Research Article
BibTex RIS Cite

The Effects of Priming With NaCl Solutions on Salt Stress During Germination and Seedling Stages in Maize

Year 2024, Volume: 27 Issue: 4, 892 - 900, 15.08.2024
https://doi.org/10.18016/ksutarimdoga.vi.1329294

Abstract

In this study, germination and seedling growth under salt stress (175 mM) of maize pretreated (priming) with different salt (NaCl) solutions (0, 150, 175, and 200 mM) were investigated. Unprimed seeds were used as control. The study was carried out with two maize cultivars (ADA-9510 and Simpatico) in a petri dish and pot media. The effects of cultivar and priming treatments on germination and seedling characteristics of maize under salt stress were significant (P<0.01) in both environments. In the ADA-9510 variety, the average values of the examined traits were found to be higher. The germination rate of the Simpatico variety was very low in salt stress, but after priming, it showed an increase of up to 224% in Petri dishes and up to 44% in pots. In pot conditions, priming improved crude protein content, root dry matter ratio, and emergence speed in ADA-9510, while root dry matter ratio, emergence rate, and speed of the Simpatico variety improved when compared to control. Accordingly, as a result of the study, it was determined that the application of priming with 150 and 175 mM NaCl solutions, even with normal water, reduced the negative effects of salt stress on germination and seedling growth in maize.

References

  • Abraha, B., & Yohannes, G. (2013). The role of seed priming in improving seedling growth of maize (Zea mays L.) under salt stress at field conditions. Agricultural Sciences, 4(12), 666-672.
  • Agami, R.A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88, 171-177.
  • Ajouri, A., Asgedom, H., & Becker, M. (2004). Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Soil Science and Plant Nutrition, 167(5), 630-636.
  • Akshay, U. N, Durga, P. N. B., Ramanjulu, S., Sreenivas, C., & Annapurna, D. A. (2022). Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. Journal of Experimental Botany, 73(11), 3355–3371.
  • Anuradha, S., & Seeta, R. R. S. (2001). Effect of brassinosteroids on salinity stress-induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation, 33, 151–153. https://doi.org/10.1023/A:1017590 108484
  • Arora, N., Bhardwaj, R., Sharma, P., & Arora H. K. (2008). 28-Homobrassinolide alleviates oxidative stress in salt-treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology, 20, 153-157.
  • Ashraf, M., & Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiologiae Plantarum, 23, 407-417.
  • Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency, and yield in maize (Zea mays L.) through magneto priming. Acta Agrobot., 72(1), 1757. https://doi.org/ 10.5586/aa.1757
  • Bakht, J., Shafi, M., Jamal, Y., & Sher, H. (2011). Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Spanish Journal of Agricultural Research 9(1), 252-261.
  • Bhanuprakash, K., & Yogeesha, H.S. (2016). Seed priming for abiotic stress tolerance: an overview. N.K. Srinivasa Rao, K.S. Shivashankara, R.H. Laxman (Eds.), Abiotic Stress Physiology of Horticultural Crops. Springer, pp. 103-117.
  • Bricker, B. (1991). MSTATC: A Micro-Computer Program for the Design, Management, and Analysis of Agronomic Research Experimentation. Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan.
  • Carpıcı, E. B., Celik, N., & Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology 8(19), 4918- 4922.
  • Czabator, F. J. 1962. Germination value: An index combining speed and completeness of pine seed germination. Forest Science, 8, 386-395.
  • FAO Soil Portal, (2023) https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (Accessed: May 8, 2023).
  • Farooq, M., Hussain, M., Wakel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461–481.
  • Gebreegziabher, B. G., & Qufa, C. A. 2017. Plant Physiological Stimulation by Seeds Salt Priming in Maize (Zea mays): Prospect for Salt Tolerance. African Journal of Biotechnology, 16, 209-223.
  • Goldsworthy, (1994). Calcium and salinity. Appl Biol., 4, 1-6.
  • Gunes, A., Inal, M., Alpaslan, F., Eraslan, E. G., & Bagci, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity, Journal of Plant Physiology, 164 (6), 728-736.
  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M.R. (2011). Gene expression profiling of plants under salt stress. CRC Crit. Rev. Plant Sci., 30, 435–458. doi: 10.1080/07352689.2011.605739.
  • Karimi, G., Ghorbanli, M., Heidari, H., Khavari Nejad, R.A., & Assareh, M.H. (2005). The effects of NaCl on growth, water relations, osmolytes, and ion content in Kochia prostrata. Biologia plantarum, 49(2), 301-304. doi: 10.1007/s10535-005-1304-y
  • Kaya, A., & Gözübenli, H. (2020). Tohumları farklı NaCl dozları ile muamele edilen mısırın tuzlu topraklarda fide gelişiminin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25 (3), 394-405 . DOI: 10.37908/mkutbd.755170
  • Kaya, C., Tuna., A. L., & Okant, A. M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions.Turk J Agric For., 34, 529–538. doi:10.3906/tar-0906-173
  • Kayacetin, F., Efeoglu, B., & Alizadeh, B. (2018). Effect of NaCl and PEG-Induced Osmotic Stress on Germination and Seedling Growth Properties in Wild Mustard (Sinapis arvensis L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 28(1), 62-68.
  • Khan, I., Muhammad, A., Chattha, M. U., Skalicky, M., Bilal Chattha, M., Ahsin Ayub, M., Rizwan Anwar, M., Soufan, W., Hassan, M.U., Rahman, M.A., Brestic, M., Zivcak, M., & El Sabagh, A. (2022). Mitigation of Salinity-Induced Oxidative Damage, Growth, and Yield Reduction in Fine Rice by Sugarcane Press Mud Application. Front. Plant Sci., 13, 840900. doi: 10.3389/fpls.2022.840900
  • Kumar, M., Pant, B., Mondal, S., & Bose, B. (2016). Hydro and halo priming: influenced germination responses in wheat var-HUW-468 under heavy metal stress. Acta Physiol. Plant., 38(9), 217. doi:10.1007/s11738-016-2226-3
  • Li, P., Yang, H., Wang, L., Liu, H., Huo, H., Zhang, C., Liu, A., Zhu, A., Hu, J., Lin, Y., & Liu, L. (2019). Physiological and transcriptome analyses reveal short-term responses and the formation of memory under drought stress in rice. Front. Genet., 10, 55. doi: 10.3389/fgene.2019.00055
  • Mahara, G., Bam, R., Kandel, M., Timilsina, S., Chaudhary, D., Lamichhane, J., Bajgai, T. R., Pant, B. R., Bhattarai, U., & Upadhyaya, J. (2022). Seed priming with NaCl improves germination in maize under saline soil conditions. Eurasian Journal of Soil Science, 11(2), 151-156. doi: 10.18393/ejss.1027558
  • Munns, R., & Gilliham, M. 2015. Salinity tolerance of crops – what is the cost? New Phytol., 208, 668-673.
  • Munns, R., & Sharp, R. E. (1993). Involvement of abscisic acid in controlling plant growth in soils of low water potential. Aust J Plant Physiol., 20, 425–437. doi:10.1071/PP9930425
  • Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043.
  • Neubert, A. B., Zörb, C., & Schubert, S. (2005). Expression of vacuolar Na+/H+antiporters (ZmNHX) and Na+ exclusion in roots of maize (Zea mays L.) genotypes with improved salt resistance In Li CJ et al. (eds)Plant nutrition for food security, human health, and environmental protection, Tsinghua University Press, Bejing, China, pp 544–54.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349.
  • Pitann, B., Zörb, C., & Mühling, K. H. (2009). Comparative proteome analysis of maize (Zea mays L.) expansins under salinity. J Plant Nutr Soil Sci., 172, 75–77. doi:10.1002/jpln.200800265
  • Rengasamy, P. (2006). World salinization with emphasis on Australia. J Exp Bot., 57(5), 1017-23. doi: 10.1093/jxb/erj108.
  • Singh, D., & Kumar, A. (2021). A multivariate screening approach indicated adaptive tolerance to salt stress in the seedlings of an agroforestry tree, Eucalyptus tereticornis Sm. Plant Cell Tissue Organ Cult., 145(3), 545–560. doi:10.1007/s11240-021-02025-2
  • Sohan, D., Jasoni., & R, Zajicek, J. (1999). Plant-water relation of NaCl and calcium treated sunflowers plants. Envi. Experi. Bot., 42, 105-111.
  • Sonmez, B. (2003). Guide for Salinity Control in Turkey. Ankara, Turkey; 2003.
  • Szalai, G., & Janda, T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci., 195, 165–171. doi:10.1111/j.1439-037x.2008.00352.x
  • Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr J Agric Res., 5, 584-588.
  • Vinocur, B., & Altman, A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123-132.
  • Yetissin F., & Karakaya A. (2022). Investigation of the effects of acetone o-(4 chlorophenylsulfonyl) oxime pre-application on biochemical parameters of maize seedlings under salt stress. ACUJFF, 23(1), 74-83.
  • Zörb, C., Schmitt, S., Neeb, A., Karl, S., Linder, M., & Schubert, S. (2004). The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by mitigation of symptoms and not by a specific adaptation. Plant Sci., 167, 91-100. doi:10.1016/j.plantsci.2004.03.004.

Tohumlara NaCl Çözeltileri ile Priming Uygulanmasının Mısırda Çimlenme ve Fide Aşamalarında Tuz Stresine Etkileri

Year 2024, Volume: 27 Issue: 4, 892 - 900, 15.08.2024
https://doi.org/10.18016/ksutarimdoga.vi.1329294

Abstract

Bu çalışmada farklı tuz (NaCl) çözeltileriyle (0, 150, 175 ve 200 mM) ön işlem uygulanan (priming) mısırın tuz stresi (175 mM) altında çimlenme ve fide gelişimi incelenmiştir. Kontrol olarak priming uygulanmamış tohumlar kullanılmıştır. Çalışma iki adet mısır çeşidi (ADA-9510 ve Simpatico) ile petri ve saksı koşullarında yürütülmüştür. Mısırın tuz stresi altında çimlenme ve fide özellikleri üzerinde çeşit ve priming uygulamalarının etkisi hem petri hem de saksı ortamında önemli (P<0.01) olmuştur. ADA-9510 çeşidinde, incelen özelliklere ait ortama değerler daha yüksek bulunmuştur. Simpatico çeşidinin çimlenme oranı tuz stresinde çok düşük olmuş, ancak priming sonrası petri kaplarında %224'e, saksılarda %44'e varan bir artış göstermiştir. Saksı koşullarında, kontrolle kıyaslandığında priming uygulamaları ADA-9510 çeşidinde ham protein içeriğini, kök kuru madde oranı ve sürme hızını, Simpatico çeşidinde ise kök kuru madde oranı, sürme oranı ve hızını geliştirmiştir. Buna göre çalışma sonucunda 150 ve 175 mM NaCl çözeltileri ile hatta su ile yapılan priming uygulamasının da mısırda tuz stresinin çimlenme ve fide gelişimi üzerindeki olumsuz etkilerini azalttığı belirlenmiştir.

References

  • Abraha, B., & Yohannes, G. (2013). The role of seed priming in improving seedling growth of maize (Zea mays L.) under salt stress at field conditions. Agricultural Sciences, 4(12), 666-672.
  • Agami, R.A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88, 171-177.
  • Ajouri, A., Asgedom, H., & Becker, M. (2004). Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Soil Science and Plant Nutrition, 167(5), 630-636.
  • Akshay, U. N, Durga, P. N. B., Ramanjulu, S., Sreenivas, C., & Annapurna, D. A. (2022). Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. Journal of Experimental Botany, 73(11), 3355–3371.
  • Anuradha, S., & Seeta, R. R. S. (2001). Effect of brassinosteroids on salinity stress-induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation, 33, 151–153. https://doi.org/10.1023/A:1017590 108484
  • Arora, N., Bhardwaj, R., Sharma, P., & Arora H. K. (2008). 28-Homobrassinolide alleviates oxidative stress in salt-treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology, 20, 153-157.
  • Ashraf, M., & Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiologiae Plantarum, 23, 407-417.
  • Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency, and yield in maize (Zea mays L.) through magneto priming. Acta Agrobot., 72(1), 1757. https://doi.org/ 10.5586/aa.1757
  • Bakht, J., Shafi, M., Jamal, Y., & Sher, H. (2011). Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Spanish Journal of Agricultural Research 9(1), 252-261.
  • Bhanuprakash, K., & Yogeesha, H.S. (2016). Seed priming for abiotic stress tolerance: an overview. N.K. Srinivasa Rao, K.S. Shivashankara, R.H. Laxman (Eds.), Abiotic Stress Physiology of Horticultural Crops. Springer, pp. 103-117.
  • Bricker, B. (1991). MSTATC: A Micro-Computer Program for the Design, Management, and Analysis of Agronomic Research Experimentation. Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan.
  • Carpıcı, E. B., Celik, N., & Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology 8(19), 4918- 4922.
  • Czabator, F. J. 1962. Germination value: An index combining speed and completeness of pine seed germination. Forest Science, 8, 386-395.
  • FAO Soil Portal, (2023) https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (Accessed: May 8, 2023).
  • Farooq, M., Hussain, M., Wakel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461–481.
  • Gebreegziabher, B. G., & Qufa, C. A. 2017. Plant Physiological Stimulation by Seeds Salt Priming in Maize (Zea mays): Prospect for Salt Tolerance. African Journal of Biotechnology, 16, 209-223.
  • Goldsworthy, (1994). Calcium and salinity. Appl Biol., 4, 1-6.
  • Gunes, A., Inal, M., Alpaslan, F., Eraslan, E. G., & Bagci, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity, Journal of Plant Physiology, 164 (6), 728-736.
  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M.R. (2011). Gene expression profiling of plants under salt stress. CRC Crit. Rev. Plant Sci., 30, 435–458. doi: 10.1080/07352689.2011.605739.
  • Karimi, G., Ghorbanli, M., Heidari, H., Khavari Nejad, R.A., & Assareh, M.H. (2005). The effects of NaCl on growth, water relations, osmolytes, and ion content in Kochia prostrata. Biologia plantarum, 49(2), 301-304. doi: 10.1007/s10535-005-1304-y
  • Kaya, A., & Gözübenli, H. (2020). Tohumları farklı NaCl dozları ile muamele edilen mısırın tuzlu topraklarda fide gelişiminin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25 (3), 394-405 . DOI: 10.37908/mkutbd.755170
  • Kaya, C., Tuna., A. L., & Okant, A. M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions.Turk J Agric For., 34, 529–538. doi:10.3906/tar-0906-173
  • Kayacetin, F., Efeoglu, B., & Alizadeh, B. (2018). Effect of NaCl and PEG-Induced Osmotic Stress on Germination and Seedling Growth Properties in Wild Mustard (Sinapis arvensis L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 28(1), 62-68.
  • Khan, I., Muhammad, A., Chattha, M. U., Skalicky, M., Bilal Chattha, M., Ahsin Ayub, M., Rizwan Anwar, M., Soufan, W., Hassan, M.U., Rahman, M.A., Brestic, M., Zivcak, M., & El Sabagh, A. (2022). Mitigation of Salinity-Induced Oxidative Damage, Growth, and Yield Reduction in Fine Rice by Sugarcane Press Mud Application. Front. Plant Sci., 13, 840900. doi: 10.3389/fpls.2022.840900
  • Kumar, M., Pant, B., Mondal, S., & Bose, B. (2016). Hydro and halo priming: influenced germination responses in wheat var-HUW-468 under heavy metal stress. Acta Physiol. Plant., 38(9), 217. doi:10.1007/s11738-016-2226-3
  • Li, P., Yang, H., Wang, L., Liu, H., Huo, H., Zhang, C., Liu, A., Zhu, A., Hu, J., Lin, Y., & Liu, L. (2019). Physiological and transcriptome analyses reveal short-term responses and the formation of memory under drought stress in rice. Front. Genet., 10, 55. doi: 10.3389/fgene.2019.00055
  • Mahara, G., Bam, R., Kandel, M., Timilsina, S., Chaudhary, D., Lamichhane, J., Bajgai, T. R., Pant, B. R., Bhattarai, U., & Upadhyaya, J. (2022). Seed priming with NaCl improves germination in maize under saline soil conditions. Eurasian Journal of Soil Science, 11(2), 151-156. doi: 10.18393/ejss.1027558
  • Munns, R., & Gilliham, M. 2015. Salinity tolerance of crops – what is the cost? New Phytol., 208, 668-673.
  • Munns, R., & Sharp, R. E. (1993). Involvement of abscisic acid in controlling plant growth in soils of low water potential. Aust J Plant Physiol., 20, 425–437. doi:10.1071/PP9930425
  • Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043.
  • Neubert, A. B., Zörb, C., & Schubert, S. (2005). Expression of vacuolar Na+/H+antiporters (ZmNHX) and Na+ exclusion in roots of maize (Zea mays L.) genotypes with improved salt resistance In Li CJ et al. (eds)Plant nutrition for food security, human health, and environmental protection, Tsinghua University Press, Bejing, China, pp 544–54.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349.
  • Pitann, B., Zörb, C., & Mühling, K. H. (2009). Comparative proteome analysis of maize (Zea mays L.) expansins under salinity. J Plant Nutr Soil Sci., 172, 75–77. doi:10.1002/jpln.200800265
  • Rengasamy, P. (2006). World salinization with emphasis on Australia. J Exp Bot., 57(5), 1017-23. doi: 10.1093/jxb/erj108.
  • Singh, D., & Kumar, A. (2021). A multivariate screening approach indicated adaptive tolerance to salt stress in the seedlings of an agroforestry tree, Eucalyptus tereticornis Sm. Plant Cell Tissue Organ Cult., 145(3), 545–560. doi:10.1007/s11240-021-02025-2
  • Sohan, D., Jasoni., & R, Zajicek, J. (1999). Plant-water relation of NaCl and calcium treated sunflowers plants. Envi. Experi. Bot., 42, 105-111.
  • Sonmez, B. (2003). Guide for Salinity Control in Turkey. Ankara, Turkey; 2003.
  • Szalai, G., & Janda, T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci., 195, 165–171. doi:10.1111/j.1439-037x.2008.00352.x
  • Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr J Agric Res., 5, 584-588.
  • Vinocur, B., & Altman, A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123-132.
  • Yetissin F., & Karakaya A. (2022). Investigation of the effects of acetone o-(4 chlorophenylsulfonyl) oxime pre-application on biochemical parameters of maize seedlings under salt stress. ACUJFF, 23(1), 74-83.
  • Zörb, C., Schmitt, S., Neeb, A., Karl, S., Linder, M., & Schubert, S. (2004). The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by mitigation of symptoms and not by a specific adaptation. Plant Sci., 167, 91-100. doi:10.1016/j.plantsci.2004.03.004.
There are 42 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section RESEARCH ARTICLE
Authors

Sema Nazlı 0000-0002-3551-3194

Ugur Başaran 0000-0002-6644-5892

Early Pub Date April 23, 2024
Publication Date August 15, 2024
Submission Date July 18, 2023
Acceptance Date January 18, 2024
Published in Issue Year 2024Volume: 27 Issue: 4

Cite

APA Nazlı, S., & Başaran, U. (2024). The Effects of Priming With NaCl Solutions on Salt Stress During Germination and Seedling Stages in Maize. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(4), 892-900. https://doi.org/10.18016/ksutarimdoga.vi.1329294


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149