Araştırma Makalesi
BibTex RIS Kaynak Göster

Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi

Yıl 2021, Cilt: 11 Sayı: 2, 1302 - 1310, 01.06.2021
https://doi.org/10.21597/jist.804539

Öz

Bu çalışmada daha önce sentezlenen eksenel ([3- (dimetilamino) fenoksi] propanooksi) ve ([3- (dietilamino) fenoksi] propanooksi) ikameli silisyum ftalosiyaninlerin (DM-C3-Si ve DE-C3-Si) biyolojik aktivitelerinin [sığır karbonik anhidraz (bCA) inhibisyonu, antioksidan ve antibakteriyel] değerlendirilmesi amaçlandı. CA inhibisyon aktivitesi, esteraz aktivitesi ile belirlendi. Antioksidan aktivite, iki yaygın yöntem olan 2,2-difenil-1-pikrilhidrazil (DPPH•) radikal temizleme ve demir iyon (III) indirgeme / antioksidan güç (FRAP) metotları ile belirlendi. Antibakteriyel aktivite, üç Gram-negatif ve üç Gram-pozitif bakteriye karşı disk difüzyon yöntemi ile belirlendi. Sonuçlara göre, DE-C3-Si silisyum ftalosiyanin, standart CA inhibitörü sülfanilamide kıyasla 2333 nM IC50 değeriyle yaklaşık iki kat daha yüksek CA inhibitör aktivitesi gösterdi. Antioksidan sonuçlarına göre, silisyum ftalosiyaninler standart C vitamininden daha yüksek antioksidan aktivite gösterdi (DPPH• radikal temizleme SC50 değerleri: DM-C3-Si: 0.0199 mg mL-1 ve DE-C3-Si: 0.0232 mg mL-1, FRAP TEAC değerleri: DM-C3-Si: 232 μM ve DE-C3-Si: 73 μM). Bu bileşiklerin antibakteriyel aktivitesinin Gram-negatif ve Gram-pozitif bakterilere karşı çok az olduğu gözlendi. Sonuç olarak, silisyum ftalosiyaninler, biyolojik aktiviteleri nedeniyle yeni CA inhibitörlerinin keşfinde ve gıdalarda büyük kullanım potansiyeline sahiptir.

Teşekkür

Bu çalışmanın test ve analizlerinin Espiye Meslek Yüksekokulundaki araştırma laboratuarlarında yapılmasına imkan sağlayan Giresun Üniversitesi’ ne teşekkür ederiz.

Kaynakça

  • Agirtaş MS, Cabir B, Gümüş S, Özdemir S, Dündar A, 2018. Synthesis and Antioxidant, Aggregation, and Electronic Properties of 6-tert-butyl-1,4-benzodioxine Substituted Phthalocyanines. Turkish Journal of Chemistry. 42(1): 100-111.
  • Alterio V, DiFiore A, D’Ambrosio K, Supuran CT, De Simone, G, 2012. Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms?. Chemical Reviews.112(8), 4421-4468.
  • Armstrong JM, Myers DV, Verpoorte JA, Edsall JT, 1966. Purification and Properties of Human Erythrocyte Carbonic Anhydrase. The Journal of Biological Chemistry. 241(21): 5137-5149.
  • Arslan T, Biyiklioglu Z, Şentürk M, 2018. The Synthesis of Axially Disubstituted Silicon Phthalocyanines, Their Quaternized Derivatives and First Inhibitory Effect on Human Cytosolic Carbonic Anhydrase İsozymes hCA I and II. RSC Advances. 8: 10172-10178.
  • Arslan T, Çakır N, Keleş T, Biyiklioglu Z, Senturk M, 2019. Triazole Substituted Metal-Free, Metallo-Phthalocyanines and Their Water Soluble Derivatives as Potential Cholinesterases Inhibitors: Design, Synthesis and in Vitro Inhibition Study. Bioorganic Chemistry. 90: 103100.
  • Barut B, Demirbaş Ü, Özel A, Kantekin H, 2017. Novel Water Soluble Morpholine Substituted Zn(II) Phthalocyanine: Synthesis, Characterization, DNA/BSA Binding, DNA Photocleavage and Topoisomerase I Inhibition. International Journal of Biological Macromolecules. 105(1): 499-508.
  • Basappa C, Reddy VKR, Kotresh HMN, Musturappa PK, Devendrachari MC, Ganesh SD, 2015. Synthesis, Characterization, Novel Interaction of DNA, Antioxidant and Antimicrobial Studies of New Water Soluble Metallophthalocyanines Posture Eight Hydroxyphenyl Moiety via 1,3,4‐oxadiazole Bridge. Journal of Heterocyclic Chemistry. 52(6): 1782-1791.
  • Bekaroğlu Ö, 1996. Phthalocyanines Containing Macrocycles. Applied Organometallic Chemistry. 10(8): 605-622.
  • Bıyıklıoğlu Z, Alp H, 2016. Synthesis, Characterization, Electropolymerization and Aggregation Properties of Axially Diethyl-dimethylaminophenoxypropanoxy Substituted Silicon Phthalocyanines and Their Water Soluble Derivatives. Dyes and Pigments. 132, 213-222.
  • Çelebi M, Ağırtaş MS, Dundar A, 2015. Different Peripheral Substituted Phthalocyanines: Synthesis, Characterization, Aggregation Behavior, Antioxidant and Antibacterial Activity. Journal of Structural Chemistry. 56(8): 1638-1645.
  • Cuendet M, Hostettmann K, Potterat O, Dyatmiko W, 1997. Iridoid glucosides with free radical scavenging properties from Fagrae ablumei. Helvetica Chimica Acta. 80(4): 1144-1152.
  • Demirbaş Ü, Barut B, Yalçın İ, Değirmencioğlu İ, Yıldırmış S, Özel A, 2019. Synthesis, Characterization, and Investigation of Cholinesterase Inhibitory Properties of Novel Phthalocyanines. Journal of Heterocyclic Chemistry. 56(5): 1553-1559.
  • Demirkapi D, Şirin A, Turanli-Yildiz B, Çakar ZP, Sesalan BŞ, 2014. The Synthesis of New Silicon Phthalocyanines and Analysis of Their Photochemical and Biological Properties. Synthetic Metals. 187: 152-159.
  • Dini D, Barthel M, Schneider T, Ottmar M, Verma S, Hanack M, 2003. Phthalocyanines and Related Compounds as Switchable Materials Upon Strong Irradiation: the Molecular Engineering behind the Optical Limiting Effect. Solid State Ionics. 165: 289–303.
  • Efe D, 2019. The Evaluation of the Antibacterial Activity of Vetiveria zizanioides (L.) Nash Grown in Giresun. Alinteri Journal of Agriculture Science. 34(1): 3-4.
  • Efe D, 2020. Carbonic Anhydrase Enzyme Inhibition and Biological Activities of Satureja hortensis L. Essential Oil. Industrial Crops and Products. 156: 112849.
  • Farajzadeh N, Karaoglu HP, Akin M, Saki N, Koçak MB, 2019. Antimicrobial and Antioxidant Properties of Novel Octa-substituted Phthalocyanines Bearing (trifluoromethoxy) Phenoxy Groups on Peripheral Positions. Journal of Porphyrins and Phthalocyanines. 23: 91-102.
  • Günsel A, Alici EH, Bilgiçli AT, Arabaci G, Yaraşir MN, 2019. Antioxidant Properties of Water-Soluble Phthalocyanines Containing Quinoline 5-sulfonic acid Groups. Turkish Journal of Chemistry. 43: 1030-1039.
  • Günsel A, Bilgiçli AT, Kandemir C, Sancak R, Arabaci G, Yaraşır MN, 2020. Comparison of Novel Tetra-Substituted Phthalocyanines with Their Quaternized Derivatives: Antioxidant and Antibacterial Properties. Synthetic Metals. 260: 116288.
  • Kantar C, Mavi V, Baltaş N, Islamoǧlu F, Şaşmaz S, 2016. Novel zinc(II) Phthalocyanines Bearing Azo-containing Schiff Base: Determination of pKa Values, Absorption, Emission, Enzyme Inhibition and Photochemical Properties. Journal of Molecular Structure. 1122: 88-99.
  • Karaçelik AA, Küçük M, Efe D, Çakır V, Bıyıklıoğlu Z, 2021. Carbonic Anhydrase Inhibition Potential and Some Bioactivities of the Peripherally Tetrasubstituted Cobalt(II), Titanium(IV), Manganese(III) Phthalocyanines. Letters in Drug Design & Discovery. 18: E-pub Ahead of Print.
  • Kluson P, Drobek M, Kalaji A, Zarubova S, Krysa J, Rakusan J, 2008. Singlet Oxygen Photogeneration Efficiencies of a Series of Phthalocyanines in Well-defined Spectral Regions. Journal of Photochemistry and Photobiology A: Chemistry. 199(2): 267-273.
  • McKenna R, Supuran CT, 2014. Carbonic Anhydrase Inhibitors Drug Design. Sub-cellular Biochemistry. 75: 291-323.
  • Nyamu SN, Ombaka L, Masika E, Ng’ang’a M, 2018. Antimicrobial Photodynamic Activity of Phthalocyanine Derivatives. Advances in Chemistry. 2018: 1-8.
  • Oyaizu M, 1986. Studies on Products of Browning Reactions: Antioxidative Activities of Product of Browning Reaction Prepared from Glucosamine. Japan Journal of Nutrition. 44(6): 307-315.
  • Pastarekova S, Parkkıla S, Pastorek J, Supuran CT, 2004. Carbonic Anhydrases: Current State of the Art, Therapeutic Applications and Future Prospects. Journal of Enzyme Inhibition and Medicinal Chemistry. 19(3): 199-229.
  • Sarkı G, Kantekin H, Yalazan H, Kahriman N, Biyiklioğlu Z, Serdaroğlu V, 2019. Synthesis, Characterization and Electrochemical Studies of Metal-free and Metallophthalocyanines Containing Two Different Chalcone Units Substituted on Peripherally Positions. Journal of Molecular Structure. 1196: 592-603.
  • Supuran CT, 2010. Carbonic Anhydrase Inhibitors. Bioorganic & Medicinal Chemistry Letters. 20(12): 3467–74.
  • Supuran CT, Scozzafava A, 2007. Carbonic Anhydrases as Targets for Medicinal Chemistry, Bioorganic and Medicinal Chemistry. 15: 4336-4350.
  • Unluer D, Kamiloglu AA, Direkel S, Bektas E, Kantekin H, Sancak K, 2019. Synthesis and Characterization of Metallophthalocyanine with Morpholine Containing Schiff base and Determination of Their Antimicrobial and Antioxidant Activities. Journal of Organometallic Chemistry. 900: 120936.
  • United I, 2019. No Time toWait–Securing the Future from Drug-resistant Infections, Report to the Secretary General of the Nations. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/ (Erişim Tarihi: 02.10.2020).
  • Ünlü S, Yaraşır MN, Kandaz M, Koca A, Salih B, 2008. Synthesis, Spectroscopy and Electrochemical Properties of Highly Soluble Fluoro Containing Phthalocyanines. Polyhedron. 27: 2805-2810.
  • Yıldırım N, Bilgiçli AT, Alici EH., Arabacı G, Yarasir MN, 2017. Formation, Characterization, Aggregation, Fluorescence and Antioxidant Properties of Novel Tetrasubstituted Metal-free and Metallophthalocyanines Bearing (4-(methylthio)phenoxy) Moieties. Journal of Molecular Structure. 1144: 66-79.
  • Yongde Y, Zhenguo J, 2006. Improved Photoreceptor Decay Characteristics of Vanadyl-phthalocyanine Films Annealed Under Magnetic Field. Journal of Photochemistry and Photobiology A: Chemistry. 179: 348-350.
  • Zhang L, Huang J, Ren L, Bai M, Wu L, Zhai B, Zhou X, 2008. Synthesis and Evaluation of Cationic Phthalocyanine Derivatives as Potential Inhibitors of Telomerase. Bioorganic and Medicinal Chemistry. 16(1): 303-312.

Determination of Biological Activities of Axially Disubstituted Silicon Phthalocyanines

Yıl 2021, Cilt: 11 Sayı: 2, 1302 - 1310, 01.06.2021
https://doi.org/10.21597/jist.804539

Öz

In this study, previously synthesized axially ([3-(dimethylamino)phenoxy]propanoxy) and ([3-(diethylamino)phenoxy]propanoxy) substituted silicon phthalocyanines (DM-C3-Si and DE-C3-Si) were aimed to evalute biological activities [bovine carbonic anhydrase (bCA) inhibition, antioxidant, and antibacterial]. CA inhibition activity was determined by esterase activity. The antioxidant activity was determined by two common methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging and ferric ion (III) reducing / antioxidant power (FRAP) assay. The antibacterial activity was determined by the disk diffusion method against three Gram-negative and three Gram-positive bacteria. According to the results, DE-C3-Si silicon phthalocyanin showed approximately twice as high CA inhibitory activity with IC50 value of 2333 nM compared with the standard CA inhibitor sulfanilamide. According to the antioxidant studies, the silicon phthalocyanines showed higher antioxidant activity than the standard vitamin C (SC50 values of DPPH• scavenging activity: 0.0199 mg mL-1 for DM-C3-Si and 0.0232 mg mL-1 for DE-C3-Si, TEAC values of FRAP: 232 μM for DM-C3-Si and 73 μM for DE-C3-Si). It was observed that antibacterial activity of these compounds were exellent slight against Gram-negative and Gram-positive bacteria. As a result, silicon phthalocyanines have great potential of use in the discovery of new CA inhibitors and in food due to their biological activities.

Kaynakça

  • Agirtaş MS, Cabir B, Gümüş S, Özdemir S, Dündar A, 2018. Synthesis and Antioxidant, Aggregation, and Electronic Properties of 6-tert-butyl-1,4-benzodioxine Substituted Phthalocyanines. Turkish Journal of Chemistry. 42(1): 100-111.
  • Alterio V, DiFiore A, D’Ambrosio K, Supuran CT, De Simone, G, 2012. Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms?. Chemical Reviews.112(8), 4421-4468.
  • Armstrong JM, Myers DV, Verpoorte JA, Edsall JT, 1966. Purification and Properties of Human Erythrocyte Carbonic Anhydrase. The Journal of Biological Chemistry. 241(21): 5137-5149.
  • Arslan T, Biyiklioglu Z, Şentürk M, 2018. The Synthesis of Axially Disubstituted Silicon Phthalocyanines, Their Quaternized Derivatives and First Inhibitory Effect on Human Cytosolic Carbonic Anhydrase İsozymes hCA I and II. RSC Advances. 8: 10172-10178.
  • Arslan T, Çakır N, Keleş T, Biyiklioglu Z, Senturk M, 2019. Triazole Substituted Metal-Free, Metallo-Phthalocyanines and Their Water Soluble Derivatives as Potential Cholinesterases Inhibitors: Design, Synthesis and in Vitro Inhibition Study. Bioorganic Chemistry. 90: 103100.
  • Barut B, Demirbaş Ü, Özel A, Kantekin H, 2017. Novel Water Soluble Morpholine Substituted Zn(II) Phthalocyanine: Synthesis, Characterization, DNA/BSA Binding, DNA Photocleavage and Topoisomerase I Inhibition. International Journal of Biological Macromolecules. 105(1): 499-508.
  • Basappa C, Reddy VKR, Kotresh HMN, Musturappa PK, Devendrachari MC, Ganesh SD, 2015. Synthesis, Characterization, Novel Interaction of DNA, Antioxidant and Antimicrobial Studies of New Water Soluble Metallophthalocyanines Posture Eight Hydroxyphenyl Moiety via 1,3,4‐oxadiazole Bridge. Journal of Heterocyclic Chemistry. 52(6): 1782-1791.
  • Bekaroğlu Ö, 1996. Phthalocyanines Containing Macrocycles. Applied Organometallic Chemistry. 10(8): 605-622.
  • Bıyıklıoğlu Z, Alp H, 2016. Synthesis, Characterization, Electropolymerization and Aggregation Properties of Axially Diethyl-dimethylaminophenoxypropanoxy Substituted Silicon Phthalocyanines and Their Water Soluble Derivatives. Dyes and Pigments. 132, 213-222.
  • Çelebi M, Ağırtaş MS, Dundar A, 2015. Different Peripheral Substituted Phthalocyanines: Synthesis, Characterization, Aggregation Behavior, Antioxidant and Antibacterial Activity. Journal of Structural Chemistry. 56(8): 1638-1645.
  • Cuendet M, Hostettmann K, Potterat O, Dyatmiko W, 1997. Iridoid glucosides with free radical scavenging properties from Fagrae ablumei. Helvetica Chimica Acta. 80(4): 1144-1152.
  • Demirbaş Ü, Barut B, Yalçın İ, Değirmencioğlu İ, Yıldırmış S, Özel A, 2019. Synthesis, Characterization, and Investigation of Cholinesterase Inhibitory Properties of Novel Phthalocyanines. Journal of Heterocyclic Chemistry. 56(5): 1553-1559.
  • Demirkapi D, Şirin A, Turanli-Yildiz B, Çakar ZP, Sesalan BŞ, 2014. The Synthesis of New Silicon Phthalocyanines and Analysis of Their Photochemical and Biological Properties. Synthetic Metals. 187: 152-159.
  • Dini D, Barthel M, Schneider T, Ottmar M, Verma S, Hanack M, 2003. Phthalocyanines and Related Compounds as Switchable Materials Upon Strong Irradiation: the Molecular Engineering behind the Optical Limiting Effect. Solid State Ionics. 165: 289–303.
  • Efe D, 2019. The Evaluation of the Antibacterial Activity of Vetiveria zizanioides (L.) Nash Grown in Giresun. Alinteri Journal of Agriculture Science. 34(1): 3-4.
  • Efe D, 2020. Carbonic Anhydrase Enzyme Inhibition and Biological Activities of Satureja hortensis L. Essential Oil. Industrial Crops and Products. 156: 112849.
  • Farajzadeh N, Karaoglu HP, Akin M, Saki N, Koçak MB, 2019. Antimicrobial and Antioxidant Properties of Novel Octa-substituted Phthalocyanines Bearing (trifluoromethoxy) Phenoxy Groups on Peripheral Positions. Journal of Porphyrins and Phthalocyanines. 23: 91-102.
  • Günsel A, Alici EH, Bilgiçli AT, Arabaci G, Yaraşir MN, 2019. Antioxidant Properties of Water-Soluble Phthalocyanines Containing Quinoline 5-sulfonic acid Groups. Turkish Journal of Chemistry. 43: 1030-1039.
  • Günsel A, Bilgiçli AT, Kandemir C, Sancak R, Arabaci G, Yaraşır MN, 2020. Comparison of Novel Tetra-Substituted Phthalocyanines with Their Quaternized Derivatives: Antioxidant and Antibacterial Properties. Synthetic Metals. 260: 116288.
  • Kantar C, Mavi V, Baltaş N, Islamoǧlu F, Şaşmaz S, 2016. Novel zinc(II) Phthalocyanines Bearing Azo-containing Schiff Base: Determination of pKa Values, Absorption, Emission, Enzyme Inhibition and Photochemical Properties. Journal of Molecular Structure. 1122: 88-99.
  • Karaçelik AA, Küçük M, Efe D, Çakır V, Bıyıklıoğlu Z, 2021. Carbonic Anhydrase Inhibition Potential and Some Bioactivities of the Peripherally Tetrasubstituted Cobalt(II), Titanium(IV), Manganese(III) Phthalocyanines. Letters in Drug Design & Discovery. 18: E-pub Ahead of Print.
  • Kluson P, Drobek M, Kalaji A, Zarubova S, Krysa J, Rakusan J, 2008. Singlet Oxygen Photogeneration Efficiencies of a Series of Phthalocyanines in Well-defined Spectral Regions. Journal of Photochemistry and Photobiology A: Chemistry. 199(2): 267-273.
  • McKenna R, Supuran CT, 2014. Carbonic Anhydrase Inhibitors Drug Design. Sub-cellular Biochemistry. 75: 291-323.
  • Nyamu SN, Ombaka L, Masika E, Ng’ang’a M, 2018. Antimicrobial Photodynamic Activity of Phthalocyanine Derivatives. Advances in Chemistry. 2018: 1-8.
  • Oyaizu M, 1986. Studies on Products of Browning Reactions: Antioxidative Activities of Product of Browning Reaction Prepared from Glucosamine. Japan Journal of Nutrition. 44(6): 307-315.
  • Pastarekova S, Parkkıla S, Pastorek J, Supuran CT, 2004. Carbonic Anhydrases: Current State of the Art, Therapeutic Applications and Future Prospects. Journal of Enzyme Inhibition and Medicinal Chemistry. 19(3): 199-229.
  • Sarkı G, Kantekin H, Yalazan H, Kahriman N, Biyiklioğlu Z, Serdaroğlu V, 2019. Synthesis, Characterization and Electrochemical Studies of Metal-free and Metallophthalocyanines Containing Two Different Chalcone Units Substituted on Peripherally Positions. Journal of Molecular Structure. 1196: 592-603.
  • Supuran CT, 2010. Carbonic Anhydrase Inhibitors. Bioorganic & Medicinal Chemistry Letters. 20(12): 3467–74.
  • Supuran CT, Scozzafava A, 2007. Carbonic Anhydrases as Targets for Medicinal Chemistry, Bioorganic and Medicinal Chemistry. 15: 4336-4350.
  • Unluer D, Kamiloglu AA, Direkel S, Bektas E, Kantekin H, Sancak K, 2019. Synthesis and Characterization of Metallophthalocyanine with Morpholine Containing Schiff base and Determination of Their Antimicrobial and Antioxidant Activities. Journal of Organometallic Chemistry. 900: 120936.
  • United I, 2019. No Time toWait–Securing the Future from Drug-resistant Infections, Report to the Secretary General of the Nations. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/ (Erişim Tarihi: 02.10.2020).
  • Ünlü S, Yaraşır MN, Kandaz M, Koca A, Salih B, 2008. Synthesis, Spectroscopy and Electrochemical Properties of Highly Soluble Fluoro Containing Phthalocyanines. Polyhedron. 27: 2805-2810.
  • Yıldırım N, Bilgiçli AT, Alici EH., Arabacı G, Yarasir MN, 2017. Formation, Characterization, Aggregation, Fluorescence and Antioxidant Properties of Novel Tetrasubstituted Metal-free and Metallophthalocyanines Bearing (4-(methylthio)phenoxy) Moieties. Journal of Molecular Structure. 1144: 66-79.
  • Yongde Y, Zhenguo J, 2006. Improved Photoreceptor Decay Characteristics of Vanadyl-phthalocyanine Films Annealed Under Magnetic Field. Journal of Photochemistry and Photobiology A: Chemistry. 179: 348-350.
  • Zhang L, Huang J, Ren L, Bai M, Wu L, Zhai B, Zhou X, 2008. Synthesis and Evaluation of Cationic Phthalocyanine Derivatives as Potential Inhibitors of Telomerase. Bioorganic and Medicinal Chemistry. 16(1): 303-312.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Ayça Aktaş Karaçelik 0000-0001-5381-2924

Derya Efe 0000-0003-3554-1790

Volkan Çakır 0000-0002-5817-0817

Zekeriya Bıyıklıoğlu 0000-0001-5138-214X

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 2 Ekim 2020
Kabul Tarihi 12 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Aktaş Karaçelik, A., Efe, D., Çakır, V., Bıyıklıoğlu, Z. (2021). Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi. Journal of the Institute of Science and Technology, 11(2), 1302-1310. https://doi.org/10.21597/jist.804539
AMA Aktaş Karaçelik A, Efe D, Çakır V, Bıyıklıoğlu Z. Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2021;11(2):1302-1310. doi:10.21597/jist.804539
Chicago Aktaş Karaçelik, Ayça, Derya Efe, Volkan Çakır, ve Zekeriya Bıyıklıoğlu. “Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology 11, sy. 2 (Haziran 2021): 1302-10. https://doi.org/10.21597/jist.804539.
EndNote Aktaş Karaçelik A, Efe D, Çakır V, Bıyıklıoğlu Z (01 Haziran 2021) Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi. Journal of the Institute of Science and Technology 11 2 1302–1310.
IEEE A. Aktaş Karaçelik, D. Efe, V. Çakır, ve Z. Bıyıklıoğlu, “Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 2, ss. 1302–1310, 2021, doi: 10.21597/jist.804539.
ISNAD Aktaş Karaçelik, Ayça vd. “Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology 11/2 (Haziran 2021), 1302-1310. https://doi.org/10.21597/jist.804539.
JAMA Aktaş Karaçelik A, Efe D, Çakır V, Bıyıklıoğlu Z. Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1302–1310.
MLA Aktaş Karaçelik, Ayça vd. “Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology, c. 11, sy. 2, 2021, ss. 1302-10, doi:10.21597/jist.804539.
Vancouver Aktaş Karaçelik A, Efe D, Çakır V, Bıyıklıoğlu Z. Aksiyal Disübstitüe Silisyum Ftalosiyaninlerin Biyolojik Aktivitelerinin Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):1302-10.