Research Article
BibTex RIS Cite

Responses of Saccharomyces cerevisiae Cells Grown in Cultures Prepared from Different Tea Infusions to Oxidative Stress

Year 2023, Volume: 26 Issue: 5, 957 - 965, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1221661

Abstract

Tea is one of the most consumed beverages. Saccharomyces cerevisiae, a model organism in studies on oxidative stress and toxicology, was used to investigate the effects of tea on oxidative stress induced by H2O2. S. cerevisiae cultures were prepared from black, green and white tea infusions and incubated at 30°C for 72 hours. Glutathione-S-transferase enzyme activity and total protein spectrophotometric, malondialdehyde, glutathione and alpha-tocopherol and ergosterol analyses from cell pellets obtained from cultures were performed by HPLC, and fatty acids were performed by GC device. Although protein level in tea infusion groups was higher (p<0.001) compared to control and H2O2 groups, malondialdehyde level decreased (p<0.001). Glutathione and GST levels were decreased in other tea infusion groups except for black tea infusion and black tea infusion+H2O2 groups (p<0.001). Ergosterol levels decreased in both tea infusion and H2O2+tea infusion groups (p<0.05; p<0.001). While palmitic acid increased (p<0.01) in tea infusions and H2O2 groups, palmitoleic acid decreased (p<0.05). Stearic and oleic acid levels decreased in tea infusion groups (p<0.05). As a result, it has been observed that the water-soluble components of tea have effects on fatty acid biosynthesis, other metabolic products and oxidative stress.

References

  • Almajano, M. P., Carbo, R., Jiménez, J. A. L., & Gordon, M. H. (2008). Antioxidant and antimicrobial activities of tea infusions. Food chemistry, 108(1), 55-63. doi.org/10.1016/ j.foodchem.2007.10.040
  • Babich, H., Gottesman, R. T., Liebling, E. J., & Schuck, A. G. (2008). Theaflavin‐3‐gallate and theaflavin‐3′‐gallate, polyphenols in black tea with prooxidant properties. Basic & clinical pharmacology & toxicology, 103(1), 66-74. doi.org/10.1111/j.1742-7843.2008.00232.x
  • Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrition, 25(2), 79-99. doi.org/10.1080/07315724.2006.10719518
  • Dani, C., Bonatto, D., Salvador, M., Pereira, M. D., Henriques, J. A., & Eleutherio, E. (2008). Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 56(11), 4268-4272. doi.org/10.1021/jf800752s
  • Dias, T. R. (2013). White Tea (Camellia sinensis (L.)): an-tioxidant properties and beneficial health effects. International Journal of Food Science and Nutritional Diet, 2(2), 19-26.
  • Ding, Y., Zou, X., Jiang, X., Wu, J., Zhang, Y., Chen, D., & Liang, B. (2015). Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans. PloS one, 10(2), e0113815. doi.org/10.1371/journal.pone.0113815
  • Elhadad, M. A., Karavasiloglou, N., Wulaningsih, W., Tsilidis, K. K., Tzoulaki, I., Patel, C. J., & Rohrmann, S. (2020). Metabolites, nutrients, and lifestyle factors in relation to coffee consumption: an environment-wide association study. Nutrients, 12(5), 1470. doi.org/10.3390/nu12051470
  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22), 7130-7139. doi.org/10.1016/S0021-9258(19)42083-8
  • Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical biochemistry, 90(1), 420-426. doi.org/10.1016/0003-2697(78)90046-5
  • Hata, M., Ishii, Y., Watanabe, E., Uoto, K., Kobayashi, S., Yoshida, K. I., ... & Ando, A. (2010). Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Medical mycology, 48(4), 613-621. doi.org/10.3109/13693780903390208
  • Hilal, Y., & Engelhardt, U. (2007). Characterisation of white tea–Comparison to green and black tea. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2(4), 414-421. doi: 0.1007/s00003-007-0250-3
  • Horžić, D., Komes, D., Belščak, A., Ganić, K. K., Iveković, D., & Karlović, D. (2009). The composition of polyphenols and methylxanthines in teas and herbal infusions. Food chemistry, 115(2), 441-448. doi.org/10.1016/j.foodchem.2008.12.022
  • Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., & Zeng, B. (2017). Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian journal of microbiology, 57(3), 270-277. doi 10.1007/s12088-017-0657-1
  • Huang, Y., Tsang, S. Y., Yao, X., & Chen, Z. Y. (2005). Biological properties of baicalein in cardiovascular system. Current Drug Targets-Cardiovascular & Hematological Disorders, 5(2), 177-184. doi.org/ 10.1016/j.procbio.2004.12.018
  • Huang, G., Cai, W., & Xu, B. (2019). Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. International Journal for Vitamin and Nutrition Research, 87(5–6), 237-246. doi.org/10.1024/0300-9831/a000294
  • Izah, S. C., Enaregha, E. B., & Epidi, J. O. (2019). Vitamin content of Saccharomyces cerevisiae biomass cultured in cassava wastewater. MOJ Toxicol, 4(1), 42-45.
  • Jain, A., Manghani, C., Kohli, S., Nigam, D., & Rani, V. (2013). Tea and human health: The dark shadows. Toxicology letters, 220(1), 82-87. doi.org/10.1016/j.toxlet.2013.04.010
  • Karatepe, M. (2004). Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC-UV. LC-GC North America, 22(6), S104-S104.
  • Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radical Biology and Medicine, 27(11-12), 1137-1140. doi.org/10.1016/S0891-5849(99) 00205-1
  • Kırmızıkaya, G., Karakaya, M., & Babaoğlu, A. S. (2021). Black, green, and white tea infusions and powder forms improve oxidative stability of minced beef throughout refrigerated storage. Journal of Food Processing and Preservation, 45(4), e15359. doi.org/10.1111/jfpp.15359
  • Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., & Chen, Z. Y. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. The Journal of nutrition, 131(9), 2248-2251. doi.org/10.1093/jn/131.9.2248
  • Lopez-Cervantes, J., Sanchez-Machado, D. I., & Rios-Vazquez, N. J. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A, 1105(1-2), 135-139. doi.org/ 10.1016/j.chroma.2005.08.010
  • Lorenz, M. (2013). Cellular targets for the beneficial actions of tea polyphenols. The American journal of clinical nutrition, 98(6), 1642S-1650S. doi: 10.3945/ ajcn.113,058230
  • Lowry, O. H. (1951). Protein measurement with the Folin phenol reagent. J biol Chem, 193, 265-275. doi:10.1016/s0021-9258(19)52451-6
  • Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2009). Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. Journal of agricultural and food chemistry, 57(14), 6189-6198. doi.org/10.1021/ jf900673n
  • Martin, C. E., Oh, C. S., & Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(3), 271-285. doi.org/10.1016/j.bbalip.2006.06.010
  • Meng, D., Zhang, P., Li, S., Ho, C. T., & Zhao, H. (2017). Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. Journal of functional foods, 38, 36-44. doi.org/10.1016/j.jff.2017.08.041
  • Negishi, H., Xu, J. W., Ikeda, K., Njelekela, M., Nara, Y., & Yamori, Y. (2004). Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. The Journal of nutrition, 134(1), 38-42. doi.org/ 10.1093/jn/134.1.38
  • Pastoriza, S., Mesías, M., Cabrera, C., & Rufián-Henares, J. A. (2017). Healthy properties of green and white teas: an update. Food & function, 8(8), 2650-2662. doi:10.1039/c7fo00611j
  • Pronk, J. T., van der Linden-Beuman, A., Verduyn, C., Scheffers, W. A., & van Dijken, J. P. (1994). Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis. Microbiology, 140(4), 717-722. doi.org/10.1099/00221287-140-4-717
  • Spector, A., Kuszak, J. R., Ma, W., & Wang, R. R. (2001). The Effect of Aging on Glutathione Peroxidase-I Knockout Mice—Resistance of the Lens to Oxidative Stress. Experimental eye research, 72(5), 533-545. doi.org/10.1006/exer. 2001.0980
  • Takim, K., & Aydemir, M. E. (2022). GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India. Toxics, 11(1), 34. doi.org/10.3390/toxics11010034
  • Tan, F., Tan, C., Zhao, A., & Li, M. (2011). Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. Journal of agricultural and food chemistry, 59(20), 10839-10847. doi.org/10.1021/jf2023325
  • Tang, Y. Y., He, X. M., Sun, J., Li, C. B., Li, L., Sheng, J. F., ... & Ling, D. N. (2019). Polyphenols and alkaloids in byproducts of longan fruits (Dimocarpus Longan Lour.) and their bioactivities. Molecules, 24(6), 1186. doi.org/10.3390/molecules24061186
  • Tufarelli, V. (2014). Enhancing egg quality by dietary vitamin E and selenium supplementation. Vitamins and Minerals, 3, e131.
  • Yen, G. C., Chen, H. Y., & Peng, H. H. (1997). Antioxidant and pro-oxidant effects of various tea extracts. Journal of Agricultural and Food Chemistry, 45(1), 30-34. doi.org/10.1021/jf9603994
  • Yilmaz, Ö., Keser, S., Tuzcu, M., Güvenc, M., Cetintas, B., Irtegün, S., ... & Sahin, K. (2009). A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. Journal of Animal and Veterinary Advances, 8(2), 343-347.
  • Yuan, H., Zhong, J., Yi, J., Zhao, Y., & Cao, J. (2009). Effect of Pu-Erh tea on lipogenesis and expression of relative genes in obese rats fed with high fat diet. Acta Nutrimenta Sinica, 31(2), 167-171.

Farklı Çay İnfüzyonlarından Hazırlanan Kültürlerde Yetiştirilen Saccharomyces cerevisiae Hücrelerinin Oksidatif Strese Tepkileri

Year 2023, Volume: 26 Issue: 5, 957 - 965, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1221661

Abstract

Çay, en çok tüketilen içeceklerden biridir. Çayın, H2O2 ile oluşturulan oksidatif stres üzerindeki etkilerini araştırmak için Saccharomyces cerevisiae, oksidatif stres ve toksikoloji ile ilgili çalışmalarda model organizma, kullanılmıştır. Siyah, yeşil ve beyaz çay infüzyonlarından S. cerevisiae kültürleri hazırlandı ve 30°C'de 72 saat inkübe edildi. Kültürlerden elde edilen hücre peletlerinden glutatyon-S-transferaz enzim aktivitesi ve total protein spektrofotometrik, malondialdehit, glutatyon ve alfa tokoferol ve ergosterol analizleri HPLC ile, yağ asitleri ise GC cihazı ile yapıldı. Çay infüzyon gruplarında protein düzeyi kontrol ve H2O2 gruplarına göre daha yüksek (p<0.001) olmasına rağmen, malondialdehit düzeyi azalmıştır (p<0.001). Siyah çay infüzyonu ve siyah çay infüzyonu+H2O2 grupları dışındaki diğer çay infüzyon gruplarında glutatyon ve GST seviyeleri azaldı (p<0.001). Ergosterol seviyeleri hem çay infüzyonu hem de H2O2+çay infüzyonu gruplarında azaldı (p<0.05; p<0.001). Çay infüzyonlarında ve H2O2 gruplarında palmitik asit artarken (p<0.01), palmitoleik asit azalmıştır (p<0.05). Çay infüzyon gruplarında stearik ve oleik asit seviyeleri azaldı (p<0.05). Sonuç olarak, çayın suda çözünen bileşenlerinin, yağ asidi biyosentezi, diğer metabolik ürünlerin ve oksidatif stres üzerinde etkileri olduğu görülmüştür.

References

  • Almajano, M. P., Carbo, R., Jiménez, J. A. L., & Gordon, M. H. (2008). Antioxidant and antimicrobial activities of tea infusions. Food chemistry, 108(1), 55-63. doi.org/10.1016/ j.foodchem.2007.10.040
  • Babich, H., Gottesman, R. T., Liebling, E. J., & Schuck, A. G. (2008). Theaflavin‐3‐gallate and theaflavin‐3′‐gallate, polyphenols in black tea with prooxidant properties. Basic & clinical pharmacology & toxicology, 103(1), 66-74. doi.org/10.1111/j.1742-7843.2008.00232.x
  • Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrition, 25(2), 79-99. doi.org/10.1080/07315724.2006.10719518
  • Dani, C., Bonatto, D., Salvador, M., Pereira, M. D., Henriques, J. A., & Eleutherio, E. (2008). Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 56(11), 4268-4272. doi.org/10.1021/jf800752s
  • Dias, T. R. (2013). White Tea (Camellia sinensis (L.)): an-tioxidant properties and beneficial health effects. International Journal of Food Science and Nutritional Diet, 2(2), 19-26.
  • Ding, Y., Zou, X., Jiang, X., Wu, J., Zhang, Y., Chen, D., & Liang, B. (2015). Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans. PloS one, 10(2), e0113815. doi.org/10.1371/journal.pone.0113815
  • Elhadad, M. A., Karavasiloglou, N., Wulaningsih, W., Tsilidis, K. K., Tzoulaki, I., Patel, C. J., & Rohrmann, S. (2020). Metabolites, nutrients, and lifestyle factors in relation to coffee consumption: an environment-wide association study. Nutrients, 12(5), 1470. doi.org/10.3390/nu12051470
  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22), 7130-7139. doi.org/10.1016/S0021-9258(19)42083-8
  • Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical biochemistry, 90(1), 420-426. doi.org/10.1016/0003-2697(78)90046-5
  • Hata, M., Ishii, Y., Watanabe, E., Uoto, K., Kobayashi, S., Yoshida, K. I., ... & Ando, A. (2010). Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Medical mycology, 48(4), 613-621. doi.org/10.3109/13693780903390208
  • Hilal, Y., & Engelhardt, U. (2007). Characterisation of white tea–Comparison to green and black tea. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2(4), 414-421. doi: 0.1007/s00003-007-0250-3
  • Horžić, D., Komes, D., Belščak, A., Ganić, K. K., Iveković, D., & Karlović, D. (2009). The composition of polyphenols and methylxanthines in teas and herbal infusions. Food chemistry, 115(2), 441-448. doi.org/10.1016/j.foodchem.2008.12.022
  • Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., & Zeng, B. (2017). Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian journal of microbiology, 57(3), 270-277. doi 10.1007/s12088-017-0657-1
  • Huang, Y., Tsang, S. Y., Yao, X., & Chen, Z. Y. (2005). Biological properties of baicalein in cardiovascular system. Current Drug Targets-Cardiovascular & Hematological Disorders, 5(2), 177-184. doi.org/ 10.1016/j.procbio.2004.12.018
  • Huang, G., Cai, W., & Xu, B. (2019). Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. International Journal for Vitamin and Nutrition Research, 87(5–6), 237-246. doi.org/10.1024/0300-9831/a000294
  • Izah, S. C., Enaregha, E. B., & Epidi, J. O. (2019). Vitamin content of Saccharomyces cerevisiae biomass cultured in cassava wastewater. MOJ Toxicol, 4(1), 42-45.
  • Jain, A., Manghani, C., Kohli, S., Nigam, D., & Rani, V. (2013). Tea and human health: The dark shadows. Toxicology letters, 220(1), 82-87. doi.org/10.1016/j.toxlet.2013.04.010
  • Karatepe, M. (2004). Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC-UV. LC-GC North America, 22(6), S104-S104.
  • Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radical Biology and Medicine, 27(11-12), 1137-1140. doi.org/10.1016/S0891-5849(99) 00205-1
  • Kırmızıkaya, G., Karakaya, M., & Babaoğlu, A. S. (2021). Black, green, and white tea infusions and powder forms improve oxidative stability of minced beef throughout refrigerated storage. Journal of Food Processing and Preservation, 45(4), e15359. doi.org/10.1111/jfpp.15359
  • Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., & Chen, Z. Y. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. The Journal of nutrition, 131(9), 2248-2251. doi.org/10.1093/jn/131.9.2248
  • Lopez-Cervantes, J., Sanchez-Machado, D. I., & Rios-Vazquez, N. J. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A, 1105(1-2), 135-139. doi.org/ 10.1016/j.chroma.2005.08.010
  • Lorenz, M. (2013). Cellular targets for the beneficial actions of tea polyphenols. The American journal of clinical nutrition, 98(6), 1642S-1650S. doi: 10.3945/ ajcn.113,058230
  • Lowry, O. H. (1951). Protein measurement with the Folin phenol reagent. J biol Chem, 193, 265-275. doi:10.1016/s0021-9258(19)52451-6
  • Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2009). Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. Journal of agricultural and food chemistry, 57(14), 6189-6198. doi.org/10.1021/ jf900673n
  • Martin, C. E., Oh, C. S., & Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(3), 271-285. doi.org/10.1016/j.bbalip.2006.06.010
  • Meng, D., Zhang, P., Li, S., Ho, C. T., & Zhao, H. (2017). Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. Journal of functional foods, 38, 36-44. doi.org/10.1016/j.jff.2017.08.041
  • Negishi, H., Xu, J. W., Ikeda, K., Njelekela, M., Nara, Y., & Yamori, Y. (2004). Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. The Journal of nutrition, 134(1), 38-42. doi.org/ 10.1093/jn/134.1.38
  • Pastoriza, S., Mesías, M., Cabrera, C., & Rufián-Henares, J. A. (2017). Healthy properties of green and white teas: an update. Food & function, 8(8), 2650-2662. doi:10.1039/c7fo00611j
  • Pronk, J. T., van der Linden-Beuman, A., Verduyn, C., Scheffers, W. A., & van Dijken, J. P. (1994). Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis. Microbiology, 140(4), 717-722. doi.org/10.1099/00221287-140-4-717
  • Spector, A., Kuszak, J. R., Ma, W., & Wang, R. R. (2001). The Effect of Aging on Glutathione Peroxidase-I Knockout Mice—Resistance of the Lens to Oxidative Stress. Experimental eye research, 72(5), 533-545. doi.org/10.1006/exer. 2001.0980
  • Takim, K., & Aydemir, M. E. (2022). GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India. Toxics, 11(1), 34. doi.org/10.3390/toxics11010034
  • Tan, F., Tan, C., Zhao, A., & Li, M. (2011). Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. Journal of agricultural and food chemistry, 59(20), 10839-10847. doi.org/10.1021/jf2023325
  • Tang, Y. Y., He, X. M., Sun, J., Li, C. B., Li, L., Sheng, J. F., ... & Ling, D. N. (2019). Polyphenols and alkaloids in byproducts of longan fruits (Dimocarpus Longan Lour.) and their bioactivities. Molecules, 24(6), 1186. doi.org/10.3390/molecules24061186
  • Tufarelli, V. (2014). Enhancing egg quality by dietary vitamin E and selenium supplementation. Vitamins and Minerals, 3, e131.
  • Yen, G. C., Chen, H. Y., & Peng, H. H. (1997). Antioxidant and pro-oxidant effects of various tea extracts. Journal of Agricultural and Food Chemistry, 45(1), 30-34. doi.org/10.1021/jf9603994
  • Yilmaz, Ö., Keser, S., Tuzcu, M., Güvenc, M., Cetintas, B., Irtegün, S., ... & Sahin, K. (2009). A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. Journal of Animal and Veterinary Advances, 8(2), 343-347.
  • Yuan, H., Zhong, J., Yi, J., Zhao, Y., & Cao, J. (2009). Effect of Pu-Erh tea on lipogenesis and expression of relative genes in obese rats fed with high fat diet. Acta Nutrimenta Sinica, 31(2), 167-171.
There are 38 citations in total.

Details

Primary Language English
Journal Section RESEARCH ARTICLE
Authors

Görkem Kırmızıkaya 0000-0001-8516-4933

Tuba Okutan 0000-0001-8745-0343

Oğuz Ayhan Kireçci 0000-0003-2205-4758

Prof. Dr. Ökkeş Yılmaz 0000-0002-8276-4498

Early Pub Date May 27, 2023
Publication Date October 31, 2023
Submission Date December 20, 2022
Acceptance Date March 3, 2023
Published in Issue Year 2023Volume: 26 Issue: 5

Cite

APA Kırmızıkaya, G., Okutan, T., Kireçci, O. A., Yılmaz, P. D. . Ö. (2023). Responses of Saccharomyces cerevisiae Cells Grown in Cultures Prepared from Different Tea Infusions to Oxidative Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(5), 957-965. https://doi.org/10.18016/ksutarimdoga.vi.1221661


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149