Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi

Yıl 2020, Cilt: 9 Sayı: 1, 85 - 94, 15.05.2020

Öz

Bezelye
çeşitlerine (Sprinter ve Utrillo) 10 gün süre ile 50 mM ve 100 mM NaCI
uygulanarak bitki yapraklarında malondialdehit, hidrojen peroksit, total
fenolik bileşik, antosiyanin ve sinapoil ester miktarları araştırıldı. Tuz
stresi her iki çeşitte malondialdehit miktarını kısmi olarak azaltmıştır.
Hidrojen peroksit miktarı artan tuz miktarına bağlı olarak Sprinterda önemli
oranda artarken, Utrilloda kısmi olarak artmıştır. Bezelye çeşitlerinde tuz
stresi konsantrasyona bağlı olarak toplam fenolik madde miktarını önemli oranda
artırırken antosiyanin ve sinapoil ester miktarlarını üzerine etkisi
olmamıştır. 

Destekleyen Kurum

Tokat Gaziosmanpaşa Üniversitesi BAP Birimi

Proje Numarası

2010/25

Kaynakça

  • Ahmad, P., Jhon, R., Sarwat, M., Umar, S. 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. International Journal of Plant Production, 2(4): 353–366.
  • Ashraf, M.A., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59 (2): 206–216.
  • Ashraf, M.A., Ashraf, M and Ali, Q. 2010. Response of two genetically diverse wheat cultivars to salt stres at different growth stages: leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 42: 559–565.
  • Chalker-Scott, L 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1): 1–9.
  • Daneshmand, F., Arvin, M.J., Kalantari, K.M. 2010. Physiological responses to NaCl stres in three wild species of patato in vitro. Acta Physiol Plant. 32: 91–101.
  • Demiral, T ve Türkan, İ. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247–257.
  • Duncan, B.D. 1955. Multiple range and multiple F-tests. Biometrics. p. 1- 42.
  • Eryılmaz, F. 2003. Yüksek bitkilerde tuz stresi ile antosiyanin içeriği arasındaki ilişkiler. İstanbul Üniversitesi. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Esfandiari, E., Shekari, F., Shekari, F and Esfandiari, M. 2007. The effect of salt stress on antioxidant enzymes activitiy and lipit peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj. 35 (1): 48–56.
  • Es-Safi, N.E., Kollman, A., Khlifi, S., Ducrot, P.H. 2007. Antioxidative effect of compounds isolated from Globularia alypum L. structure–activity relationship. LWT-Food Science Technology, 40 (7): 1246–1252.
  • Hara, M., Oki, K., Hoshino, K., Kuboi, T. 2003. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Science, 164 (2): 259–265.
  • Hernández, J.A., Almansa, M.S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum, 115 (2): 251–257.
  • Hichem, H., Denden, M., El Ayeb, N. 2009. Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages. Industrial Crops and Products, 30: 144–151.
  • Kennedy, B.F., De Fillippis, L.F. 1999. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology, 155: 746–754.
  • Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., Abdelly, C. 2007. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45: 244–249.
  • Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. of Environ. Stud. 15(4): 523–530.
  • Milić, L.B., Dijilas, S.M., Čanadanović-Brunet, M.J. 1998. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chemistry, 61(4): 443–447.
  • Neto, A.D.A., Prisco, J.T., Eneas-Filho, J., Abreu, C.E.B., Gomes-Filho, E. 2006. Effect of salt Stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56: 87–94.
  • Neves, G.Y.S., Marchiosi, R., Ferrarese, M.L.L., Siqueira-Soares, R.C., Ferrarese-Filho, O. 2010. Root growth inhibition and lignification induced by salt stres in soybean. Journal of Agronomy and Crop Science, 196(6): 467–473.
  • Noreen, Z., Ashraf, M. 2009. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinty tolerans markers. Journal of Plant Physiology, 166 1764–1774.
  • Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., Lachaal, M. 2010. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant, 32: 289–296.
  • Öztürk, L., Demir, Y., Ünlükara, A., Karataş, İ., Kurunç, A., Düzdemir, O. 2012. Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnological Letters Journal, 17: 7227–7236.
  • Parida, A.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3): 324–349.
  • Pennycooke, J.C., Cox, S., Stushnoff, C. 2005. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia×hybrida). Environmental and Experimental Botany, 53(2): 225–232.
  • Posmyk, M.M., Kontek, R., Janas, K.M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 72(2): 596–602.
  • Radic, S., Radic´-Stojkovic,´ M., Pevalek-Kozlina, B. 2006. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. Journal of Plant Physiology, 163(12): 1284–1292.
  • Ruegger, M., Chapple, C. 2001. Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics, 159(4): 1741–1749.
  • Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 49 (1): 85–91.
  • Song, J-Y., Kim, T-Y., Hong, J-H. 2005. Effects of abscisic acid and temperature on the anthocyanin accumulation in seedlings of Arabidopsis thaliana. Journal of Environmental Sciences, 14(12): 1093–1102.
  • Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S and Sudhakar, C. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science, 141: 1–9.
  • Velikova, P., Yordanov, I and Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science, 151: 59–66.
Yıl 2020, Cilt: 9 Sayı: 1, 85 - 94, 15.05.2020

Öz

Proje Numarası

2010/25

Kaynakça

  • Ahmad, P., Jhon, R., Sarwat, M., Umar, S. 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. International Journal of Plant Production, 2(4): 353–366.
  • Ashraf, M.A., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59 (2): 206–216.
  • Ashraf, M.A., Ashraf, M and Ali, Q. 2010. Response of two genetically diverse wheat cultivars to salt stres at different growth stages: leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 42: 559–565.
  • Chalker-Scott, L 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1): 1–9.
  • Daneshmand, F., Arvin, M.J., Kalantari, K.M. 2010. Physiological responses to NaCl stres in three wild species of patato in vitro. Acta Physiol Plant. 32: 91–101.
  • Demiral, T ve Türkan, İ. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247–257.
  • Duncan, B.D. 1955. Multiple range and multiple F-tests. Biometrics. p. 1- 42.
  • Eryılmaz, F. 2003. Yüksek bitkilerde tuz stresi ile antosiyanin içeriği arasındaki ilişkiler. İstanbul Üniversitesi. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Esfandiari, E., Shekari, F., Shekari, F and Esfandiari, M. 2007. The effect of salt stress on antioxidant enzymes activitiy and lipit peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj. 35 (1): 48–56.
  • Es-Safi, N.E., Kollman, A., Khlifi, S., Ducrot, P.H. 2007. Antioxidative effect of compounds isolated from Globularia alypum L. structure–activity relationship. LWT-Food Science Technology, 40 (7): 1246–1252.
  • Hara, M., Oki, K., Hoshino, K., Kuboi, T. 2003. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Science, 164 (2): 259–265.
  • Hernández, J.A., Almansa, M.S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum, 115 (2): 251–257.
  • Hichem, H., Denden, M., El Ayeb, N. 2009. Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages. Industrial Crops and Products, 30: 144–151.
  • Kennedy, B.F., De Fillippis, L.F. 1999. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology, 155: 746–754.
  • Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., Abdelly, C. 2007. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45: 244–249.
  • Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. of Environ. Stud. 15(4): 523–530.
  • Milić, L.B., Dijilas, S.M., Čanadanović-Brunet, M.J. 1998. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chemistry, 61(4): 443–447.
  • Neto, A.D.A., Prisco, J.T., Eneas-Filho, J., Abreu, C.E.B., Gomes-Filho, E. 2006. Effect of salt Stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56: 87–94.
  • Neves, G.Y.S., Marchiosi, R., Ferrarese, M.L.L., Siqueira-Soares, R.C., Ferrarese-Filho, O. 2010. Root growth inhibition and lignification induced by salt stres in soybean. Journal of Agronomy and Crop Science, 196(6): 467–473.
  • Noreen, Z., Ashraf, M. 2009. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinty tolerans markers. Journal of Plant Physiology, 166 1764–1774.
  • Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., Lachaal, M. 2010. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant, 32: 289–296.
  • Öztürk, L., Demir, Y., Ünlükara, A., Karataş, İ., Kurunç, A., Düzdemir, O. 2012. Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnological Letters Journal, 17: 7227–7236.
  • Parida, A.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3): 324–349.
  • Pennycooke, J.C., Cox, S., Stushnoff, C. 2005. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia×hybrida). Environmental and Experimental Botany, 53(2): 225–232.
  • Posmyk, M.M., Kontek, R., Janas, K.M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 72(2): 596–602.
  • Radic, S., Radic´-Stojkovic,´ M., Pevalek-Kozlina, B. 2006. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. Journal of Plant Physiology, 163(12): 1284–1292.
  • Ruegger, M., Chapple, C. 2001. Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics, 159(4): 1741–1749.
  • Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 49 (1): 85–91.
  • Song, J-Y., Kim, T-Y., Hong, J-H. 2005. Effects of abscisic acid and temperature on the anthocyanin accumulation in seedlings of Arabidopsis thaliana. Journal of Environmental Sciences, 14(12): 1093–1102.
  • Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S and Sudhakar, C. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science, 141: 1–9.
  • Velikova, P., Yordanov, I and Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science, 151: 59–66.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Tetiktabanlar Bu kişi benim

Lokman Öztürk

Dursun Kısa

Nusret Genç

Proje Numarası 2010/25
Yayımlanma Tarihi 15 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 1

Kaynak Göster

APA Tetiktabanlar, İ., Öztürk, L., Kısa, D., Genç, N. (2020). Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 9(1), 85-94.
AMA Tetiktabanlar İ, Öztürk L, Kısa D, Genç N. Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi. GBAD. Mayıs 2020;9(1):85-94.
Chicago Tetiktabanlar, İbrahim, Lokman Öztürk, Dursun Kısa, ve Nusret Genç. “Tuz Stresinin Bezelye (Pisum Sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 9, sy. 1 (Mayıs 2020): 85-94.
EndNote Tetiktabanlar İ, Öztürk L, Kısa D, Genç N (01 Mayıs 2020) Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 9 1 85–94.
IEEE İ. Tetiktabanlar, L. Öztürk, D. Kısa, ve N. Genç, “Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi”, GBAD, c. 9, sy. 1, ss. 85–94, 2020.
ISNAD Tetiktabanlar, İbrahim vd. “Tuz Stresinin Bezelye (Pisum Sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 9/1 (Mayıs 2020), 85-94.
JAMA Tetiktabanlar İ, Öztürk L, Kısa D, Genç N. Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi. GBAD. 2020;9:85–94.
MLA Tetiktabanlar, İbrahim vd. “Tuz Stresinin Bezelye (Pisum Sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 9, sy. 1, 2020, ss. 85-94.
Vancouver Tetiktabanlar İ, Öztürk L, Kısa D, Genç N. Tuz Stresinin Bezelye (Pisum sativum L.) Çeşitlerinde Fenolik Bileşikler Üzerine Etkisi. GBAD. 2020;9(1):85-94.