Research Article
BibTex RIS Cite

Effects of Wheat Cultivar and Germination on Liquid Dough Fermentation

Year 2025, Volume: 28 Issue: 5, 1293 - 1304
https://doi.org/10.18016/ksutarimdoga.vi.1677424

Abstract

This study aimed to evaluate the effects of flours obtained from two wheat cultivars (ZDEB-103 and B35K), subjected to a germination pre-treatment, on liquid sourdough fermentation. In the first stage, whole wheat flours prepared from wheat grains germinated for 1–7 days were analyzed for water-soluble protein (WSP), total free amino acid (TFAA) contents, and proteolytic activity. In ZDEB-103, TFAA and WSP levels increased more markedly with germination time, whereas B35K exhibited higher proteolytic activity throughout the germination period. At the end of the first stage, the optimal germination period was determined as 4 days. In the second stage, semi-liquid Type II sourdoughs were prepared using both germinated (4 days) and non-germinated (control) flours and subjected to 24-hour fermentation, either spontaneously or with Lactobacillus paracasei inoculation. During fermentation, pH, total titratable acidity (TTA), TFAA, WSP levels, and lactic acid bacteria (LAB) growth were monitored. Germination enhanced TFAA and WSP levels, supported LAB development, and accelerated pH decrease, TTA increase. The lowest pH (3.36) and highest TTA (22.37 mL) values were recorded in the inoculated sourdough sample prepared with germinated ZDEB-103 flour. Results indicate that, dried forms of Type II sourdoughs derived from germinated whole wheat flours may improve the sensory, nutritional and bioavailability characteristics of traditional fermented products such as tarhana and sourdough bread.

Project Number

2021/1-26D

References

  • Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. https://doi.org/10.1021/jf60226a042
  • Arendt, E. K., Ryan, L. A., & Bello, F. D. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165–174. https://doi.org/10.1016/j.fm.2006.07.011
  • Brijs, K., Trogh, I., Jones, B. L., & Delcour, J. A. (2002). Proteolytic enzymes in germinating rye grains. Cereal Chemistry, 79(3), 423–428. https://doi.org/10.1094/cchem.2002.79.3.423
  • Capocchi, A., Cinollo, M., Galleschi, L., Saviozzi, F., Calucci, L., Pinzino, C., & Zandomeneghi, M. (2000). Degradation of Gluten by Proteases from Dry and Germinating Wheat (Triticum durum) Seeds: An in Vitro Approach to Storage Protein Mobilization. Journal of Agricultural and Food Chemistry, 48(12), 6271–6279. https://doi.org/10.1021/jf0006170
  • Cardinali, F., Garofalo, C., Reale, A., Boscaino, F., Osimani, A., Milanović, V., Taccari, M., & Aquilanti, L. (2022). Liquid sourdough from stone-ground soft wheat (Triticum aestivum) flour: Development and exploitation in the breadmaking process. Food Research International, 161, 111796. https://doi.org/10.1016/j.foodres.2022.111796
  • Da Ros, A., Polo, A., Rizzello, C. G., Acin-Albiac, M., Montemurro, M., Di Cagno, R., & Gobbetti, M. (2021). Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiology Spectrum, 9(3). https://doi.org/10.1128/spectrum.00494-21
  • Dallas, D. C., Smink, C. J., Robinson, R. C., Tian, T., Guerrero, A., Parker, E. A., Smilowitz, J. T., Hettinga, K. A., Underwood, M. A., Lebrilla, C. B., German, J. B., & Barile, D. (2015). Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth. Journal of Nutrition, 145(3), 425–433. https://doi.org/10.3945/jn.114.203646
  • De Vuyst, L., Comasio, A., & Van Kerrebroeck, S. (2021). Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition, 63(15), 2447–2479. https://doi.org/10.1080/10408398.2021.1976100
  • De Vuyst, L., Van Kerrebroeck, S., & Leroy, F. (2017). Microbial Ecology and Process Technology of Sourdough Fermentation. Advances in Applied Microbiology, 49–160. https://doi.org/10.1016/bs.aambs.2017.02.003
  • Dominguez, F., & Cejudo, F. J. (1995). Pattern of endoproteolysis following wheat grain germination. Physiologia Plantarum, 95(2), 253–259. https://doi.org/10.1111/j.1399-3054.1995.tb00835.x
  • Gänzle, M. G. (2013). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2–10. https://doi.org/10.1016/j.fm.2013.04.007
  • Gobbetti, M., Di Cagno, R., & De Angelis, M. (2010). Functional microorganisms for functional food quality. Critical Reviews in Food Science and Nutrition, 50(8), 716–727. https://doi.org/10.1080/10408398.2010.499770
  • İbanoǧlu, Ş., İbanoǧlu, E., & Ainsworth, P. (1999). Effect of different ingredients on the fermentation activity in tarhana. Food Chemistry, 64(1), 103–106. https://doi.org/10.1016/s0308-8146(98)00071-5
  • JMP (2022), Versiyon, 16.2. SAS Institute Inc., Cary, NC.
  • Leeuwendaal, N. K., Stanton, C., O’Toole, P. W., & Beresford, T. P. (2022). Fermented foods, health and the gut microbiome. Nutrients, 14(7), 1527. https://doi.org/10.3390/nu14071527
  • Lemmens, E., De Brier, N., Spiers, K. M., Ryan, C., Garrevoet, J., Falkenberg, G., Goos, P., Smolders, E., & Delcour, J. A. (2018). The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 264, 367–376. https://doi.org/10.1016/j.foodchem.2018.04.125
  • Loponen, J., Sontag-Strohm, T., Venäläinen, J., & Salovaara, H. (2007). Prolamin Hydrolysis in Wheat Sourdoughs with Differing Proteolytic Activities. Journal of Agricultural and Food Chemistry, 55(3), 978–984. https://doi.org/10.1021/jf062755g
  • Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010
  • Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47–58. https://doi.org/10.1016/j.ijfoodmicro.2018.08.005
  • Ohm, J., Lee, C. W., & Cho, K. (2016). Germinated wheat: phytochemical composition and mixing characteristics. Cereal Chemistry, 93(6), 612–617. https://doi.org/10.1094/cchem-01-16-0006-r
  • Perri, G., Minisci, A., Montemurro, M., Pontonio, E., Verni, M., & Rizzello, C. G. (2023). Exploitation of sprouted barley grains and flour through sourdough fermentation. LWT, 187, 115326. https://doi.org/10.1016/j.lwt.2023.115326
  • Reale, A., Di Stasio, L., Di Renzo, T., De Caro, S., Ferranti, P., Picariello, G., Addeo, F., & Mamone, G. (2021). Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chemistry, 359, 129955. https://doi.org/10.1016/j.foodchem.2021.129955
  • Siepmann, F. B., De Almeida, B. S., Waszczynskyj, N., & Spier, M. R. (2019). Influence of temperature and of starter culture on biochemical characteristics and the aromatic compounds evolution on type II sourdough and wheat bread. LWT, 108, 199–206. https://doi.org/10.1016/j.lwt.2019.03.065
  • Świeca, M., & Dziki, D. (2015). Improvement in sprouted wheat flour functionality: effect of time, temperature and elicitation. International Journal of Food Science & Technology, 50(9), 2135–2142. https://doi.org/10.1111/ijfs.12881
  • TSE. 2004. “TS 2282 Tarhana Standardı” Türk Standartları Enstitüsü, Ankara.
  • Ünsal, A. S., Atli, A., & Köten, M. (2020). Çimlendirilmiş Buğday Unundan Yapılan Tırnaklı (Düz Ekmek) ve Tava Ekmek Kalitesi Üzerine Bir Araştırma. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(5), 1209–1215. https://doi.org/10.18016/ksutarimdoga.vi.687817
  • Van Hung, P., Maeda, T., & Morita, N. (2015). Improvement of nutritional composition and antioxidant capacity of high-amylose wheat during germination. Journal of Food Science and Technology, 52(10), 6756–6762. https://doi.org/10.1007/s13197-015-1730-6
  • Van Hung, P., Maeda, T., Yamamoto, S., & Morita, N. (2011). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture, 92(3), 667–672. https://doi.org/10.1002/jsfa.4628
  • Van Kerrebroeck, S., Maes, D., & De Vuyst, L. (2017). Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends in Food Science & Technology, 68, 152–159. https://doi.org/10.1016/j.tifs.2017.08.016
  • WGI (2021). International Association for Cereal Science and Technology (ICC), Whole Grain Initiative. https://www.wholegraininitiative.org/publications (Erişim Tarihi: 4.3.2025)
  • Yüksel, D., & İnanç, A. L. (2022). Determination of bioactive peptides in maras tarhana produced by traditional method and direct fermentation. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(2), 357–366. https://doi.org/10.18016/ksutarimdoga.vi.887719
  • Žilić, S., Janković, M., Barać, M., Pešić, M., Konić-Ristić, A., & Šukalović, V. H. (2016). Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food & Function, 7(10), 4323–4331. https://doi.org/10.1039/c6fo01095d

Buğday Çeşidi ve Çimlendirmenin Sıvı Hamur Fermantasyonuna Etkileri

Year 2025, Volume: 28 Issue: 5, 1293 - 1304
https://doi.org/10.18016/ksutarimdoga.vi.1677424

Abstract

Çimlendirilmiş iki farklı buğday çeşidine (ZDEB-103 ve B35K) ait unların sıvı hamur fermantasyonu üzerine etkilerini araştırmak için iki aşamalı işlem gerçekleştirilmiştir. İlk aşama, en iyi çimlendirme süresini belirleme aşamasıdır. Çimlendirilen (1-7 gün) buğdaylarda suda çözünür protein (SÇP), toplam serbest amino asit (TSAA) miktarları ve proteolitik aktivite düzeyleri belirlenmiştir. Çimlenme süresi arttıkça, ZDEB-103 çeşidinin TSAA ve SÇP miktarlarının da arttığı tespit edilmiştir. Çimlendirmenin 2. gününden itibaren tüm zaman noktalarında, B35K çeşidinin proteolitik aktivitesi ZDEB-103 çeşidine kıyasla daha yüksek bulunmuştur. Bu aşamada her iki çeşit için de ideal çimlendirme süresi 4 gün olarak belirlenmiştir. İkinci aşamada, çimlendirilmiş (4 gün) ve çimlendirilmemiş (kontrol) buğdaylarla hazırlanan unların kullanıldığı Tip II hamurlarda, 24 saat spontan ve kültür (Lactobacillus paracasei) fermantasyonu gerçekleştirilmiştir. Fermantasyon sürecinde pH, toplam titre edilebilir asitlik (TTA), SÇP, TSAA düzeyleri ve laktik asit bakterileri (LAB) gelişimi takip edilmiştir. Çimlendirme uygulaması hamurların TSAA ve SÇP düzeylerinde artış sağlamış, LAB gelişimini desteklemiş ve pH düşüşünü hızlandırarak TTA seviyesini yükseltmiştir. En düşük pH (3.36) ve en yüksek TTA (22.37 mL) değerleri çimlendirilmiş ZDEB-103 tam buğday unu ile hazırlanan kültür fermantasyonu örneklerinde elde edilmiştir. Bu bulgular, çimlendirilmiş buğday unlarından elde edilen Tip II hamurların kurutulmuş formlarının, tarhana ve ekşi maya ekmek gibi geleneksel fermente ürünlerin duyusal, besinsel ve biyoyarayışlılık özelliklerini iyileştirebileceğini göstermektedir.

Supporting Institution

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2021/1-26D

References

  • Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. https://doi.org/10.1021/jf60226a042
  • Arendt, E. K., Ryan, L. A., & Bello, F. D. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165–174. https://doi.org/10.1016/j.fm.2006.07.011
  • Brijs, K., Trogh, I., Jones, B. L., & Delcour, J. A. (2002). Proteolytic enzymes in germinating rye grains. Cereal Chemistry, 79(3), 423–428. https://doi.org/10.1094/cchem.2002.79.3.423
  • Capocchi, A., Cinollo, M., Galleschi, L., Saviozzi, F., Calucci, L., Pinzino, C., & Zandomeneghi, M. (2000). Degradation of Gluten by Proteases from Dry and Germinating Wheat (Triticum durum) Seeds: An in Vitro Approach to Storage Protein Mobilization. Journal of Agricultural and Food Chemistry, 48(12), 6271–6279. https://doi.org/10.1021/jf0006170
  • Cardinali, F., Garofalo, C., Reale, A., Boscaino, F., Osimani, A., Milanović, V., Taccari, M., & Aquilanti, L. (2022). Liquid sourdough from stone-ground soft wheat (Triticum aestivum) flour: Development and exploitation in the breadmaking process. Food Research International, 161, 111796. https://doi.org/10.1016/j.foodres.2022.111796
  • Da Ros, A., Polo, A., Rizzello, C. G., Acin-Albiac, M., Montemurro, M., Di Cagno, R., & Gobbetti, M. (2021). Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiology Spectrum, 9(3). https://doi.org/10.1128/spectrum.00494-21
  • Dallas, D. C., Smink, C. J., Robinson, R. C., Tian, T., Guerrero, A., Parker, E. A., Smilowitz, J. T., Hettinga, K. A., Underwood, M. A., Lebrilla, C. B., German, J. B., & Barile, D. (2015). Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth. Journal of Nutrition, 145(3), 425–433. https://doi.org/10.3945/jn.114.203646
  • De Vuyst, L., Comasio, A., & Van Kerrebroeck, S. (2021). Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition, 63(15), 2447–2479. https://doi.org/10.1080/10408398.2021.1976100
  • De Vuyst, L., Van Kerrebroeck, S., & Leroy, F. (2017). Microbial Ecology and Process Technology of Sourdough Fermentation. Advances in Applied Microbiology, 49–160. https://doi.org/10.1016/bs.aambs.2017.02.003
  • Dominguez, F., & Cejudo, F. J. (1995). Pattern of endoproteolysis following wheat grain germination. Physiologia Plantarum, 95(2), 253–259. https://doi.org/10.1111/j.1399-3054.1995.tb00835.x
  • Gänzle, M. G. (2013). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2–10. https://doi.org/10.1016/j.fm.2013.04.007
  • Gobbetti, M., Di Cagno, R., & De Angelis, M. (2010). Functional microorganisms for functional food quality. Critical Reviews in Food Science and Nutrition, 50(8), 716–727. https://doi.org/10.1080/10408398.2010.499770
  • İbanoǧlu, Ş., İbanoǧlu, E., & Ainsworth, P. (1999). Effect of different ingredients on the fermentation activity in tarhana. Food Chemistry, 64(1), 103–106. https://doi.org/10.1016/s0308-8146(98)00071-5
  • JMP (2022), Versiyon, 16.2. SAS Institute Inc., Cary, NC.
  • Leeuwendaal, N. K., Stanton, C., O’Toole, P. W., & Beresford, T. P. (2022). Fermented foods, health and the gut microbiome. Nutrients, 14(7), 1527. https://doi.org/10.3390/nu14071527
  • Lemmens, E., De Brier, N., Spiers, K. M., Ryan, C., Garrevoet, J., Falkenberg, G., Goos, P., Smolders, E., & Delcour, J. A. (2018). The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 264, 367–376. https://doi.org/10.1016/j.foodchem.2018.04.125
  • Loponen, J., Sontag-Strohm, T., Venäläinen, J., & Salovaara, H. (2007). Prolamin Hydrolysis in Wheat Sourdoughs with Differing Proteolytic Activities. Journal of Agricultural and Food Chemistry, 55(3), 978–984. https://doi.org/10.1021/jf062755g
  • Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010
  • Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47–58. https://doi.org/10.1016/j.ijfoodmicro.2018.08.005
  • Ohm, J., Lee, C. W., & Cho, K. (2016). Germinated wheat: phytochemical composition and mixing characteristics. Cereal Chemistry, 93(6), 612–617. https://doi.org/10.1094/cchem-01-16-0006-r
  • Perri, G., Minisci, A., Montemurro, M., Pontonio, E., Verni, M., & Rizzello, C. G. (2023). Exploitation of sprouted barley grains and flour through sourdough fermentation. LWT, 187, 115326. https://doi.org/10.1016/j.lwt.2023.115326
  • Reale, A., Di Stasio, L., Di Renzo, T., De Caro, S., Ferranti, P., Picariello, G., Addeo, F., & Mamone, G. (2021). Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chemistry, 359, 129955. https://doi.org/10.1016/j.foodchem.2021.129955
  • Siepmann, F. B., De Almeida, B. S., Waszczynskyj, N., & Spier, M. R. (2019). Influence of temperature and of starter culture on biochemical characteristics and the aromatic compounds evolution on type II sourdough and wheat bread. LWT, 108, 199–206. https://doi.org/10.1016/j.lwt.2019.03.065
  • Świeca, M., & Dziki, D. (2015). Improvement in sprouted wheat flour functionality: effect of time, temperature and elicitation. International Journal of Food Science & Technology, 50(9), 2135–2142. https://doi.org/10.1111/ijfs.12881
  • TSE. 2004. “TS 2282 Tarhana Standardı” Türk Standartları Enstitüsü, Ankara.
  • Ünsal, A. S., Atli, A., & Köten, M. (2020). Çimlendirilmiş Buğday Unundan Yapılan Tırnaklı (Düz Ekmek) ve Tava Ekmek Kalitesi Üzerine Bir Araştırma. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(5), 1209–1215. https://doi.org/10.18016/ksutarimdoga.vi.687817
  • Van Hung, P., Maeda, T., & Morita, N. (2015). Improvement of nutritional composition and antioxidant capacity of high-amylose wheat during germination. Journal of Food Science and Technology, 52(10), 6756–6762. https://doi.org/10.1007/s13197-015-1730-6
  • Van Hung, P., Maeda, T., Yamamoto, S., & Morita, N. (2011). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture, 92(3), 667–672. https://doi.org/10.1002/jsfa.4628
  • Van Kerrebroeck, S., Maes, D., & De Vuyst, L. (2017). Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends in Food Science & Technology, 68, 152–159. https://doi.org/10.1016/j.tifs.2017.08.016
  • WGI (2021). International Association for Cereal Science and Technology (ICC), Whole Grain Initiative. https://www.wholegraininitiative.org/publications (Erişim Tarihi: 4.3.2025)
  • Yüksel, D., & İnanç, A. L. (2022). Determination of bioactive peptides in maras tarhana produced by traditional method and direct fermentation. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(2), 357–366. https://doi.org/10.18016/ksutarimdoga.vi.887719
  • Žilić, S., Janković, M., Barać, M., Pešić, M., Konić-Ristić, A., & Šukalović, V. H. (2016). Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food & Function, 7(10), 4323–4331. https://doi.org/10.1039/c6fo01095d
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section RESEARCH ARTICLE
Authors

Doğanay Yüksel 0000-0002-1926-5573

Sabahattin Cömertpay 0000-0003-4850-6927

Ahmet Levent İnanç 0000-0002-7363-5096

Project Number 2021/1-26D
Early Pub Date July 25, 2025
Publication Date
Submission Date April 16, 2025
Acceptance Date June 27, 2025
Published in Issue Year 2025Volume: 28 Issue: 5

Cite

APA Yüksel, D., Cömertpay, S., & İnanç, A. L. (2025). Buğday Çeşidi ve Çimlendirmenin Sıvı Hamur Fermantasyonuna Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1293-1304. https://doi.org/10.18016/ksutarimdoga.vi.1677424


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149