 192: 692.
  • Omeroglu, P. Y., D. Boyacioglu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (5): 1469-1480.
  • Osaili, M. T., M. S. Sallagi, D. K. Dhanasekaran, W. A. M. Bani Odeh, H. J. Ali, A. A. S. A. Ali, L. C. Ismail, K. O. Mehri, V. A. Pisharath, R. Holley & R.S. Obaid, 2022. Pesticide residues in fresh fruits imported into the United Arab Emirates. Heliyon, 8 (12): e11946.
  • Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional grown and IPM- grown tomato by using QuEChERS method. Journal of Environmental Science and Health, Part B, 54 (2): 112-117.
  • Polat, B., 2021. Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45 (1): 125-137.
  • Poole, C. F., 2007. Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. Journal of Chromatography A, 1158: 241-250.
  • PPDB, 2022. IUPAC Pesticides Properties DataBase. (Web page: http://sitem.herts.ac.uk/aeru/iupac/) (Date accessed: December 2022).
  • RASFF, 2023. The Rapid Alert System for Food and Feed (RASFF Window). (Web page: https://webgate.ec.europa.eu/rasff-window/screen/list) (Date accessed: January, 2023)
  • SANTE, 2021. Analytical quality control and method validation procedures for pesticide residues analysis ın food and feed. SANTE 11312/2021. (Web page: https://www.accredia.it/en/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/) (Date accessed: December, 2022)
  • Soydan, D. K., N. Turgut, M. Yalçın, C. Turgut & P. B. K. Karakus, 2021. Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. Environmental Science and Pollution Research, 28 (22): 27511-27519.
  • Tiryaki, O., 2016. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties. Journal Environmental Science and Health, Part B, 51 (10): 722-729.
  • TSI, 2022. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: December 2022) (in Turkish).
  • TURKAK, 2022. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/TURKAKSITE/docs/bilgilendirme_kilavuzlari/METODUN_GE%C3%87ERL%C4%B0_KILINMASI_VE_DOGRULANMASI_ICIN_BILGILENDIRME_KILAVUZU_30122022.pdf) (Date accessed: January, 2023).
  • WHO, 2019. The WHO Recommended classification of pesticides by hazard and guidelines to classification. (Web page: https://apps.who.int/iris/rest/bitstreams/1278712/retrieve) (Date accessed: December, 2022).
  • WHO, 2021. Human health risk assessment toolkit: chemical hazards, Second edition, Harmonization Project Document No. 8. (Web page: https://www.who.int/publications/i/item/9789240035720) (Date accessed: December, 2022).
  • Yousefi, S., H. Aslani, M. Shakerkhatibi, Y. Mohammadia & G. H. Safari, 2022. Combined health risk assessment of organophosphates pesticide residues in greenhouse cucumber in the Northwestern of Iran based on Monte Carlo Simulations. International Journal of Environmental Analytical Chemistry, 102: 1-16.
  • Zhang, Y., W. Si, L. Chen, G. Shen, B. Bai & C. Zhou, 2021. Determination and dietary risk assessment of 284 pesticide residues in local fruit cultivars in Shanghai, China. Scientifc Reports, 11: 9681.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Elif Betül Serbes 0000-0001-7646-4774

Osman Tiryaki 0000-0002-7509-8423

Proje Numarası Project number: FYL-2022-4047
Yayımlanma Tarihi 25 Nisan 2023
Gönderilme Tarihi 12 Aralık 2022
Kabul Tarihi 7 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 47 Sayı: 1

Kaynak Göster

APA Serbes, E. B., & Tiryaki, O. (2023). Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. Turkish Journal of Entomology, 47(1), 73-85. https://doi.org/10.16970/entoted.1217238
AMA Serbes EB, Tiryaki O. Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. TED. Nisan 2023;47(1):73-85. doi:10.16970/entoted.1217238
Chicago Serbes, Elif Betül, ve Osman Tiryaki. “Determination of Insecticide Residues in ‘Bayramiç Beyazı’ Nectarines and Their Risk Analysis for Consumers”. Turkish Journal of Entomology 47, sy. 1 (Nisan 2023): 73-85. https://doi.org/10.16970/entoted.1217238.
EndNote Serbes EB, Tiryaki O (01 Nisan 2023) Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. Turkish Journal of Entomology 47 1 73–85.
IEEE E. B. Serbes ve O. Tiryaki, “Determination of insecticide residues in ‘Bayramiç Beyazı’ nectarines and their risk analysis for consumers”, TED, c. 47, sy. 1, ss. 73–85, 2023, doi: 10.16970/entoted.1217238.
ISNAD Serbes, Elif Betül - Tiryaki, Osman. “Determination of Insecticide Residues in ‘Bayramiç Beyazı’ Nectarines and Their Risk Analysis for Consumers”. Turkish Journal of Entomology 47/1 (Nisan 2023), 73-85. https://doi.org/10.16970/entoted.1217238.
JAMA Serbes EB, Tiryaki O. Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. TED. 2023;47:73–85.
MLA Serbes, Elif Betül ve Osman Tiryaki. “Determination of Insecticide Residues in ‘Bayramiç Beyazı’ Nectarines and Their Risk Analysis for Consumers”. Turkish Journal of Entomology, c. 47, sy. 1, 2023, ss. 73-85, doi:10.16970/entoted.1217238.
Vancouver Serbes EB, Tiryaki O. Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. TED. 2023;47(1):73-85.