Araştırma Makalesi
BibTex RIS Kaynak Göster

Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction

Yıl 2018, Cilt: 22 Sayı: 3, 945 - 951, 01.06.2018
https://doi.org/10.16984/saufenbilder.310429

Öz

The different coatings with high hydrogen evolution
reaction (HER) durability activity were prepared by electrodeposition. Iron,
copper and zinc alloys were deposited on graphite electrode. The binary coating
prepared on the graphite electrode. Zinc alloys were etched in alkaline
solution to produce a porous and electrocatalytic surface suitable for use in
the HER. The scanning electron microscopy (SEM) was used for surface
characterization. Electrolysis was carried out in 1.0 M KOH solution by DC
power supply. Cathodic current–potential curves, electrochemical impedance
spectroscopy and cyclic voltammetry measurements were performed for chemical
characterization. The experimental results show that the etching zinc alloys
have compact and porous structures with good physical stability in comparison
with other deposit for HER.

Kaynakça

  • Referans1 J. K. Lee, Y. Yi, H. J. Lee, S.Uhm, J. Lee, “Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction”, Catalysis Today, Vol. 146, no 1–2, pp. 188-191, 2009. Referans2 E.Baran, B.Yazici, “Effect of different nano-structuredAg doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production”, International Journal of Hydrogen Energy, Vol. 41, no 4, pp. 2498-2511, 2016. Referans3 T. Sun, E. Liu, X. Liang, X. Hu, J. Fan, “Enhanced hydrogen evolution from water splitting using Fe–Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method”, Appl Surf Sci, Vol. 347, pp. 696–705,2015. Referans4 M. Wang, Z. Wang, X. Gong, Z. Guo, “The intensification technologies to water electrolysis for hydrogen production – a review”, Renew Sust Energ Rev, Vol. 29, pp. 573–588, 2014. Referans5 S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.J. Kim, et al., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Appl Surf Sci, Vol. 349, pp. 629–635, 2015. Referans6 Y. Zhu, X. Zhang, J. Song, W. Wang, F.Yue, Q. Ma, “Microstructure and hydrogen evolution catalytic properties of Ni-Sn alloys prepared by electrodeposition method”, Applied Catalysis A: General, Vol. 500, pp. 51-57, 2015. Referans7 Z.Pu, Q. Liu, A. M. Asiri, A. Y. Obaid, X. Sun, “One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution”, Electrochimica Acta, Vol. 134, Pages 8-12, 2014. Referans8 D. Brown, M. Mahmood, A. Turner, S. Hall, P. Fogarty, “Low overvoltage electrocatalysts for hydrogen evolving electrodes”, International Journal of Hydrogen Energy, Vol. 7, p. 405, 1982. Referans9 N.V. Krstajić, V.D. Jović, Lj. Gajić-Krstajić, B.M. Jović, A.L. Antozzi, G.N. Martelli, “Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution”, International Journal of Hydrogen Energy, Vol. 33, no 14, pp. 3676-3687, 2008. Referans10 R. Parsons, “The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen”, Trans Faraday Soc, Vol.54, pp. 1053–1063, 1958. Referans11 S. Eugenio, T.M. Silva, M.J. Carmezim, R.G. Duarte, M.F. Montemor, “Electrodeposition and characterization of nickel copper metallic foams for application as electrodes for supercapacitors”, J. Appl. Electrochem., Vol. 44, pp. 455–465, 2014. Referans12 F. Dogan, L.D. Sanjeewa, S.J. Hwu, J.T. Vaughey, “Electrodeposited copper foams as substrates for thin film silicon electrodes”, Solid State Ionics, Vol. 288, pp. 204–206, 2016. Referans13 K. Mazloomi, N. B.Sulaiman, H. Moayedi, “Electrical efficiency of electrolytic hydrogen production”, Int. J. Electrochem Sci., Vol. 7, pp. 3314–3326, 2012. Referans14 H. Shin, J. Dong, M. Liu, “Nanoporous structures prepared by an electrochemical deposition process”, Adv. Mater., Vol. 15, pp. 1610–1614, 2003. Referans15 H. Singh, P.B.Dheeraj, Y. P. Singh, G.Rathore, M.Bhardwaj, “Electrodeposition of porous copper as a substrate for electrocatalytic material”, Journal of Electroanalytical Chemistry, Vol. 785, pp. 1-7, 2017. Referans16 R.Solmaz, G.Kardaş, “Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production”, International Journal of Hydrogen Energy, Vol. 36, no 19, pp. 12079–12087, 2011. Referans17 A.Döner, R.Solmaz, G.Kardaş, “Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution”, International Journal of Hydrogen Energy, Vol. 36, no 13, pp. 7391–7397, 2011. Referans18 R.Solmaz , G.Kardaş, “Hydrogen evolution and corrosion performance of NiZn coatings”, Energy Conversion and Management, Vol. 48, no 2, pp. 583–591, 2007. Referans19 R.Solmaz, A.Salcı, H.Yüksel, M.Doğrubaş, G.Kardaş, “Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 42, no 4, 26, pp. 2464–2475, 2017. Referans20 R.Solmaz, A.Döner, M.Doğrubaş, İ. Y. Erdoğan, G.Kardaş, “Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 41, no 3, pp. 1432–1440, 2016. Referans21 R.Solmaz, A.Döner, G.Kardaş, “Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution”, International Journal of Hydrogen Energy, Vol. 35, no 19, pp. 10045–10049, 2010. Referans22 A.Döner, R.Solmaz, G.Kardaş, “Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell”, Energy, Vol. 90, Part 1, pp. 1144–1151, 2015. Referans23 M.Farsak, E.Telli, A. O.Yüce, G.Kardaş, “The noble metal loading binary iron–zinc electrode for hydrogen production”, International Journal of Hydrogen Energy, Vol. 42, no 10, pp. 6455–6461, 2017.

Hidrojen Gelişim Reaksiyonu İçin Bakır-Çinko İkili Kaplama

Yıl 2018, Cilt: 22 Sayı: 3, 945 - 951, 01.06.2018
https://doi.org/10.16984/saufenbilder.310429

Öz

Yüksek
hidrojen gelişim reaksiyonu (HER) için dayanıklılık aktivitesine sahip farklı
kaplamalar elektrokimyasal kaplama yöntemi ile hazırlanmıştır. Demir, bakır ve
çinko alaşımları grafit elektrot üzerine çöktürüldü. Grafit elektrotu üzerine
ikili kaplamalar hazırlanmıştır. Çinko alaşımları, HER' de kullanım için uygun
gözenekli ve elektrokatalitik bir yüzey oluşturmak için alkali çözeltide
aşındırılmıştır. Yüzey karakterizasyonu için taramalı elektron mikroskobu (SEM)
kullanılmıştır. Elektroliz, DC güç kaynağı ile 1,0 M KOH çözeltisi içinde
gerçekleştirilmiştir. Kimyasal karakterizasyon için katodik akım-potansiyel
eğrileri, elektrokimyasal impedans spektroskopisi ve dönüşümlü voltametri
ölçümleri yapılmıştır. Deneysel sonuçlar, aşındırılmış çinko alaşımlarının, HER
için diğer elektrotlara kıyasla, fiziksel istikrarı iyi olan kompakt ve
gözenekli yapılara sahip olduklarını göstermektedir.

Kaynakça

  • Referans1 J. K. Lee, Y. Yi, H. J. Lee, S.Uhm, J. Lee, “Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction”, Catalysis Today, Vol. 146, no 1–2, pp. 188-191, 2009. Referans2 E.Baran, B.Yazici, “Effect of different nano-structuredAg doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production”, International Journal of Hydrogen Energy, Vol. 41, no 4, pp. 2498-2511, 2016. Referans3 T. Sun, E. Liu, X. Liang, X. Hu, J. Fan, “Enhanced hydrogen evolution from water splitting using Fe–Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method”, Appl Surf Sci, Vol. 347, pp. 696–705,2015. Referans4 M. Wang, Z. Wang, X. Gong, Z. Guo, “The intensification technologies to water electrolysis for hydrogen production – a review”, Renew Sust Energ Rev, Vol. 29, pp. 573–588, 2014. Referans5 S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.J. Kim, et al., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Appl Surf Sci, Vol. 349, pp. 629–635, 2015. Referans6 Y. Zhu, X. Zhang, J. Song, W. Wang, F.Yue, Q. Ma, “Microstructure and hydrogen evolution catalytic properties of Ni-Sn alloys prepared by electrodeposition method”, Applied Catalysis A: General, Vol. 500, pp. 51-57, 2015. Referans7 Z.Pu, Q. Liu, A. M. Asiri, A. Y. Obaid, X. Sun, “One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution”, Electrochimica Acta, Vol. 134, Pages 8-12, 2014. Referans8 D. Brown, M. Mahmood, A. Turner, S. Hall, P. Fogarty, “Low overvoltage electrocatalysts for hydrogen evolving electrodes”, International Journal of Hydrogen Energy, Vol. 7, p. 405, 1982. Referans9 N.V. Krstajić, V.D. Jović, Lj. Gajić-Krstajić, B.M. Jović, A.L. Antozzi, G.N. Martelli, “Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution”, International Journal of Hydrogen Energy, Vol. 33, no 14, pp. 3676-3687, 2008. Referans10 R. Parsons, “The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen”, Trans Faraday Soc, Vol.54, pp. 1053–1063, 1958. Referans11 S. Eugenio, T.M. Silva, M.J. Carmezim, R.G. Duarte, M.F. Montemor, “Electrodeposition and characterization of nickel copper metallic foams for application as electrodes for supercapacitors”, J. Appl. Electrochem., Vol. 44, pp. 455–465, 2014. Referans12 F. Dogan, L.D. Sanjeewa, S.J. Hwu, J.T. Vaughey, “Electrodeposited copper foams as substrates for thin film silicon electrodes”, Solid State Ionics, Vol. 288, pp. 204–206, 2016. Referans13 K. Mazloomi, N. B.Sulaiman, H. Moayedi, “Electrical efficiency of electrolytic hydrogen production”, Int. J. Electrochem Sci., Vol. 7, pp. 3314–3326, 2012. Referans14 H. Shin, J. Dong, M. Liu, “Nanoporous structures prepared by an electrochemical deposition process”, Adv. Mater., Vol. 15, pp. 1610–1614, 2003. Referans15 H. Singh, P.B.Dheeraj, Y. P. Singh, G.Rathore, M.Bhardwaj, “Electrodeposition of porous copper as a substrate for electrocatalytic material”, Journal of Electroanalytical Chemistry, Vol. 785, pp. 1-7, 2017. Referans16 R.Solmaz, G.Kardaş, “Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production”, International Journal of Hydrogen Energy, Vol. 36, no 19, pp. 12079–12087, 2011. Referans17 A.Döner, R.Solmaz, G.Kardaş, “Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution”, International Journal of Hydrogen Energy, Vol. 36, no 13, pp. 7391–7397, 2011. Referans18 R.Solmaz , G.Kardaş, “Hydrogen evolution and corrosion performance of NiZn coatings”, Energy Conversion and Management, Vol. 48, no 2, pp. 583–591, 2007. Referans19 R.Solmaz, A.Salcı, H.Yüksel, M.Doğrubaş, G.Kardaş, “Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 42, no 4, 26, pp. 2464–2475, 2017. Referans20 R.Solmaz, A.Döner, M.Doğrubaş, İ. Y. Erdoğan, G.Kardaş, “Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 41, no 3, pp. 1432–1440, 2016. Referans21 R.Solmaz, A.Döner, G.Kardaş, “Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution”, International Journal of Hydrogen Energy, Vol. 35, no 19, pp. 10045–10049, 2010. Referans22 A.Döner, R.Solmaz, G.Kardaş, “Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell”, Energy, Vol. 90, Part 1, pp. 1144–1151, 2015. Referans23 M.Farsak, E.Telli, A. O.Yüce, G.Kardaş, “The noble metal loading binary iron–zinc electrode for hydrogen production”, International Journal of Hydrogen Energy, Vol. 42, no 10, pp. 6455–6461, 2017.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Esra Telli

Yayımlanma Tarihi 1 Haziran 2018
Gönderilme Tarihi 4 Mayıs 2017
Kabul Tarihi 26 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 3

Kaynak Göster

APA Telli, E. (2018). Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction. Sakarya University Journal of Science, 22(3), 945-951. https://doi.org/10.16984/saufenbilder.310429
AMA Telli E. Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction. SAUJS. Haziran 2018;22(3):945-951. doi:10.16984/saufenbilder.310429
Chicago Telli, Esra. “Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction”. Sakarya University Journal of Science 22, sy. 3 (Haziran 2018): 945-51. https://doi.org/10.16984/saufenbilder.310429.
EndNote Telli E (01 Haziran 2018) Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction. Sakarya University Journal of Science 22 3 945–951.
IEEE E. Telli, “Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction”, SAUJS, c. 22, sy. 3, ss. 945–951, 2018, doi: 10.16984/saufenbilder.310429.
ISNAD Telli, Esra. “Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction”. Sakarya University Journal of Science 22/3 (Haziran 2018), 945-951. https://doi.org/10.16984/saufenbilder.310429.
JAMA Telli E. Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction. SAUJS. 2018;22:945–951.
MLA Telli, Esra. “Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction”. Sakarya University Journal of Science, c. 22, sy. 3, 2018, ss. 945-51, doi:10.16984/saufenbilder.310429.
Vancouver Telli E. Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction. SAUJS. 2018;22(3):945-51.